1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: tactics.ml 11745 2009-01-04 18:43:08Z herbelin $ *)
open Pp
open Util
open Names
open Nameops
open Sign
open Term
open Termops
open Declarations
open Inductive
open Inductiveops
open Reductionops
open Environ
open Libnames
open Evd
open Pfedit
open Tacred
open Rawterm
open Tacmach
open Proof_trees
open Proof_type
open Logic
open Evar_refiner
open Clenv
open Clenvtac
open Refiner
open Tacticals
open Hipattern
open Coqlib
open Nametab
open Genarg
open Tacexpr
open Decl_kinds
open Evarutil
open Indrec
open Pretype_errors
open Unification
exception Bound
let rec nb_prod x =
let rec count n c =
match kind_of_term c with
Prod(_,_,t) -> count (n+1) t
| LetIn(_,a,_,t) -> count n (subst1 a t)
| Cast(c,_,_) -> count n c
| _ -> n
in count 0 x
let inj_with_occurrences e = (all_occurrences_expr,e)
let inj_open c = (Evd.empty,c)
let inj_occ (occ,c) = (occ,inj_open c)
let inj_red_expr = function
| Simpl lo -> Simpl (Option.map inj_occ lo)
| Fold l -> Fold (List.map inj_open l)
| Pattern l -> Pattern (List.map inj_occ l)
| (ExtraRedExpr _ | CbvVm | Red _ | Hnf | Cbv _ | Lazy _ | Unfold _ as c)
-> c
let inj_ebindings = function
| NoBindings -> NoBindings
| ImplicitBindings l -> ImplicitBindings (List.map inj_open l)
| ExplicitBindings l ->
ExplicitBindings (List.map (fun (l,id,c) -> (l,id,inj_open c)) l)
let dloc = dummy_loc
(*********************************************)
(* Tactics *)
(*********************************************)
(****************************************)
(* General functions *)
(****************************************)
let string_of_inductive c =
try match kind_of_term c with
| Ind ind_sp ->
let (mib,mip) = Global.lookup_inductive ind_sp in
string_of_id mip.mind_typename
| _ -> raise Bound
with Bound -> error "Bound head variable."
let rec head_constr_bound t =
let t = strip_outer_cast t in
let _,ccl = decompose_prod_assum t in
let hd,args = decompose_app ccl in
match kind_of_term hd with
| Const _ | Ind _ | Construct _ | Var _ -> (hd,args)
| _ -> raise Bound
let head_constr c =
try head_constr_bound c with Bound -> error "Bound head variable."
(******************************************)
(* Primitive tactics *)
(******************************************)
let introduction = Tacmach.introduction
let refine = Tacmach.refine
let convert_concl = Tacmach.convert_concl
let convert_hyp = Tacmach.convert_hyp
let thin_body = Tacmach.thin_body
let error_clear_dependency env id = function
| Evarutil.OccurHypInSimpleClause None ->
errorlabstrm "" (pr_id id ++ str " is used in conclusion.")
| Evarutil.OccurHypInSimpleClause (Some id') ->
errorlabstrm ""
(pr_id id ++ strbrk " is used in hypothesis " ++ pr_id id' ++ str".")
| Evarutil.EvarTypingBreak ev ->
errorlabstrm ""
(str "Cannot remove " ++ pr_id id ++
strbrk " without breaking the typing of " ++
Printer.pr_existential env ev ++ str".")
let thin l gl =
try thin l gl
with Evarutil.ClearDependencyError (id,err) ->
error_clear_dependency (pf_env gl) id err
let internal_cut_gen b d t gl =
try internal_cut b d t gl
with Evarutil.ClearDependencyError (id,err) ->
error_clear_dependency (pf_env gl) id err
let internal_cut = internal_cut_gen false
let internal_cut_replace = internal_cut_gen true
let internal_cut_rev_gen b d t gl =
try internal_cut_rev b d t gl
with Evarutil.ClearDependencyError (id,err) ->
error_clear_dependency (pf_env gl) id err
let internal_cut_rev = internal_cut_rev_gen false
let internal_cut_rev_replace = internal_cut_rev_gen true
(* Moving hypotheses *)
let move_hyp = Tacmach.move_hyp
let order_hyps = Tacmach.order_hyps
(* Renaming hypotheses *)
let rename_hyp = Tacmach.rename_hyp
(* Refine as a fixpoint *)
let mutual_fix = Tacmach.mutual_fix
let fix ido n = match ido with
| None -> mutual_fix (Pfedit.get_current_proof_name ()) n []
| Some id -> mutual_fix id n []
(* Refine as a cofixpoint *)
let mutual_cofix = Tacmach.mutual_cofix
let cofix = function
| None -> mutual_cofix (Pfedit.get_current_proof_name ()) []
| Some id -> mutual_cofix id []
(**************************************************************)
(* Reduction and conversion tactics *)
(**************************************************************)
type tactic_reduction = env -> evar_map -> constr -> constr
let pf_reduce_decl redfun where (id,c,ty) gl =
let redfun' = pf_reduce redfun gl in
match c with
| None ->
if where = InHypValueOnly then
errorlabstrm "" (pr_id id ++ str "has no value.");
(id,None,redfun' ty)
| Some b ->
let b' = if where <> InHypTypeOnly then redfun' b else b in
let ty' = if where <> InHypValueOnly then redfun' ty else ty in
(id,Some b',ty')
(* The following two tactics apply an arbitrary
reduction function either to the conclusion or to a
certain hypothesis *)
let reduct_in_concl (redfun,sty) gl =
convert_concl_no_check (pf_reduce redfun gl (pf_concl gl)) sty gl
let reduct_in_hyp redfun ((_,id),where) gl =
convert_hyp_no_check
(pf_reduce_decl redfun where (pf_get_hyp gl id) gl) gl
let reduct_option redfun = function
| Some id -> reduct_in_hyp (fst redfun) id
| None -> reduct_in_concl redfun
(* The following tactic determines whether the reduction
function has to be applied to the conclusion or
to the hypotheses. *)
let redin_combinator redfun =
onClauses (reduct_option redfun)
(* Now we introduce different instances of the previous tacticals *)
let change_and_check cv_pb t env sigma c =
if is_fconv cv_pb env sigma t c then
t
else
errorlabstrm "convert-check-hyp" (str "Not convertible.")
(* Use cumulutavity only if changing the conclusion not a subterm *)
let change_on_subterm cv_pb t = function
| None -> change_and_check cv_pb t
| Some occl -> contextually false occl (change_and_check Reduction.CONV t)
let change_in_concl occl t =
reduct_in_concl ((change_on_subterm Reduction.CUMUL t occl),DEFAULTcast)
let change_in_hyp occl t id =
with_check (reduct_in_hyp (change_on_subterm Reduction.CONV t occl) id)
let change_option occl t = function
Some id -> change_in_hyp occl t id
| None -> change_in_concl occl t
let change occl c cls =
(match cls, occl with
({onhyps=(Some(_::_::_)|None)}
|{onhyps=Some(_::_);concl_occs=((false,_)|(true,_::_))}),
Some _ ->
error "No occurrences expected when changing several hypotheses."
| _ -> ());
onClauses (change_option occl c) cls
(* Pour usage interne (le niveau User est pris en compte par reduce) *)
let red_in_concl = reduct_in_concl (red_product,DEFAULTcast)
let red_in_hyp = reduct_in_hyp red_product
let red_option = reduct_option (red_product,DEFAULTcast)
let hnf_in_concl = reduct_in_concl (hnf_constr,DEFAULTcast)
let hnf_in_hyp = reduct_in_hyp hnf_constr
let hnf_option = reduct_option (hnf_constr,DEFAULTcast)
let simpl_in_concl = reduct_in_concl (simpl,DEFAULTcast)
let simpl_in_hyp = reduct_in_hyp simpl
let simpl_option = reduct_option (simpl,DEFAULTcast)
let normalise_in_concl = reduct_in_concl (compute,DEFAULTcast)
let normalise_in_hyp = reduct_in_hyp compute
let normalise_option = reduct_option (compute,DEFAULTcast)
let normalise_vm_in_concl = reduct_in_concl (Redexpr.cbv_vm,VMcast)
let unfold_in_concl loccname = reduct_in_concl (unfoldn loccname,DEFAULTcast)
let unfold_in_hyp loccname = reduct_in_hyp (unfoldn loccname)
let unfold_option loccname = reduct_option (unfoldn loccname,DEFAULTcast)
let pattern_option l = reduct_option (pattern_occs l,DEFAULTcast)
(* A function which reduces accordingly to a reduction expression,
as the command Eval does. *)
let checking_fun = function
(* Expansion is not necessarily well-typed: e.g. expansion of t into x is
not well-typed in [H:(P t); x:=t |- G] because x is defined after H *)
| Fold _ -> with_check
| Pattern _ -> with_check
| _ -> (fun x -> x)
let reduce redexp cl goal =
let red = Redexpr.reduction_of_red_expr redexp in
match redexp with
(Fold _|Pattern _) -> with_check (redin_combinator red cl) goal
| _ -> redin_combinator red cl goal
(* Unfolding occurrences of a constant *)
let unfold_constr = function
| ConstRef sp -> unfold_in_concl [all_occurrences,EvalConstRef sp]
| VarRef id -> unfold_in_concl [all_occurrences,EvalVarRef id]
| _ -> errorlabstrm "unfold_constr" (str "Cannot unfold a non-constant.")
(*******************************************)
(* Introduction tactics *)
(*******************************************)
let fresh_id_avoid avoid id =
next_global_ident_away true id avoid
let fresh_id avoid id gl =
fresh_id_avoid (avoid@(pf_ids_of_hyps gl)) id
let id_of_name_with_default id = function
| Anonymous -> id
| Name id -> id
let hid = id_of_string "H"
let xid = id_of_string "X"
let default_id_of_sort = function Prop _ -> hid | Type _ -> xid
let default_id env sigma = function
| (name,None,t) ->
let dft = default_id_of_sort (Typing.sort_of env sigma t) in
id_of_name_with_default dft name
| (name,Some b,_) -> id_of_name_using_hdchar env b name
(* Non primitive introduction tactics are treated by central_intro
There is possibly renaming, with possibly names to avoid and
possibly a move to do after the introduction *)
type intro_name_flag =
| IntroAvoid of identifier list
| IntroBasedOn of identifier * identifier list
| IntroMustBe of identifier
let find_name loc decl gl = function
| IntroAvoid idl ->
(* this case must be compatible with [find_intro_names] below. *)
let id = fresh_id idl (default_id (pf_env gl) gl.sigma decl) gl in id
| IntroBasedOn (id,idl) -> fresh_id idl id gl
| IntroMustBe id ->
let id' = fresh_id [] id gl in
if id'<>id then user_err_loc (loc,"",pr_id id ++ str" is already used.");
id'
(* Returns the names that would be created by intros, without doing
intros. This function is supposed to be compatible with an
iteration of [find_name] above. As [default_id] checks the sort of
the type to build hyp names, we maintain an environment to be able
to type dependent hyps. *)
let find_intro_names ctxt gl =
let _, res = List.fold_right
(fun decl acc ->
let wantedname,x,typdecl = decl in
let env,idl = acc in
let name = fresh_id idl (default_id env gl.sigma decl) gl in
let newenv = push_rel (wantedname,x,typdecl) env in
(newenv,(name::idl)))
ctxt (pf_env gl , []) in
List.rev res
let build_intro_tac id = function
| MoveToEnd true -> introduction id
| dest -> tclTHEN (introduction id) (move_hyp true id dest)
let rec intro_gen loc name_flag move_flag force_flag gl =
match kind_of_term (pf_concl gl) with
| Prod (name,t,_) ->
build_intro_tac (find_name loc (name,None,t) gl name_flag) move_flag gl
| LetIn (name,b,t,_) ->
build_intro_tac (find_name loc (name,Some b,t) gl name_flag) move_flag
gl
| _ ->
if not force_flag then raise (RefinerError IntroNeedsProduct);
try
tclTHEN
(reduce (Red true) onConcl)
(intro_gen loc name_flag move_flag force_flag) gl
with Redelimination ->
user_err_loc(loc,"Intro",str "No product even after head-reduction.")
let intro_mustbe_force id = intro_gen dloc (IntroMustBe id) no_move true
let intro_using id = intro_gen dloc (IntroBasedOn (id,[])) no_move false
let intro_force force_flag = intro_gen dloc (IntroAvoid []) no_move force_flag
let intro = intro_force false
let introf = intro_force true
let intro_avoiding l = intro_gen dloc (IntroAvoid l) no_move false
let introf_move_name destopt = intro_gen dloc (IntroAvoid []) destopt true
(**** Multiple introduction tactics ****)
let rec intros_using = function
| [] -> tclIDTAC
| str::l -> tclTHEN (intro_using str) (intros_using l)
let intros = tclREPEAT (intro_force false)
let intro_erasing id = tclTHEN (thin [id]) (introduction id)
let rec get_next_hyp_position id = function
| [] -> error ("No such hypothesis: " ^ string_of_id id)
| (hyp,_,_) :: right ->
if hyp = id then
match right with (id,_,_)::_ -> MoveBefore id | [] -> MoveToEnd true
else
get_next_hyp_position id right
let thin_for_replacing l gl =
try Tacmach.thin l gl
with Evarutil.ClearDependencyError (id,err) -> match err with
| Evarutil.OccurHypInSimpleClause None ->
errorlabstrm ""
(str "Cannot change " ++ pr_id id ++ str ", it is used in conclusion.")
| Evarutil.OccurHypInSimpleClause (Some id') ->
errorlabstrm ""
(str "Cannot change " ++ pr_id id ++
strbrk ", it is used in hypothesis " ++ pr_id id' ++ str".")
| Evarutil.EvarTypingBreak ev ->
errorlabstrm ""
(str "Cannot change " ++ pr_id id ++
strbrk " without breaking the typing of " ++
Printer.pr_existential (pf_env gl) ev ++ str".")
let intro_replacing id gl =
let next_hyp = get_next_hyp_position id (pf_hyps gl) in
tclTHENLIST
[thin_for_replacing [id]; introduction id; move_hyp true id next_hyp] gl
let intros_replacing ids gl =
let rec introrec = function
| [] -> tclIDTAC
| id::tl ->
tclTHEN (tclORELSE (intro_replacing id) (intro_using id))
(introrec tl)
in
introrec ids gl
(* User-level introduction tactics *)
let intro_move idopt hto = match idopt with
| None -> intro_gen dloc (IntroAvoid []) hto true
| Some id -> intro_gen dloc (IntroMustBe id) hto true
let pf_lookup_hypothesis_as_renamed env ccl = function
| AnonHyp n -> pf_lookup_index_as_renamed env ccl n
| NamedHyp id -> pf_lookup_name_as_renamed env ccl id
let pf_lookup_hypothesis_as_renamed_gen red h gl =
let env = pf_env gl in
let rec aux ccl =
match pf_lookup_hypothesis_as_renamed env ccl h with
| None when red ->
aux
((fst (Redexpr.reduction_of_red_expr (Red true)))
env (project gl) ccl)
| x -> x
in
try aux (pf_concl gl)
with Redelimination -> None
let is_quantified_hypothesis id g =
match pf_lookup_hypothesis_as_renamed_gen true (NamedHyp id) g with
| Some _ -> true
| None -> false
let msg_quantified_hypothesis = function
| NamedHyp id ->
str "quantified hypothesis named " ++ pr_id id
| AnonHyp n ->
int n ++ str (match n with 1 -> "st" | 2 -> "nd" | _ -> "th") ++
str " non dependent hypothesis"
let depth_of_quantified_hypothesis red h gl =
match pf_lookup_hypothesis_as_renamed_gen red h gl with
| Some depth -> depth
| None ->
errorlabstrm "lookup_quantified_hypothesis"
(str "No " ++ msg_quantified_hypothesis h ++
strbrk " in current goal" ++
(if red then strbrk " even after head-reduction" else mt ()) ++
str".")
let intros_until_gen red h g =
tclDO (depth_of_quantified_hypothesis red h g) intro g
let intros_until_id id = intros_until_gen true (NamedHyp id)
let intros_until_n_gen red n = intros_until_gen red (AnonHyp n)
let intros_until = intros_until_gen true
let intros_until_n = intros_until_n_gen true
let intros_until_n_wored = intros_until_n_gen false
let try_intros_until tac = function
| NamedHyp id -> tclTHEN (tclTRY (intros_until_id id)) (tac id)
| AnonHyp n -> tclTHEN (intros_until_n n) (onLastHyp tac)
let rec intros_move = function
| [] -> tclIDTAC
| (hyp,destopt) :: rest ->
tclTHEN (intro_gen dloc (IntroMustBe hyp) destopt false)
(intros_move rest)
let dependent_in_decl a (_,c,t) =
match c with
| None -> dependent a t
| Some body -> dependent a body || dependent a t
(* Apply a tactic on a quantified hypothesis, an hypothesis in context
or a term with bindings *)
let onInductionArg tac = function
| ElimOnConstr (c,lbindc as cbl) ->
if isVar c & lbindc = NoBindings then
tclTHEN (tclTRY (intros_until_id (destVar c))) (tac cbl)
else
tac cbl
| ElimOnAnonHyp n ->
tclTHEN (intros_until_n n) (tclLAST_HYP (fun c -> tac (c,NoBindings)))
| ElimOnIdent (_,id) ->
(*Identifier apart because id can be quantified in goal and not typable*)
tclTHEN (tclTRY (intros_until_id id)) (tac (mkVar id,NoBindings))
(**************************)
(* Refinement tactics *)
(**************************)
let apply_type hdcty argl gl =
refine (applist (mkCast (Evarutil.mk_new_meta(),DEFAULTcast, hdcty),argl)) gl
let apply_term hdc argl gl =
refine (applist (hdc,argl)) gl
let bring_hyps hyps =
if hyps = [] then Refiner.tclIDTAC
else
(fun gl ->
let newcl = List.fold_right mkNamedProd_or_LetIn hyps (pf_concl gl) in
let f = mkCast (Evarutil.mk_new_meta(),DEFAULTcast, newcl) in
refine_no_check (mkApp (f, instance_from_named_context hyps)) gl)
let resolve_classes gl =
let env = pf_env gl and evd = project gl in
if evd = Evd.empty then tclIDTAC gl
else
let evd' = Typeclasses.resolve_typeclasses env (Evd.create_evar_defs evd) in
(tclTHEN (tclEVARS (Evd.evars_of evd')) tclNORMEVAR) gl
(**************************)
(* Cut tactics *)
(**************************)
let cut c gl =
match kind_of_term (hnf_type_of gl c) with
| Sort _ ->
let id=next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
let t = mkProd (Anonymous, c, pf_concl gl) in
tclTHENFIRST
(internal_cut_rev id c)
(tclTHEN (apply_type t [mkVar id]) (thin [id]))
gl
| _ -> error "Not a proposition or a type."
let cut_intro t = tclTHENFIRST (cut t) intro
(* cut_replacing échoue si l'hypothèse à remplacer apparaît dans le
but, ou dans une autre hypothèse *)
let cut_replacing id t tac =
tclTHENLAST (internal_cut_rev_replace id t)
(tac (refine_no_check (mkVar id)))
let cut_in_parallel l =
let rec prec = function
| [] -> tclIDTAC
| h::t -> tclTHENFIRST (cut h) (prec t)
in
prec (List.rev l)
let error_uninstantiated_metas t clenv =
let na = meta_name clenv.evd (List.hd (Metaset.elements (metavars_of t))) in
let id = match na with Name id -> id | _ -> anomaly "unnamed dependent meta"
in errorlabstrm "" (str "Cannot find an instance for " ++ pr_id id ++ str".")
let clenv_refine_in with_evars id clenv gl =
let clenv = clenv_pose_dependent_evars with_evars clenv in
let new_hyp_typ = clenv_type clenv in
if not with_evars & occur_meta new_hyp_typ then
error_uninstantiated_metas new_hyp_typ clenv;
let new_hyp_prf = clenv_value clenv in
tclTHEN
(tclEVARS (evars_of clenv.evd))
(cut_replacing id new_hyp_typ
(fun x gl -> refine_no_check new_hyp_prf gl)) gl
(********************************************)
(* Elimination tactics *)
(********************************************)
let last_arg c = match kind_of_term c with
| App (f,cl) ->
array_last cl
| _ -> anomaly "last_arg"
let elim_flags = {
modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly = true;
modulo_delta = empty_transparent_state;
}
let elimination_clause_scheme with_evars allow_K elimclause indclause gl =
let indmv =
(match kind_of_term (last_arg elimclause.templval.rebus) with
| Meta mv -> mv
| _ -> errorlabstrm "elimination_clause"
(str "The type of elimination clause is not well-formed."))
in
let elimclause' = clenv_fchain indmv elimclause indclause in
res_pf elimclause' ~with_evars:with_evars ~allow_K:allow_K ~flags:elim_flags
gl
(* cast added otherwise tactics Case (n1,n2) generates (?f x y) and
* refine fails *)
let type_clenv_binding wc (c,t) lbind =
clenv_type (make_clenv_binding wc (c,t) lbind)
(*
* Elimination tactic with bindings and using an arbitrary
* elimination constant called elimc. This constant should end
* with a clause (x:I)(P .. ), where P is a bound variable.
* The term c is of type t, which is a product ending with a type
* matching I, lbindc are the expected terms for c arguments
*)
let general_elim_clause elimtac (c,lbindc) (elimc,lbindelimc) gl =
let ct = pf_type_of gl c in
let t = try snd (pf_reduce_to_quantified_ind gl ct) with UserError _ -> ct in
let indclause = make_clenv_binding gl (c,t) lbindc in
let elimt = pf_type_of gl elimc in
let elimclause = make_clenv_binding gl (elimc,elimt) lbindelimc in
elimtac elimclause indclause gl
let general_elim with_evars c e ?(allow_K=true) =
general_elim_clause (elimination_clause_scheme with_evars allow_K) c e
(* Elimination tactic with bindings but using the default elimination
* constant associated with the type. *)
let find_eliminator c gl =
let (ind,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
lookup_eliminator ind (elimination_sort_of_goal gl)
let default_elim with_evars (c,_ as cx) gl =
general_elim with_evars cx (find_eliminator c gl,NoBindings) gl
let elim_in_context with_evars c = function
| Some elim -> general_elim with_evars c elim ~allow_K:true
| None -> default_elim with_evars c
let elim with_evars (c,lbindc as cx) elim =
match kind_of_term c with
| Var id when lbindc = NoBindings ->
tclTHEN (tclTRY (intros_until_id id))
(elim_in_context with_evars cx elim)
| _ -> elim_in_context with_evars cx elim
(* The simplest elimination tactic, with no substitutions at all. *)
let simplest_elim c = default_elim false (c,NoBindings)
(* Elimination in hypothesis *)
(* Typically, elimclause := (eq_ind ?x ?P ?H ?y ?Heq : ?P ?y)
indclause : forall ..., hyps -> a=b (to take place of ?Heq)
id : phi(a) (to take place of ?H)
and the result is to overwrite id with the proof of phi(b)
but this generalizes to any elimination scheme with one constructor
(e.g. it could replace id:A->B->C by id:C, knowing A/\B)
*)
let clenv_fchain_in id elim_flags mv elimclause hypclause =
try clenv_fchain ~allow_K:false ~flags:elim_flags mv elimclause hypclause
with PretypeError (env,NoOccurrenceFound (op,_)) ->
(* Set the hypothesis name in the message *)
raise (PretypeError (env,NoOccurrenceFound (op,Some id)))
let elimination_in_clause_scheme with_evars id elimclause indclause gl =
let (hypmv,indmv) =
match clenv_independent elimclause with
[k1;k2] -> (k1,k2)
| _ -> errorlabstrm "elimination_clause"
(str "The type of elimination clause is not well-formed.") in
let elimclause' = clenv_fchain indmv elimclause indclause in
let hyp = mkVar id in
let hyp_typ = pf_type_of gl hyp in
let hypclause = mk_clenv_from_n gl (Some 0) (hyp, hyp_typ) in
let elimclause'' =
clenv_fchain_in id elim_flags hypmv elimclause' hypclause in
let new_hyp_typ = clenv_type elimclause'' in
if eq_constr hyp_typ new_hyp_typ then
errorlabstrm "general_rewrite_in"
(str "Nothing to rewrite in " ++ pr_id id ++ str".");
clenv_refine_in with_evars id elimclause'' gl
let general_elim_in with_evars id =
general_elim_clause (elimination_in_clause_scheme with_evars id)
(* Case analysis tactics *)
let general_case_analysis_in_context with_evars (c,lbindc) gl =
let (mind,_) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
let sort = elimination_sort_of_goal gl in
let case =
if occur_term c (pf_concl gl) then make_case_dep else make_case_gen in
let elim = pf_apply case gl mind sort in
general_elim with_evars (c,lbindc) (elim,NoBindings) gl
let general_case_analysis with_evars (c,lbindc as cx) =
match kind_of_term c with
| Var id when lbindc = NoBindings ->
tclTHEN (tclTRY (intros_until_id id))
(general_case_analysis_in_context with_evars cx)
| _ ->
general_case_analysis_in_context with_evars cx
let simplest_case c = general_case_analysis false (c,NoBindings)
(* Apply a tactic below the products of the conclusion of a lemma *)
let descend_in_conjunctions with_evars tac exit c gl =
try
let (mind,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
match match_with_record (snd (decompose_prod t)) with
| Some _ ->
let n = (mis_constr_nargs mind).(0) in
let sort = elimination_sort_of_goal gl in
let elim = pf_apply make_case_gen gl mind sort in
tclTHENLAST
(general_elim with_evars (c,NoBindings) (elim,NoBindings))
(tclTHENLIST [
tclDO n intro;
tclLAST_NHYPS n (fun l ->
tclFIRST
(List.map (fun id -> tclTHEN (tac (mkVar id)) (thin l)) l))])
gl
| None ->
raise Exit
with RefinerError _|UserError _|Exit -> exit ()
(****************************************************)
(* Resolution tactics *)
(****************************************************)
(* Resolution with missing arguments *)
let check_evars sigma evm gl =
let origsigma = gl.sigma in
let rest =
Evd.fold (fun ev evi acc ->
if not (Evd.mem origsigma ev) && not (Evd.is_defined sigma ev)
then Evd.add acc ev evi else acc)
evm Evd.empty
in
if rest <> Evd.empty then
errorlabstrm "apply" (str"Uninstantiated existential variables: " ++
fnl () ++ pr_evar_map rest)
let general_apply with_delta with_destruct with_evars (c,lbind) gl0 =
let flags =
if with_delta then default_unify_flags else default_no_delta_unify_flags in
(* The actual type of the theorem. It will be matched against the
goal. If this fails, then the head constant will be unfolded step by
step. *)
let concl_nprod = nb_prod (pf_concl gl0) in
let evm, c = c in
let rec try_main_apply c gl =
let thm_ty0 = nf_betaiota (pf_type_of gl c) in
let try_apply thm_ty nprod =
let n = nb_prod thm_ty - nprod in
if n<0 then error "Applied theorem has not enough premisses.";
let clause = make_clenv_binding_apply gl (Some n) (c,thm_ty) lbind in
let res = Clenvtac.res_pf clause ~with_evars:with_evars ~flags:flags gl in
if not with_evars then check_evars (fst res).sigma evm gl0;
res
in
try try_apply thm_ty0 concl_nprod
with PretypeError _|RefinerError _|UserError _|Failure _ as exn ->
let rec try_red_apply thm_ty =
try
(* Try to head-reduce the conclusion of the theorem *)
let red_thm = try_red_product (pf_env gl) (project gl) thm_ty in
try try_apply red_thm concl_nprod
with PretypeError _|RefinerError _|UserError _|Failure _ ->
try_red_apply red_thm
with Redelimination ->
(* Last chance: if the head is a variable, apply may try
second order unification *)
try if concl_nprod <> 0 then try_apply thm_ty 0 else raise Exit
with PretypeError _|RefinerError _|UserError _|Failure _|Exit ->
if with_destruct then
descend_in_conjunctions with_evars
try_main_apply (fun _ -> raise exn) c gl
else
raise exn
in try_red_apply thm_ty0
in
if evm = Evd.empty then try_main_apply c gl0
else
tclTHEN (tclEVARS (Evd.merge gl0.sigma evm)) (try_main_apply c) gl0
let rec apply_with_ebindings_gen b e = function
| [] ->
tclIDTAC
| [cb] ->
general_apply b b e cb
| cb::cbl ->
tclTHENLAST (general_apply b b e cb) (apply_with_ebindings_gen b e cbl)
let apply_with_ebindings cb = apply_with_ebindings_gen false false [cb]
let eapply_with_ebindings cb = apply_with_ebindings_gen false true [cb]
let apply_with_bindings (c,bl) =
apply_with_ebindings (inj_open c,inj_ebindings bl)
let eapply_with_bindings (c,bl) =
apply_with_ebindings_gen false true [inj_open c,inj_ebindings bl]
let apply c =
apply_with_ebindings (inj_open c,NoBindings)
let apply_list = function
| c::l -> apply_with_bindings (c,ImplicitBindings l)
| _ -> assert false
(* Resolution with no reduction on the type (used ?) *)
let apply_without_reduce c gl =
let clause = mk_clenv_type_of gl c in
res_pf clause gl
(* [apply_in hyp c] replaces
hyp : forall y1, ti -> t hyp : rho(u)
======================== with ============ and the =======
goal goal rho(ti)
assuming that [c] has type [forall x1..xn -> t' -> u] for some [t]
unifiable with [t'] with unifier [rho]
*)
let find_matching_clause unifier clause =
let rec find clause =
try unifier clause
with exn when catchable_exception exn ->
try find (clenv_push_prod clause)
with NotExtensibleClause -> failwith "Cannot apply"
in find clause
let progress_with_clause flags innerclause clause =
let ordered_metas = List.rev (clenv_independent clause) in
if ordered_metas = [] then error "Statement without assumptions.";
let f mv =
find_matching_clause (clenv_fchain mv ~flags clause) innerclause in
try list_try_find f ordered_metas
with Failure _ -> error "Unable to unify."
let apply_in_once_main flags innerclause (d,lbind) gl =
let thm = nf_betaiota (pf_type_of gl d) in
let rec aux clause =
try progress_with_clause flags innerclause clause
with err ->
try aux (clenv_push_prod clause)
with NotExtensibleClause -> raise err in
aux (make_clenv_binding gl (d,thm) lbind)
let apply_in_once with_delta with_destruct with_evars id ((sigma,d),lbind) gl0 =
let flags =
if with_delta then default_unify_flags else default_no_delta_unify_flags in
let t' = pf_get_hyp_typ gl0 id in
let innerclause = mk_clenv_from_n gl0 (Some 0) (mkVar id,t') in
let rec aux c gl =
try
let clause = apply_in_once_main flags innerclause (c,lbind) gl in
let res = clenv_refine_in with_evars id clause gl in
if not with_evars then check_evars (fst res).sigma sigma gl0;
res
with exn when with_destruct ->
descend_in_conjunctions true aux (fun _ -> raise exn) c gl
in
if sigma = Evd.empty then aux d gl0
else
tclTHEN (tclEVARS (Evd.merge gl0.sigma sigma)) (aux d) gl0
(* A useful resolution tactic which, if c:A->B, transforms |- C into
|- B -> C and |- A
-------------------
Gamma |- c : A -> B Gamma |- ?2 : A
----------------------------------------
Gamma |- B Gamma |- ?1 : B -> C
-----------------------------------------------------
Gamma |- ? : C
Ltac lapply c :=
let ty := check c in
match eval hnf in ty with
?A -> ?B => cut B; [ idtac | apply c ]
end.
*)
let cut_and_apply c gl =
let goal_constr = pf_concl gl in
match kind_of_term (pf_hnf_constr gl (pf_type_of gl c)) with
| Prod (_,c1,c2) when not (dependent (mkRel 1) c2) ->
tclTHENLAST
(apply_type (mkProd (Anonymous,c2,goal_constr)) [mkMeta(new_meta())])
(apply_term c [mkMeta (new_meta())]) gl
| _ -> error "lapply needs a non-dependent product."
(********************************************************************)
(* Exact tactics *)
(********************************************************************)
let exact_check c gl =
let concl = (pf_concl gl) in
let ct = pf_type_of gl c in
if pf_conv_x_leq gl ct concl then
refine_no_check c gl
else
error "Not an exact proof."
let exact_no_check = refine_no_check
let vm_cast_no_check c gl =
let concl = pf_concl gl in
refine_no_check (Term.mkCast(c,Term.VMcast,concl)) gl
let exact_proof c gl =
(* on experimente la synthese d'ise dans exact *)
let c = Constrintern.interp_casted_constr (project gl) (pf_env gl) c (pf_concl gl)
in refine_no_check c gl
let (assumption : tactic) = fun gl ->
let concl = pf_concl gl in
let hyps = pf_hyps gl in
let rec arec only_eq = function
| [] ->
if only_eq then arec false hyps else error "No such assumption."
| (id,c,t)::rest ->
if (only_eq & eq_constr t concl)
or (not only_eq & pf_conv_x_leq gl t concl)
then refine_no_check (mkVar id) gl
else arec only_eq rest
in
arec true hyps
(*****************************************************************)
(* Modification of a local context *)
(*****************************************************************)
(* This tactic enables the user to remove hypotheses from the signature.
* Some care is taken to prevent him from removing variables that are
* subsequently used in other hypotheses or in the conclusion of the
* goal. *)
let clear ids = (* avant seul dyn_clear n'echouait pas en [] *)
if ids=[] then tclIDTAC else thin ids
let clear_body = thin_body
let clear_wildcards ids =
tclMAP (fun (loc,id) gl ->
try with_check (Tacmach.thin_no_check [id]) gl
with ClearDependencyError (id,err) ->
(* Intercept standard [thin] error message *)
Stdpp.raise_with_loc loc
(error_clear_dependency (pf_env gl) (id_of_string "_") err))
ids
(* Takes a list of booleans, and introduces all the variables
* quantified in the goal which are associated with a value
* true in the boolean list. *)
let rec intros_clearing = function
| [] -> tclIDTAC
| (false::tl) -> tclTHEN intro (intros_clearing tl)
| (true::tl) ->
tclTHENLIST
[ intro; onLastHyp (fun id -> clear [id]); intros_clearing tl]
(* Modifying/Adding an hypothesis *)
let specialize mopt (c,lbind) g =
let evars, term =
if lbind = NoBindings then None, c
else
let clause = make_clenv_binding g (c,pf_type_of g c) lbind in
let clause = clenv_unify_meta_types clause in
let (thd,tstack) = whd_stack (clenv_value clause) in
let nargs = List.length tstack in
let tstack = match mopt with
| Some m ->
if m < nargs then list_firstn m tstack else tstack
| None ->
let rec chk = function
| [] -> []
| t::l -> if occur_meta t then [] else t :: chk l
in chk tstack
in
let term = applist(thd,tstack) in
if occur_meta term then
errorlabstrm "" (str "Cannot infer an instance for " ++
pr_name (meta_name clause.evd (List.hd (collect_metas term))) ++
str ".");
Some (evars_of clause.evd), term
in
tclTHEN
(match evars with Some e -> tclEVARS e | _ -> tclIDTAC)
(match kind_of_term (fst(decompose_app (snd(decompose_lam_assum c)))) with
| Var id when List.mem id (pf_ids_of_hyps g) ->
tclTHENFIRST
(fun g -> internal_cut_replace id (pf_type_of g term) g)
(exact_no_check term)
| _ -> tclTHENLAST
(fun g -> cut (pf_type_of g term) g)
(exact_no_check term))
g
(* Keeping only a few hypotheses *)
let keep hyps gl =
let env = Global.env() in
let ccl = pf_concl gl in
let cl,_ =
fold_named_context_reverse (fun (clear,keep) (hyp,_,_ as decl) ->
if List.mem hyp hyps
or List.exists (occur_var_in_decl env hyp) keep
or occur_var env hyp ccl
then (clear,decl::keep)
else (hyp::clear,keep))
~init:([],[]) (pf_env gl)
in thin cl gl
(************************)
(* Introduction tactics *)
(************************)
let check_number_of_constructors expctdnumopt i nconstr =
if i=0 then error "The constructors are numbered starting from 1.";
begin match expctdnumopt with
| Some n when n <> nconstr ->
error ("Not an inductive goal with "^
string_of_int n^plural n " constructor"^".")
| _ -> ()
end;
if i > nconstr then error "Not enough constructors."
let constructor_tac with_evars expctdnumopt i lbind gl =
let cl = pf_concl gl in
let (mind,redcl) = pf_reduce_to_quantified_ind gl cl in
let nconstr =
Array.length (snd (Global.lookup_inductive mind)).mind_consnames in
check_number_of_constructors expctdnumopt i nconstr;
let cons = mkConstruct (ith_constructor_of_inductive mind i) in
let apply_tac = general_apply true false with_evars (inj_open cons,lbind) in
(tclTHENLIST
[convert_concl_no_check redcl DEFAULTcast; intros; apply_tac]) gl
let one_constructor i = constructor_tac false None i
(* Try to apply the constructor of the inductive definition followed by
a tactic t given as an argument.
Should be generalize in Constructor (Fun c : I -> tactic)
*)
let any_constructor with_evars tacopt gl =
let t = match tacopt with None -> tclIDTAC | Some t -> t in
let mind = fst (pf_reduce_to_quantified_ind gl (pf_concl gl)) in
let nconstr =
Array.length (snd (Global.lookup_inductive mind)).mind_consnames in
if nconstr = 0 then error "The type has no constructors.";
tclFIRST
(List.map
(fun i -> tclTHEN (constructor_tac with_evars None i NoBindings) t)
(interval 1 nconstr)) gl
let left_with_ebindings with_evars = constructor_tac with_evars (Some 2) 1
let right_with_ebindings with_evars = constructor_tac with_evars (Some 2) 2
let split_with_ebindings with_evars = constructor_tac with_evars (Some 1) 1
let left l = left_with_ebindings false (inj_ebindings l)
let simplest_left = left NoBindings
let right l = right_with_ebindings false (inj_ebindings l)
let simplest_right = right NoBindings
let split l = split_with_ebindings false (inj_ebindings l)
let simplest_split = split NoBindings
(*****************************)
(* Decomposing introductions *)
(*****************************)
let forward_general_multi_rewrite =
ref (fun _ -> failwith "general_multi_rewrite undefined")
let register_general_multi_rewrite f =
forward_general_multi_rewrite := f
let clear_last = tclLAST_HYP (fun c -> (clear [destVar c]))
let case_last = tclLAST_HYP simplest_case
let error_unexpected_extra_pattern loc nb pat =
let s1,s2,s3 = match pat with
| IntroIdentifier _ -> "name", (plural nb " introduction pattern"), "no"
| _ -> "introduction pattern", "", "none" in
user_err_loc (loc,"",str "Unexpected " ++ str s1 ++ str " (" ++
(if nb = 0 then (str s3 ++ str s2) else
(str "at most " ++ int nb ++ str s2)) ++ spc () ++
str (if nb = 1 then "was" else "were") ++
strbrk " expected in the branch).")
let intro_or_and_pattern loc b ll l' tac =
tclLAST_HYP (fun c gl ->
let ind,_ = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
let nv = mis_constr_nargs ind in
let bracketed = b or not (l'=[]) in
let rec adjust_names_length nb n = function
| [] when n = 0 or not bracketed -> []
| [] -> (dloc,IntroAnonymous) :: adjust_names_length nb (n-1) []
| (loc',pat) :: _ as l when n = 0 ->
if bracketed then error_unexpected_extra_pattern loc' nb pat;
l
| ip :: l -> ip :: adjust_names_length nb (n-1) l in
let ll = fix_empty_or_and_pattern (Array.length nv) ll in
check_or_and_pattern_size loc ll (Array.length nv);
tclTHENLASTn
(tclTHEN case_last clear_last)
(array_map2 (fun n l -> tac ((adjust_names_length n n l)@l'))
nv (Array.of_list ll))
gl)
let rewrite_hyp l2r id gl =
let rew_on l2r =
!forward_general_multi_rewrite l2r false (inj_open (mkVar id),NoBindings) in
let clear_var_and_eq c =
tclTRY (tclTHEN (clear [id]) (tclTRY (clear [destVar c]))) in
let t = pf_whd_betadeltaiota gl (pf_type_of gl (mkVar id)) in
(* TODO: detect setoid equality? better detect the different equalities *)
match match_with_equality_type t with
| Some (hdcncl,[_;lhs;rhs]) ->
if l2r & isVar lhs & not (occur_var (pf_env gl) (destVar lhs) rhs) then
tclTHEN (rew_on l2r allClauses) (clear_var_and_eq lhs) gl
else if not l2r & isVar rhs & not (occur_var (pf_env gl) (destVar rhs) lhs) then
tclTHEN (rew_on l2r allClauses) (clear_var_and_eq rhs) gl
else
tclTHEN (rew_on l2r onConcl) (tclTRY (clear [id])) gl
| Some (hdcncl,[c]) ->
let l2r = not l2r in (* equality of the form eq_true *)
if isVar c then
tclTHEN (rew_on l2r allClauses) (clear_var_and_eq c) gl
else
tclTHEN (rew_on l2r onConcl) (tclTRY (clear [id])) gl
| _ ->
error "Cannot find a known equation."
let rec explicit_intro_names = function
| (_, IntroIdentifier id) :: l ->
id :: explicit_intro_names l
| (_, (IntroWildcard | IntroAnonymous | IntroFresh _ | IntroRewrite _)) :: l ->
explicit_intro_names l
| (_, IntroOrAndPattern ll) :: l' ->
List.flatten (List.map (fun l -> explicit_intro_names (l@l')) ll)
| [] ->
[]
(* We delay thinning until the completion of the whole intros tactic
to ensure that dependent hypotheses are cleared in the right
dependency order (see bug #1000); we use fresh names, not used in
the tactic, for the hyps to clear *)
let rec intros_patterns b avoid thin destopt = function
| (loc, IntroWildcard) :: l ->
tclTHEN
(intro_gen loc (IntroAvoid(avoid@explicit_intro_names l)) no_move true)
(onLastHyp (fun id ->
tclORELSE
(tclTHEN (clear [id]) (intros_patterns b avoid thin destopt l))
(intros_patterns b avoid ((loc,id)::thin) destopt l)))
| (loc, IntroIdentifier id) :: l ->
tclTHEN
(intro_gen loc (IntroMustBe id) destopt true)
(intros_patterns b avoid thin destopt l)
| (loc, IntroAnonymous) :: l ->
tclTHEN
(intro_gen loc (IntroAvoid (avoid@explicit_intro_names l))
destopt true)
(intros_patterns b avoid thin destopt l)
| (loc, IntroFresh id) :: l ->
tclTHEN
(intro_gen loc (IntroBasedOn (id, avoid@explicit_intro_names l))
destopt true)
(intros_patterns b avoid thin destopt l)
| (loc, IntroOrAndPattern ll) :: l' ->
tclTHEN
introf
(intro_or_and_pattern loc b ll l'
(intros_patterns b avoid thin destopt))
| (loc, IntroRewrite l2r) :: l ->
tclTHEN
(intro_gen loc (IntroAvoid(avoid@explicit_intro_names l)) no_move true)
(onLastHyp (fun id ->
tclTHEN
(rewrite_hyp l2r id)
(intros_patterns b avoid thin destopt l)))
| [] -> clear_wildcards thin
let intros_pattern = intros_patterns false [] []
let intro_pattern destopt pat = intros_patterns false [] [] destopt [dloc,pat]
let intro_patterns = function
| [] -> tclREPEAT intro
| l -> intros_pattern no_move l
(**************************)
(* Other cut tactics *)
(**************************)
let make_id s = fresh_id [] (default_id_of_sort s)
let prepare_intros s ipat gl = match ipat with
| None -> make_id s gl, tclIDTAC
| Some (loc,ipat) -> match ipat with
| IntroIdentifier id -> id, tclIDTAC
| IntroAnonymous -> make_id s gl, tclIDTAC
| IntroFresh id -> fresh_id [] id gl, tclIDTAC
| IntroWildcard -> let id = make_id s gl in id, clear_wildcards [dloc,id]
| IntroRewrite l2r ->
let id = make_id s gl in
id, !forward_general_multi_rewrite l2r false (inj_open (mkVar id),NoBindings) allClauses
| IntroOrAndPattern ll -> make_id s gl,
intro_or_and_pattern loc true ll [] (intros_patterns true [] [] no_move)
let ipat_of_name = function
| Anonymous -> None
| Name id -> Some (dloc, IntroIdentifier id)
let allow_replace c gl = function (* A rather arbitrary condition... *)
| Some (_, IntroIdentifier id) ->
fst (decompose_app (snd (decompose_lam_assum c))) = mkVar id
| _ ->
false
let assert_as first ipat c gl =
match kind_of_term (hnf_type_of gl c) with
| Sort s ->
let id,tac = prepare_intros s ipat gl in
let repl = allow_replace c gl ipat in
tclTHENS
((if first then internal_cut_gen else internal_cut_rev_gen) repl id c)
(if first then [tclIDTAC; tac] else [tac; tclIDTAC]) gl
| _ -> error "Not a proposition or a type."
let assert_tac na = assert_as true (ipat_of_name na)
(* apply in as *)
let as_tac id ipat = match ipat with
| Some (loc,IntroRewrite l2r) ->
!forward_general_multi_rewrite l2r false (inj_open (mkVar id),NoBindings) allClauses
| Some (loc,IntroOrAndPattern ll) ->
intro_or_and_pattern loc true ll [] (intros_patterns true [] [] no_move)
| Some (loc,
(IntroIdentifier _ | IntroAnonymous | IntroFresh _ | IntroWildcard)) ->
user_err_loc (loc,"", str "Disjunctive/conjunctive pattern expected")
| None -> tclIDTAC
let general_apply_in with_delta with_destruct with_evars id lemmas ipat gl =
tclTHEN
(tclMAP (apply_in_once with_delta with_destruct with_evars id) lemmas)
(as_tac id ipat)
gl
let apply_in simple with_evars = general_apply_in simple simple with_evars
(**************************)
(* Generalize tactics *)
(**************************)
let generalized_name c t ids cl = function
| Name id as na ->
if List.mem id ids then
errorlabstrm "" (pr_id id ++ str " is already used");
na
| Anonymous ->
match kind_of_term c with
| Var id ->
(* Keep the name even if not occurring: may be used by intros later *)
Name id
| _ ->
if noccurn 1 cl then Anonymous else
(* On ne s'etait pas casse la tete : on avait pris pour nom de
variable la premiere lettre du type, meme si "c" avait ete une
constante dont on aurait pu prendre directement le nom *)
named_hd (Global.env()) t Anonymous
let generalize_goal gl i ((occs,c),na) cl =
let t = pf_type_of gl c in
let decls,cl = decompose_prod_n_assum i cl in
let dummy_prod = it_mkProd_or_LetIn mkProp decls in
let newdecls,_ = decompose_prod_n_assum i (subst_term c dummy_prod) in
let cl' = subst_term_occ occs c (it_mkProd_or_LetIn cl newdecls) in
let na = generalized_name c t (pf_ids_of_hyps gl) cl' na in
mkProd (na,t,cl')
let generalize_dep c gl =
let env = pf_env gl in
let sign = pf_hyps gl in
let init_ids = ids_of_named_context (Global.named_context()) in
let rec seek d toquant =
if List.exists (fun (id,_,_) -> occur_var_in_decl env id d) toquant
or dependent_in_decl c d then
d::toquant
else
toquant in
let to_quantify = Sign.fold_named_context seek sign ~init:[] in
let to_quantify_rev = List.rev to_quantify in
let qhyps = List.map (fun (id,_,_) -> id) to_quantify_rev in
let tothin = List.filter (fun id -> not (List.mem id init_ids)) qhyps in
let tothin' =
match kind_of_term c with
| Var id when mem_named_context id sign & not (List.mem id init_ids)
-> id::tothin
| _ -> tothin
in
let cl' = it_mkNamedProd_or_LetIn (pf_concl gl) to_quantify in
let cl'' = generalize_goal gl 0 ((all_occurrences,c),Anonymous) cl' in
let args = Array.to_list (instance_from_named_context to_quantify_rev) in
tclTHEN
(apply_type cl'' (c::args))
(thin (List.rev tothin'))
gl
let generalize_gen lconstr gl =
let newcl =
list_fold_right_i (generalize_goal gl) 0 lconstr (pf_concl gl) in
apply_type newcl (List.map (fun ((_,c),_) -> c) lconstr) gl
let generalize l =
generalize_gen (List.map (fun c -> ((all_occurrences,c),Anonymous)) l)
let revert hyps gl =
tclTHEN (generalize (List.map mkVar hyps)) (clear hyps) gl
(* Faudra-t-il une version avec plusieurs args de generalize_dep ?
Cela peut-être troublant de faire "Generalize Dependent H n" dans
"n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la
généralisation dépendante par n.
let quantify lconstr =
List.fold_right
(fun com tac -> tclTHEN tac (tactic_com generalize_dep c))
lconstr
tclIDTAC
*)
(* A dependent cut rule à la sequent calculus
------------------------------------------
Sera simplifiable le jour où il y aura un let in primitif dans constr
[letin_tac b na c (occ_hyp,occ_ccl) gl] transforms
[...x1:T1(c),...,x2:T2(c),... |- G(c)] into
[...x:T;Heqx:(x=c);x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is false or
[...x:=c:T;x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is true
[occ_hyp,occ_ccl] tells which occurrences of [c] have to be substituted;
if [occ_hyp = []] and [occ_ccl = None] then [c] is substituted
wherever it occurs, otherwise [c] is substituted only in hyps
present in [occ_hyps] at the specified occurrences (everywhere if
the list of occurrences is empty), and in the goal at the specified
occurrences if [occ_goal] is not [None];
if name = Anonymous, the name is build from the first letter of the type;
The tactic first quantify the goal over x1, x2,... then substitute then
re-intro x1, x2,... at their initial place ([marks] is internally
used to remember the place of x1, x2, ...: it is the list of hypotheses on
the left of each x1, ...).
*)
let out_arg = function
| ArgVar _ -> anomaly "Unevaluated or_var variable"
| ArgArg x -> x
let occurrences_of_hyp id cls =
let rec hyp_occ = function
[] -> None
| (((b,occs),id'),hl)::_ when id=id' -> Some ((b,List.map out_arg occs),hl)
| _::l -> hyp_occ l in
match cls.onhyps with
None -> Some (all_occurrences,InHyp)
| Some l -> hyp_occ l
let occurrences_of_goal cls =
if cls.concl_occs = no_occurrences_expr then None
else Some (on_snd (List.map out_arg) cls.concl_occs)
let in_every_hyp cls = (cls.onhyps=None)
(*
(* Implementation with generalisation then re-intro: introduces noise *)
(* in proofs *)
let letin_abstract id c occs gl =
let env = pf_env gl in
let compute_dependency _ (hyp,_,_ as d) ctxt =
let d' =
try
match occurrences_of_hyp hyp occs with
| None -> raise Not_found
| Some occ ->
let newdecl = subst_term_occ_decl occ c d in
if occ = [] & d = newdecl then
if not (in_every_hyp occs)
then raise (RefinerError (DoesNotOccurIn (c,hyp)))
else raise Not_found
else
(subst1_named_decl (mkVar id) newdecl, true)
with Not_found ->
(d,List.exists
(fun ((id,_,_),dep) -> dep && occur_var_in_decl env id d) ctxt)
in d'::ctxt
in
let ctxt' = fold_named_context compute_dependency env ~init:[] in
let compute_marks ((depdecls,marks as accu),lhyp) ((hyp,_,_) as d,b) =
if b then ((d::depdecls,(hyp,lhyp)::marks), lhyp)
else (accu, Some hyp) in
let (depdecls,marks),_ = List.fold_left compute_marks (([],[]),None) ctxt' in
let ccl = match occurrences_of_goal occs with
| None -> pf_concl gl
| Some occ -> subst1 (mkVar id) (subst_term_occ occ c (pf_concl gl))
in
(depdecls,marks,ccl)
let letin_tac with_eq name c occs gl =
let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) name in
let id =
if name = Anonymous then fresh_id [] x gl else
if not (mem_named_context x (pf_hyps gl)) then x else
error ("The variable "^(string_of_id x)^" is already declared") in
let (depdecls,marks,ccl)= letin_abstract id c occs gl in
let t = pf_type_of gl c in
let tmpcl = List.fold_right mkNamedProd_or_LetIn depdecls ccl in
let args = Array.to_list (instance_from_named_context depdecls) in
let newcl = mkNamedLetIn id c t tmpcl in
let lastlhyp = if marks=[] then None else snd (List.hd marks) in
tclTHENLIST
[ apply_type newcl args;
thin (List.map (fun (id,_,_) -> id) depdecls);
intro_gen (IntroMustBe id) lastlhyp false;
if with_eq then tclIDTAC else thin_body [id];
intros_move marks ] gl
*)
(* Implementation without generalisation: abbrev will be lost in hyps in *)
(* in the extracted proof *)
let letin_abstract id c (occs,check_occs) gl =
let env = pf_env gl in
let compute_dependency _ (hyp,_,_ as d) depdecls =
match occurrences_of_hyp hyp occs with
| None -> depdecls
| Some occ ->
let newdecl = subst_term_occ_decl occ c d in
if occ = (all_occurrences,InHyp) & d = newdecl then
if check_occs & not (in_every_hyp occs)
then raise (RefinerError (DoesNotOccurIn (c,hyp)))
else depdecls
else
(subst1_named_decl (mkVar id) newdecl)::depdecls in
let depdecls = fold_named_context compute_dependency env ~init:[] in
let ccl = match occurrences_of_goal occs with
| None -> pf_concl gl
| Some occ -> subst1 (mkVar id) (subst_term_occ occ c (pf_concl gl)) in
let lastlhyp =
if depdecls = [] then no_move else MoveAfter(pi1(list_last depdecls)) in
(depdecls,lastlhyp,ccl)
let letin_tac_gen with_eq name c ty occs gl =
let id =
let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) name in
if name = Anonymous then fresh_id [] x gl else
if not (mem_named_context x (pf_hyps gl)) then x else
error ("The variable "^(string_of_id x)^" is already declared.") in
let (depdecls,lastlhyp,ccl)= letin_abstract id c occs gl in
let t = match ty with Some t -> t | None -> pf_type_of gl c in
let newcl,eq_tac = match with_eq with
| Some (lr,(loc,ido)) ->
let heq = match ido with
| IntroAnonymous -> fresh_id [id] (add_prefix "Heq" id) gl
| IntroFresh heq_base -> fresh_id [id] heq_base gl
| IntroIdentifier id -> id
| _ -> error"Expect an introduction pattern naming one hypothesis." in
let eqdata = build_coq_eq_data () in
let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in
let eq = applist (eqdata.eq,args) in
let refl = applist (eqdata.refl, [t;mkVar id]) in
mkNamedLetIn id c t (mkLetIn (Name heq, refl, eq, ccl)),
tclTHEN
(intro_gen loc (IntroMustBe heq) lastlhyp true)
(thin_body [heq;id])
| None ->
mkNamedLetIn id c t ccl, tclIDTAC in
tclTHENLIST
[ convert_concl_no_check newcl DEFAULTcast;
intro_gen dloc (IntroMustBe id) lastlhyp true;
eq_tac;
tclMAP convert_hyp_no_check depdecls ] gl
let letin_tac with_eq name c ty occs =
letin_tac_gen with_eq name c ty (occs,true)
(* Tactics "pose proof" (usetac=None) and "assert" (otherwise) *)
let forward usetac ipat c gl =
match usetac with
| None ->
let t = pf_type_of gl c in
tclTHENFIRST (assert_as true ipat t) (exact_no_check c) gl
| Some tac ->
tclTHENFIRST (assert_as true ipat c) tac gl
let pose_proof na c = forward None (ipat_of_name na) c
let assert_by na t tac = forward (Some tac) (ipat_of_name na) t
(*****************************)
(* Ad hoc unfold *)
(*****************************)
(* The two following functions should already exist, but found nowhere *)
(* Unfolds x by its definition everywhere *)
let unfold_body x gl =
let hyps = pf_hyps gl in
let xval =
match Sign.lookup_named x hyps with
(_,Some xval,_) -> xval
| _ -> errorlabstrm "unfold_body"
(pr_id x ++ str" is not a defined hypothesis.") in
let aft = afterHyp x gl in
let hl = List.fold_right (fun (y,yval,_) cl -> (([],y),InHyp) :: cl) aft [] in
let xvar = mkVar x in
let rfun _ _ c = replace_term xvar xval c in
tclTHENLIST
[tclMAP (fun h -> reduct_in_hyp rfun h) hl;
reduct_in_concl (rfun,DEFAULTcast)] gl
(* Unfolds x by its definition everywhere and clear x. This may raise
an error if x is not defined. *)
let unfold_all x gl =
let (_,xval,_) = pf_get_hyp gl x in
(* If x has a body, simply replace x with body and clear x *)
if xval <> None then tclTHEN (unfold_body x) (clear [x]) gl
else tclIDTAC gl
(*****************************)
(* High-level induction *)
(*****************************)
(*
* A "natural" induction tactic
*
- [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal
- [hyp0] is the induction hypothesis
- we extract from [args] the variables which are not rigid parameters
of the inductive type, this is [indvars] (other terms are forgotten);
[indhyps] are the ones which actually are declared in context
(done in [find_atomic_param_of_ind])
- we look for all hyps depending of [hyp0] or one of [indvars]:
this is [dephyps] of types [deptyps] respectively
- [statuslist] tells for each hyps in [dephyps] after which other hyp
fixed in the context they must be moved (when induction is done)
- [hyp0succ] is the name of the hyp fixed in the context after which to
move the subterms of [hyp0succ] in the i-th branch where it is supposed
to be the i-th constructor of the inductive type.
Strategy: (cf in [induction_from_context])
- requantify and clear all [dephyps]
- apply induction on [hyp0]
- clear [indhyps] and [hyp0]
- in the i-th subgoal, intro the arguments of the i-th constructor
of the inductive type after [hyp0succ] (done in
[induct_discharge]) let the induction hypotheses on top of the
hyps because they may depend on variables between [hyp0] and the
top. A counterpart is that the dep hyps programmed to be intro-ed
on top must now be intro-ed after the induction hypotheses
- move each of [dephyps] at the right place following the
[statuslist]
*)
let check_unused_names names =
if names <> [] & Flags.is_verbose () then
msg_warning
(str"Unused introduction " ++ str (plural (List.length names) "pattern")
++ str": " ++ prlist_with_sep spc pr_intro_pattern names)
let rec first_name_buggy avoid gl (loc,pat) = match pat with
| IntroOrAndPattern [] -> no_move
| IntroOrAndPattern ([]::l) ->
first_name_buggy avoid gl (loc,IntroOrAndPattern l)
| IntroOrAndPattern ((p::_)::_) -> first_name_buggy avoid gl p
| IntroWildcard -> no_move
| IntroRewrite _ -> no_move
| IntroIdentifier id -> MoveAfter id
| IntroAnonymous | IntroFresh _ -> (* buggy *) no_move
let consume_pattern avoid id gl = function
| [] -> ((dloc, IntroIdentifier (fresh_id avoid id gl)), [])
| (loc,IntroAnonymous)::names ->
let avoid = avoid@explicit_intro_names names in
((loc,IntroIdentifier (fresh_id avoid id gl)), names)
| (loc,IntroFresh id')::names ->
let avoid = avoid@explicit_intro_names names in
((loc,IntroIdentifier (fresh_id avoid id' gl)), names)
| pat::names -> (pat,names)
let re_intro_dependent_hypotheses tophyp (lstatus,rstatus) =
let newlstatus = (* if some IH has taken place at the top of hyps *)
List.map (function (hyp,MoveToEnd true) -> (hyp,tophyp) | x -> x) lstatus
in
tclTHEN
(intros_move rstatus)
(intros_move newlstatus)
let update destopt tophyp = if destopt = no_move then tophyp else destopt
type elim_arg_kind = RecArg | IndArg | OtherArg
let induct_discharge statuslists destopt avoid' (avoid,ra) names gl =
let avoid = avoid @ avoid' in
let rec peel_tac ra names tophyp gl =
match ra with
| (RecArg,recvarname) ::
(IndArg,hyprecname) :: ra' ->
let recpat,names = match names with
| [loc,IntroIdentifier id as pat] ->
let id' = next_ident_away (add_prefix "IH" id) avoid in
(pat, [dloc, IntroIdentifier id'])
| _ -> consume_pattern avoid recvarname gl names in
let hyprec,names = consume_pattern avoid hyprecname gl names in
(* IH stays at top: we need to update tophyp *)
(* This is buggy for intro-or-patterns with different first hypnames *)
(* Would need to pass peel_tac as a continuation of intros_patterns *)
(* (or to have hypotheses classified by blocks...) *)
let newtophyp =
if tophyp=no_move then first_name_buggy avoid gl hyprec else tophyp
in
tclTHENLIST
[ intros_patterns true avoid [] (update destopt tophyp) [recpat];
intros_patterns true avoid [] no_move [hyprec];
peel_tac ra' names newtophyp] gl
| (IndArg,hyprecname) :: ra' ->
(* Rem: does not happen in Coq schemes, only in user-defined schemes *)
let pat,names = consume_pattern avoid hyprecname gl names in
tclTHEN (intros_patterns true avoid [] (update destopt tophyp) [pat])
(peel_tac ra' names tophyp) gl
| (RecArg,recvarname) :: ra' ->
let pat,names = consume_pattern avoid recvarname gl names in
tclTHEN (intros_patterns true avoid [] (update destopt tophyp) [pat])
(peel_tac ra' names tophyp) gl
| (OtherArg,_) :: ra' ->
let pat,names = match names with
| [] -> (dloc, IntroAnonymous), []
| pat::names -> pat,names in
tclTHEN (intros_patterns true avoid [] (update destopt tophyp) [pat])
(peel_tac ra' names tophyp) gl
| [] ->
check_unused_names names;
re_intro_dependent_hypotheses tophyp statuslists gl
in
peel_tac ra names no_move gl
(* - le recalcul de indtyp à chaque itération de atomize_one est pour ne pas
s'embêter à regarder si un letin_tac ne fait pas des
substitutions aussi sur l'argument voisin *)
(* Marche pas... faut prendre en compte l'occurrence précise... *)
let atomize_param_of_ind (indref,nparams) hyp0 gl =
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
let typ0 = pf_apply reduce_to_quantified_ref gl indref tmptyp0 in
let prods, indtyp = decompose_prod typ0 in
let argl = snd (decompose_app indtyp) in
let params = list_firstn nparams argl in
(* le gl est important pour ne pas préévaluer *)
let rec atomize_one i avoid gl =
if i<>nparams then
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
(* If argl <> [], we expect typ0 not to be quantified, in order to
avoid bound parameters... then we call pf_reduce_to_atomic_ind *)
let indtyp = pf_apply reduce_to_atomic_ref gl indref tmptyp0 in
let argl = snd (decompose_app indtyp) in
let c = List.nth argl (i-1) in
match kind_of_term c with
| Var id when not (List.exists (occur_var (pf_env gl) id) avoid) ->
atomize_one (i-1) ((mkVar id)::avoid) gl
| Var id ->
let x = fresh_id [] id gl in
tclTHEN
(letin_tac None (Name x) (mkVar id) None allClauses)
(atomize_one (i-1) ((mkVar x)::avoid)) gl
| _ ->
let id = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c)
Anonymous in
let x = fresh_id [] id gl in
tclTHEN
(letin_tac None (Name x) c None allClauses)
(atomize_one (i-1) ((mkVar x)::avoid)) gl
else
tclIDTAC gl
in
atomize_one (List.length argl) params gl
let find_atomic_param_of_ind nparams indtyp =
let argl = snd (decompose_app indtyp) in
let argv = Array.of_list argl in
let params = list_firstn nparams argl in
let indvars = ref Idset.empty in
for i = nparams to (Array.length argv)-1 do
match kind_of_term argv.(i) with
| Var id
when not (List.exists (occur_var (Global.env()) id) params) ->
indvars := Idset.add id !indvars
| _ -> ()
done;
Idset.elements !indvars;
(* [cook_sign] builds the lists [indhyps] of hyps that must be
erased, the lists of hyps to be generalize [(hdeps,tdeps)] on the
goal together with the places [(lstatus,rstatus)] where to re-intro
them after induction. To know where to re-intro the dep hyp, we
remember the name of the hypothesis [lhyp] after which (if the dep
hyp is more recent than [hyp0]) or [rhyp] before which (if older
than [hyp0]) its equivalent must be moved when the induction has
been applied. Since computation of dependencies and [rhyp] is from
more ancient (on the right) to more recent hyp (on the left) but
the computation of [lhyp] progresses from the other way, [cook_hyp]
is in two passes (an alternative would have been to write an
higher-order algorithm). We use references to reduce
the accumulation of arguments.
To summarize, the situation looks like this
Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat
Left Right
Induction hypothesis is H4 ([hyp0])
Variable parameters of (le O n) is the singleton list with "n" ([indvars])
Part of [indvars] really in context is the same ([indhyps])
The dependent hyps are H3 and H6 ([dephyps])
For H3 the memorized places are H5 ([lhyp]) and H2 ([rhyp])
because these names are among the hyp which are fixed through the induction
For H6 the neighbours are None ([lhyp]) and H5 ([rhyp])
For H3, because on the right of H4, we remember rhyp (here H2)
For H6, because on the left of H4, we remember lhyp (here None)
For H4, we remember lhyp (here H5)
The right neighbour is then translated into the left neighbour
because move_hyp tactic needs the name of the hyp _after_ which we
move the hyp to move.
But, say in the 2nd subgoal of the hypotheses, the goal will be
(m:nat)((P m)->(Q m)->(Goal m)) -> (P Sm)-> (Q Sm)-> (Goal Sm)
^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^
both go where H4 was goes where goes where
H3 was H6 was
We have to intro and move m and the recursive hyp first, but then
where to move H3 ??? Only the hyp on its right is relevant, but we
have to translate it into the name of the hyp on the left
Note: this case where some hyp(s) in [dephyps] has(have) the same
left neighbour as [hyp0] is the only problematic case with right
neighbours. For the other cases (e.g. an hyp H1:(R n) between n and H2
would have posed no problem. But for uniformity, we decided to use
the right hyp for all hyps on the right of H4.
Others solutions are welcome
PC 9 fev 06: Adapted to accept multi argument principle with no
main arg hyp. hyp0 is now optional, meaning that it is possible
that there is no main induction hypotheses. In this case, we
consider the last "parameter" (in [indvars]) as the limit between
"left" and "right", BUT it must be included in indhyps.
Other solutions are still welcome
*)
exception Shunt of identifier move_location
let cook_sign hyp0_opt indvars env =
let hyp0,inhyps =
match hyp0_opt with
| None -> List.hd (List.rev indvars), []
| Some (hyp0,at_least_in_hyps) -> hyp0, at_least_in_hyps in
(* First phase from L to R: get [indhyps], [decldep] and [statuslist]
for the hypotheses before (= more ancient than) hyp0 (see above) *)
let allindhyps = hyp0::indvars in
let indhyps = ref [] in
let decldeps = ref [] in
let ldeps = ref [] in
let rstatus = ref [] in
let lstatus = ref [] in
let before = ref true in
let seek_deps env (hyp,_,_ as decl) rhyp =
if hyp = hyp0 then begin
before:=false;
(* If there was no main induction hypotheses, then hyp is one of
indvars too, so add it to indhyps. *)
(if hyp0_opt=None then indhyps := hyp::!indhyps);
MoveToEnd false (* fake value *)
end else if List.mem hyp indvars then begin
(* warning: hyp can still occur after induction *)
(* e.g. if the goal (t hyp hyp0) with other occs of hyp in t *)
indhyps := hyp::!indhyps;
rhyp
end else
if inhyps <> [] && List.mem hyp inhyps || inhyps = [] &&
(List.exists (fun id -> occur_var_in_decl env id decl) allindhyps ||
List.exists (fun (id,_,_) -> occur_var_in_decl env id decl) !decldeps)
then begin
decldeps := decl::!decldeps;
if !before then
rstatus := (hyp,rhyp)::!rstatus
else
ldeps := hyp::!ldeps; (* status computed in 2nd phase *)
MoveBefore hyp end
else
MoveBefore hyp
in
let _ = fold_named_context seek_deps env ~init:(MoveToEnd false) in
(* 2nd phase from R to L: get left hyp of [hyp0] and [lhyps] *)
let compute_lstatus lhyp (hyp,_,_) =
if hyp = hyp0 then raise (Shunt lhyp);
if List.mem hyp !ldeps then begin
lstatus := (hyp,lhyp)::!lstatus;
lhyp
end else
if List.mem hyp !indhyps then lhyp else MoveAfter hyp
in
try
let _ =
fold_named_context_reverse compute_lstatus ~init:(MoveToEnd true) env in
raise (Shunt (MoveToEnd true)) (* ?? FIXME *)
with Shunt lhyp0 ->
let statuslists = (!lstatus,List.rev !rstatus) in
(statuslists, (if hyp0_opt=None then MoveToEnd true else lhyp0),
!indhyps, !decldeps)
(*
The general form of an induction principle is the following:
forall prm1 prm2 ... prmp, (induction parameters)
forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates)
branch1, branch2, ... , branchr, (branches of the principle)
forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments)
(HI: I prm1..prmp x1...xni) (optional main induction arg)
-> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion)
^^ ^^^^^^^^^^^^^^^^^^^^^^^^
optional optional argument added if
even if HI principle generated by functional
present above induction, only if HI does not exist
[indarg] [farg]
HI is not present when the induction principle does not come directly from an
inductive type (like when it is generated by functional induction for
example). HI is present otherwise BUT may not appear in the conclusion
(dependent principle). HI and (f...) cannot be both present.
Principles taken from functional induction have the final (f...).*)
(* [rel_contexts] and [rel_declaration] actually contain triples, and
lists are actually in reverse order to fit [compose_prod]. *)
type elim_scheme = {
elimc: constr with_ebindings option;
elimt: types;
indref: global_reference option;
params: rel_context; (* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *)
nparams: int; (* number of parameters *)
predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *)
npredicates: int; (* Number of predicates *)
branches: rel_context; (* branchr,...,branch1 *)
nbranches: int; (* Number of branches *)
args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *)
nargs: int; (* number of arguments *)
indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni)
if HI is in premisses, None otherwise *)
concl: types; (* Qi x1...xni HI (f...), HI and (f...)
are optional and mutually exclusive *)
indarg_in_concl: bool; (* true if HI appears at the end of conclusion *)
farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *)
}
let empty_scheme =
{
elimc = None;
elimt = mkProp;
indref = None;
params = [];
nparams = 0;
predicates = [];
npredicates = 0;
branches = [];
nbranches = 0;
args = [];
nargs = 0;
indarg = None;
concl = mkProp;
indarg_in_concl = false;
farg_in_concl = false;
}
(* Unification between ((elimc:elimt) ?i ?j ?k ?l ... ?m) and the
hypothesis on which the induction is made *)
let induction_tac with_evars (varname,lbind) typ scheme gl =
let elimc,lbindelimc =
match scheme.elimc with | Some x -> x | None -> error "No definition of the principle." in
let elimt = scheme.elimt in
let indclause = make_clenv_binding gl (mkVar varname,typ) lbind in
let elimclause =
make_clenv_binding gl
(mkCast (elimc,DEFAULTcast, elimt),elimt) lbindelimc in
elimination_clause_scheme with_evars true elimclause indclause gl
let make_base n id =
if n=0 or n=1 then id
else
(* This extends the name to accept new digits if it already ends with *)
(* digits *)
id_of_string (atompart_of_id (make_ident (string_of_id id) (Some 0)))
(* Builds two different names from an optional inductive type and a
number, also deals with a list of names to avoid. If the inductive
type is None, then hyprecname is IHi where i is a number. *)
let make_up_names n ind_opt cname =
let is_hyp = atompart_of_id cname = "H" in
let base = string_of_id (make_base n cname) in
let ind_prefix = "IH" in
let base_ind =
if is_hyp then
match ind_opt with
| None -> id_of_string ind_prefix
| Some ind_id -> add_prefix ind_prefix (Nametab.id_of_global ind_id)
else add_prefix ind_prefix cname in
let hyprecname = make_base n base_ind in
let avoid =
if n=1 (* Only one recursive argument *) or n=0 then []
else
(* Forbid to use cname, cname0, hyprecname and hyprecname0 *)
(* in order to get names such as f1, f2, ... *)
let avoid =
(make_ident (string_of_id hyprecname) None) ::
(make_ident (string_of_id hyprecname) (Some 0)) :: [] in
if atompart_of_id cname <> "H" then
(make_ident base (Some 0)) :: (make_ident base None) :: avoid
else avoid in
id_of_string base, hyprecname, avoid
let is_indhyp p n t =
let l, c = decompose_prod t in
let c,_ = decompose_app c in
let p = p + List.length l in
match kind_of_term c with
| Rel k when p < k & k <= p + n -> true
| _ -> false
let chop_context n l =
let rec chop_aux acc = function
| n, (_,Some _,_ as h :: t) -> chop_aux (h::acc) (n, t)
| 0, l2 -> (List.rev acc, l2)
| n, (h::t) -> chop_aux (h::acc) (n-1, t)
| _, [] -> anomaly "chop_context"
in
chop_aux [] (n,l)
let error_ind_scheme s =
let s = if s <> "" then s^" " else s in
error ("Cannot recognize "^s^"an induction scheme.")
let mkEq t x y =
mkApp (build_coq_eq (), [| t; x; y |])
let mkRefl t x =
mkApp ((build_coq_eq_data ()).refl, [| t; x |])
let mkHEq t x u y =
mkApp (coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq",
[| t; x; u; y |])
let mkHRefl t x =
mkApp (coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq_refl",
[| t; x |])
(* let id = lazy (coq_constant "mkHEq" ["Init";"Datatypes"] "id") *)
(* let mkHEq t x u y = *)
(* let ty = new_Type () in *)
(* mkApp (coq_constant "mkHEq" ["Logic";"EqdepFacts"] "eq_dep", *)
(* [| ty; mkApp (Lazy.force id, [|ty|]); t; x; u; y |]) *)
(* let mkHRefl t x = *)
(* let ty = new_Type () in *)
(* mkApp (coq_constant "mkHEq" ["Logic";"EqdepFacts"] "eq_dep_intro", *)
(* [| ty; mkApp (Lazy.force id, [|ty|]); t; x |]) *)
let mkCoe a x p px y eq =
mkApp (Option.get (build_coq_eq_data ()).rect, [| a; x; p; px; y; eq |])
let lift_togethern n l =
let l', _ =
List.fold_right
(fun x (acc, n) ->
(lift n x :: acc, succ n))
l ([], n)
in l'
let lift_together l = lift_togethern 0 l
let lift_list l = List.map (lift 1) l
let ids_of_constr vars c =
let rec aux vars c =
match kind_of_term c with
| Var id -> if List.mem id vars then vars else id :: vars
| App (f, args) ->
(match kind_of_term f with
| Construct (ind,_)
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
array_fold_left_from mib.Declarations.mind_nparams
aux vars args
| _ -> fold_constr aux vars c)
| _ -> fold_constr aux vars c
in aux vars c
let make_abstract_generalize gl id concl dep ctx c eqs args refls =
let meta = Evarutil.new_meta() in
let term, typ = mkVar id, pf_get_hyp_typ gl id in
let eqslen = List.length eqs in
(* Abstract by the "generalized" hypothesis equality proof if necessary. *)
let abshypeq =
if dep then
mkProd (Anonymous, mkHEq (lift 1 c) (mkRel 1) typ term, lift 1 concl)
else concl
in
(* Abstract by equalitites *)
let eqs = lift_togethern 1 eqs in (* lift together and past genarg *)
let abseqs = it_mkProd_or_LetIn ~init:(lift eqslen abshypeq) (List.map (fun x -> (Anonymous, None, x)) eqs) in
(* Abstract by the "generalized" hypothesis. *)
let genarg = mkProd (Name id, c, abseqs) in
(* Abstract by the extension of the context *)
let genctyp = it_mkProd_or_LetIn ~init:genarg ctx in
(* The goal will become this product. *)
let genc = mkCast (mkMeta meta, DEFAULTcast, genctyp) in
(* Apply the old arguments giving the proper instantiation of the hyp *)
let instc = mkApp (genc, Array.of_list args) in
(* Then apply to the original instanciated hyp. *)
let instc = mkApp (instc, [| mkVar id |]) in
(* Apply the reflexivity proofs on the indices. *)
let appeqs = mkApp (instc, Array.of_list refls) in
(* Finaly, apply the reflexivity proof for the original hyp, to get a term of type gl again. *)
let newc = if dep then mkApp (appeqs, [| mkHRefl typ term |]) else appeqs in
newc
let abstract_args gl id =
let c = pf_get_hyp_typ gl id in
let sigma = project gl in
let env = pf_env gl in
let concl = pf_concl gl in
let dep = dependent (mkVar id) concl in
let avoid = ref [] in
let get_id name =
let id = fresh_id !avoid (match name with Name n -> n | Anonymous -> id_of_string "gen_x") gl in
avoid := id :: !avoid; id
in
match kind_of_term c with
App (f, args) ->
(* Build application generalized w.r.t. the argument plus the necessary eqs.
From env |- c : forall G, T and args : G we build
(T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize)
eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *)
*)
let aux (prod, ctx, ctxenv, c, args, eqs, refls, vars, env) arg =
let (name, _, ty), arity =
let rel, c = Reductionops.decomp_n_prod env sigma 1 prod in
List.hd rel, c
in
let argty = pf_type_of gl arg in
let liftargty = lift (List.length ctx) argty in
let convertible = Reductionops.is_conv_leq ctxenv sigma liftargty ty in
match kind_of_term arg with
| Var _ | Rel _ | Ind _ when convertible ->
(subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls, vars, env)
| _ ->
let name = get_id name in
let decl = (Name name, None, ty) in
let ctx = decl :: ctx in
let c' = mkApp (lift 1 c, [|mkRel 1|]) in
let args = arg :: args in
let liftarg = lift (List.length ctx) arg in
let eq, refl =
if convertible then
mkEq (lift 1 ty) (mkRel 1) liftarg, mkRefl argty arg
else
mkHEq (lift 1 ty) (mkRel 1) liftargty liftarg, mkHRefl argty arg
in
let eqs = eq :: lift_list eqs in
let refls = refl :: refls in
let vars = ids_of_constr vars arg in
(arity, ctx, push_rel decl ctxenv, c', args, eqs, refls, vars, env)
in
let f, args =
match kind_of_term f with
| Construct (ind,_)
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
let first = mib.Declarations.mind_nparams in
let pars, args = array_chop first args in
mkApp (f, pars), args
| _ -> f, args
in
let arity, ctx, ctxenv, c', args, eqs, refls, vars, env =
Array.fold_left aux (pf_type_of gl f,[],env,f,[],[],[],[],env) args
in
let args, refls = List.rev args, List.rev refls in
Some (make_abstract_generalize gl id concl dep ctx c' eqs args refls,
dep, succ (List.length ctx), vars)
| _ -> None
let abstract_generalize id ?(generalize_vars=true) gl =
Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
let oldid = pf_get_new_id id gl in
let newc = abstract_args gl id in
match newc with
| None -> tclIDTAC gl
| Some (newc, dep, n, vars) ->
let tac =
if dep then
tclTHENLIST [refine newc; rename_hyp [(id, oldid)]; tclDO n intro;
generalize_dep (mkVar oldid)]
else
tclTHENLIST [refine newc; clear [id]; tclDO n intro]
in
if generalize_vars then tclTHEN tac
(tclFIRST [revert (List.rev vars) ;
tclMAP (fun id -> tclTRY (generalize_dep (mkVar id))) vars]) gl
else tac gl
let dependent_pattern c gl =
let cty = pf_type_of gl c in
let deps =
match kind_of_term cty with
| App (f, args) -> Array.to_list args
| _ -> []
in
let varname c = match kind_of_term c with
| Var id -> id
| _ -> id_of_string (hdchar (pf_env gl) c)
in
let mklambda ty (c, id, cty) =
let conclvar = subst_term_occ all_occurrences c ty in
mkNamedLambda id cty conclvar
in
let subst = (c, varname c, cty) :: List.map (fun c -> (c, varname c, pf_type_of gl c)) deps in
let concllda = List.fold_left mklambda (pf_concl gl) subst in
let conclapp = applistc concllda (List.rev_map pi1 subst) in
convert_concl_no_check conclapp DEFAULTcast gl
let occur_rel n c =
let res = not (noccurn n c) in
res
let list_filter_firsts f l =
let rec list_filter_firsts_aux f acc l =
match l with
| e::l' when f e -> list_filter_firsts_aux f (acc@[e]) l'
| _ -> acc,l
in
list_filter_firsts_aux f [] l
let count_rels_from n c =
let rels = free_rels c in
let cpt,rg = ref 0, ref n in
while Intset.mem !rg rels do
cpt:= !cpt+1; rg:= !rg+1;
done;
!cpt
let count_nonfree_rels_from n c =
let rels = free_rels c in
if Intset.exists (fun x -> x >= n) rels then
let cpt,rg = ref 0, ref n in
while not (Intset.mem !rg rels) do
cpt:= !cpt+1; rg:= !rg+1;
done;
!cpt
else raise Not_found
(* cuts a list in two parts, first of size n. Size must be greater than n *)
let cut_list n l =
let rec cut_list_aux acc n l =
if n<=0 then acc,l
else match l with
| [] -> assert false
| e::l' -> cut_list_aux (acc@[e]) (n-1) l' in
let res = cut_list_aux [] n l in
res
(* This function splits the products of the induction scheme [elimt] into four
parts:
- branches, easily detectable (they are not referred by rels in the subterm)
- what was found before branches (acc1) that is: parameters and predicates
- what was found after branches (acc3) that is: args and indarg if any
if there is no branch, we try to fill in acc3 with args/indargs.
We also return the conclusion.
*)
let decompose_paramspred_branch_args elimt =
let rec cut_noccur elimt acc2 : rel_context * rel_context * types =
match kind_of_term elimt with
| Prod(nme,tpe,elimt') ->
let hd_tpe,_ = decompose_app (snd (decompose_prod_assum tpe)) in
if not (occur_rel 1 elimt') && isRel hd_tpe
then cut_noccur elimt' ((nme,None,tpe)::acc2)
else let acc3,ccl = decompose_prod_assum elimt in acc2 , acc3 , ccl
| App(_, _) | Rel _ -> acc2 , [] , elimt
| _ -> error_ind_scheme "" in
let rec cut_occur elimt acc1 : rel_context * rel_context * rel_context * types =
match kind_of_term elimt with
| Prod(nme,tpe,c) when occur_rel 1 c -> cut_occur c ((nme,None,tpe)::acc1)
| Prod(nme,tpe,c) -> let acc2,acc3,ccl = cut_noccur elimt [] in acc1,acc2,acc3,ccl
| App(_, _) | Rel _ -> acc1,[],[],elimt
| _ -> error_ind_scheme "" in
let acc1, acc2 , acc3, ccl = cut_occur elimt [] in
(* Particular treatment when dealing with a dependent empty type elim scheme:
if there is no branch, then acc1 contains all hyps which is wrong (acc1
should contain parameters and predicate only). This happens for an empty
type (See for example Empty_set_ind, as False would actually be ok). Then
we must find the predicate of the conclusion to separate params_pred from
args. We suppose there is only one predicate here. *)
if List.length acc2 <> 0 then acc1, acc2 , acc3, ccl
else
let hyps,ccl = decompose_prod_assum elimt in
let hd_ccl_pred,_ = decompose_app ccl in
match kind_of_term hd_ccl_pred with
| Rel i -> let acc3,acc1 = cut_list (i-1) hyps in acc1 , [] , acc3 , ccl
| _ -> error_ind_scheme ""
let exchange_hd_app subst_hd t =
let hd,args= decompose_app t in mkApp (subst_hd,Array.of_list args)
(* [rebuild_elimtype_from_scheme scheme] rebuilds the type of an
eliminator from its [scheme_info]. The idea is to build variants of
eliminator by modifying their scheme_info, then rebuild the
eliminator type, then prove it (with tactics). *)
let rebuild_elimtype_from_scheme (scheme:elim_scheme): types =
let hiconcl =
match scheme.indarg with
| None -> scheme.concl
| Some x -> mkProd_or_LetIn x scheme.concl in
let xihiconcl = it_mkProd_or_LetIn hiconcl scheme.args in
let brconcl = it_mkProd_or_LetIn xihiconcl scheme.branches in
let predconcl = it_mkProd_or_LetIn brconcl scheme.predicates in
let paramconcl = it_mkProd_or_LetIn predconcl scheme.params in
paramconcl
exception NoLastArg
exception NoLastArgCcl
(* Builds an elim_scheme from its type and calling form (const+binding). We
first separate branches. We obtain branches, hyps before (params + preds),
hyps after (args <+ indarg if present>) and conclusion. Then we proceed as
follows:
- separate parameters and predicates in params_preds. For that we build:
forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg
^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^
optional opt
Free rels appearing in this term are parameters (branches should not
appear, and the only predicate would have been Qi but we replaced it by
DUMMY). We guess this heuristic catches all params. TODO: generalize to
the case where args are merged with branches (?) and/or where several
predicates are cited in the conclusion.
- finish to fill in the elim_scheme: indarg/farg/args and finally indref. *)
let compute_elim_sig ?elimc elimt =
let params_preds,branches,args_indargs,conclusion =
decompose_paramspred_branch_args elimt in
let ccl = exchange_hd_app (mkVar (id_of_string "__QI_DUMMY__")) conclusion in
let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in
let nparams = Intset.cardinal (free_rels concl_with_args) in
let preds,params = cut_list (List.length params_preds - nparams) params_preds in
(* A first approximation, further analysis will tweak it *)
let res = ref { empty_scheme with
(* This fields are ok: *)
elimc = elimc; elimt = elimt; concl = conclusion;
predicates = preds; npredicates = List.length preds;
branches = branches; nbranches = List.length branches;
farg_in_concl = isApp ccl && isApp (last_arg ccl);
params = params; nparams = nparams;
(* all other fields are unsure at this point. Including these:*)
args = args_indargs; nargs = List.length args_indargs; } in
try
(* Order of tests below is important. Each of them exits if successful. *)
(* 1- First see if (f x...) is in the conclusion. *)
if !res.farg_in_concl
then begin
res := { !res with
indarg = None;
indarg_in_concl = false; farg_in_concl = true };
raise Exit
end;
(* 2- If no args_indargs (=!res.nargs at this point) then no indarg *)
if !res.nargs=0 then raise Exit;
(* 3- Look at last arg: is it the indarg? *)
ignore (
match List.hd args_indargs with
| hiname,Some _,hi -> error_ind_scheme ""
| hiname,None,hi ->
let hi_ind, hi_args = decompose_app hi in
let hi_is_ind = (* hi est d'un type globalisable *)
match kind_of_term hi_ind with
| Ind (mind,_) -> true
| Var _ -> true
| Const _ -> true
| Construct _ -> true
| _ -> false in
let hi_args_enough = (* hi a le bon nbre d'arguments *)
List.length hi_args = List.length params + !res.nargs -1 in
(* FIXME: Ces deux tests ne sont pas suffisants. *)
if not (hi_is_ind & hi_args_enough) then raise Exit (* No indarg *)
else (* Last arg is the indarg *)
res := {!res with
indarg = Some (List.hd !res.args);
indarg_in_concl = occur_rel 1 ccl;
args = List.tl !res.args; nargs = !res.nargs - 1;
};
raise Exit);
raise Exit(* exit anyway *)
with Exit -> (* Ending by computing indrev: *)
match !res.indarg with
| None -> !res (* No indref *)
| Some ( _,Some _,_) -> error_ind_scheme ""
| Some ( _,None,ind) ->
let indhd,indargs = decompose_app ind in
try {!res with indref = Some (global_of_constr indhd) }
with _ -> error "Cannot find the inductive type of the inductive scheme.";;
(* Check that the elimination scheme has a form similar to the
elimination schemes built by Coq. Schemes may have the standard
form computed from an inductive type OR (feb. 2006) a non standard
form. That is: with no main induction argument and with an optional
extra final argument of the form (f x y ...) in the conclusion. In
the non standard case, naming of generated hypos is slightly
different. *)
let compute_elim_signature elimc elimt names_info ind_type_guess =
let scheme = compute_elim_sig ~elimc:elimc elimt in
let f,l = decompose_app scheme.concl in
(* Vérifier que les arguments de Qi sont bien les xi. *)
match scheme.indarg with
| Some (_,Some _,_) -> error "Strange letin, cannot recognize an induction scheme."
| None -> (* Non standard scheme *)
let is_pred n c =
let hd = fst (decompose_app c) in match kind_of_term hd with
| Rel q when n < q & q <= n+scheme.npredicates -> IndArg
| _ when hd = ind_type_guess & not scheme.farg_in_concl -> RecArg
| _ -> OtherArg in
let rec check_branch p c =
match kind_of_term c with
| Prod (_,t,c) -> is_pred p t :: check_branch (p+1) c
| LetIn (_,_,_,c) -> OtherArg :: check_branch (p+1) c
| _ when is_pred p c = IndArg -> []
| _ -> raise Exit in
let rec find_branches p lbrch =
match lbrch with
| (_,None,t)::brs ->
(try
let lchck_brch = check_branch p t in
let n = List.fold_left
(fun n b -> if b=RecArg then n+1 else n) 0 lchck_brch in
let recvarname, hyprecname, avoid =
make_up_names n scheme.indref names_info in
let namesign =
List.map (fun b -> (b,if b=IndArg then hyprecname else recvarname))
lchck_brch in
(avoid,namesign) :: find_branches (p+1) brs
with Exit-> error_ind_scheme "the branches of")
| (_,Some _,_)::_ -> error_ind_scheme "the branches of"
| [] -> [] in
let indsign = Array.of_list (find_branches 0 (List.rev scheme.branches)) in
indsign,scheme
| Some ( _,None,ind) -> (* Standard scheme from an inductive type *)
let indhd,indargs = decompose_app ind in
let is_pred n c =
let hd = fst (decompose_app c) in match kind_of_term hd with
| Rel q when n < q & q <= n+scheme.npredicates -> IndArg
| _ when hd = indhd -> RecArg
| _ -> OtherArg in
let rec check_branch p c = match kind_of_term c with
| Prod (_,t,c) -> is_pred p t :: check_branch (p+1) c
| LetIn (_,_,_,c) -> OtherArg :: check_branch (p+1) c
| _ when is_pred p c = IndArg -> []
| _ -> raise Exit in
let rec find_branches p lbrch =
match lbrch with
| (_,None,t)::brs ->
(try
let lchck_brch = check_branch p t in
let n = List.fold_left
(fun n b -> if b=RecArg then n+1 else n) 0 lchck_brch in
let recvarname, hyprecname, avoid =
make_up_names n scheme.indref names_info in
let namesign =
List.map (fun b -> (b,if b=IndArg then hyprecname else recvarname))
lchck_brch in
(avoid,namesign) :: find_branches (p+1) brs
with Exit -> error_ind_scheme "the branches of")
| (_,Some _,_)::_ -> error_ind_scheme "the branches of"
| [] ->
(* Check again conclusion *)
let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f = IndArg in
let ind_is_ok =
list_lastn scheme.nargs indargs
= extended_rel_list 0 scheme.args in
if not (ccl_arg_ok & ind_is_ok) then
error_ind_scheme "the conclusion of";
[]
in
let indsign = Array.of_list (find_branches 0 (List.rev scheme.branches)) in
indsign,scheme
let find_elim_signature isrec elim hyp0 gl =
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
let (elimc,elimt),ind = match elim with
| None ->
let mind,_ = pf_reduce_to_quantified_ind gl tmptyp0 in
let s = elimination_sort_of_goal gl in
let elimc =
if isrec then lookup_eliminator mind s
else pf_apply make_case_gen gl mind s in
let elimt = pf_type_of gl elimc in
((elimc, NoBindings), elimt), mkInd mind
| Some (elimc,lbind as e) ->
let ind_type_guess,_ = decompose_app (snd (decompose_prod tmptyp0)) in
(e, pf_type_of gl elimc), ind_type_guess in
let indsign,elim_scheme =
compute_elim_signature elimc elimt hyp0 ind in
(indsign,elim_scheme)
(* Instantiate all meta variables of elimclause using lid, some elts
of lid are parameters (first ones), the other are
arguments. Returns the clause obtained. *)
let recolle_clenv scheme lid elimclause gl =
let _,arr = destApp elimclause.templval.rebus in
let lindmv =
Array.map
(fun x ->
match kind_of_term x with
| Meta mv -> mv
| _ -> errorlabstrm "elimination_clause"
(str "The type of the elimination clause is not well-formed."))
arr in
let nmv = Array.length lindmv in
let lidparams,lidargs = cut_list (scheme.nparams) lid in
let nidargs = List.length lidargs in
(* parameters correspond to first elts of lid. *)
let clauses_params =
list_map_i (fun i id -> mkVar id , pf_get_hyp_typ gl id , lindmv.(i))
0 lidparams in
(* arguments correspond to last elts of lid. *)
let clauses_args =
list_map_i
(fun i id -> mkVar id , pf_get_hyp_typ gl id , lindmv.(nmv-nidargs+i))
0 lidargs in
let clause_indarg =
match scheme.indarg with
| None -> []
| Some (x,_,typx) -> []
in
let clauses = clauses_params@clauses_args@clause_indarg in
(* iteration of clenv_fchain with all infos we have. *)
List.fold_right
(fun e acc ->
let x,y,i = e in
(* from_n (Some 0) means that x should be taken "as is" without
trying to unify (which would lead to trying to apply it to
evars if y is a product). *)
let indclause = mk_clenv_from_n gl (Some 0) (x,y) in
let elimclause' = clenv_fchain i acc indclause in
elimclause')
(List.rev clauses)
elimclause
(* Unification of the goal and the principle applied to meta variables:
(elimc ?i ?j ?k...?l). This solves partly meta variables (and may
produce new ones). Then refine with the resulting term with holes.
*)
let induction_tac_felim with_evars indvars scheme gl =
let elimt = scheme.elimt in
let elimc,lbindelimc =
match scheme.elimc with | Some x -> x | None -> error "No definition of the principle." in
(* elimclause contains this: (elimc ?i ?j ?k...?l) *)
let elimclause =
make_clenv_binding gl (mkCast (elimc,DEFAULTcast, elimt),elimt) lbindelimc in
(* elimclause' is built from elimclause by instanciating all args and params. *)
let elimclause' = recolle_clenv scheme indvars elimclause gl in
(* one last resolution (useless?) *)
let resolved = clenv_unique_resolver true elimclause' gl in
clenv_refine with_evars resolved gl
let apply_induction_in_context isrec hyp0 indsign indvars names induct_tac gl =
let env = pf_env gl in
let statlists,lhyp0,indhyps,deps = cook_sign hyp0 indvars env in
let tmpcl = it_mkNamedProd_or_LetIn (pf_concl gl) deps in
let names = compute_induction_names (Array.length indsign) names in
let dephyps = List.map (fun (id,_,_) -> id) deps in
let deps_cstr =
List.fold_left
(fun a (id,b,_) -> if b = None then (mkVar id)::a else a) [] deps in
tclTHENLIST
[
(* Generalize dependent hyps (but not args) *)
if deps = [] then tclIDTAC else apply_type tmpcl deps_cstr;
(* clear dependent hyps *)
thin dephyps;
(* side-conditions in elim (resp case) schemes come last (resp first) *)
(if isrec then tclTHENFIRSTn else tclTHENLASTn)
(tclTHEN induct_tac (tclTRY (thin (List.rev indhyps))))
(array_map2
(induct_discharge statlists lhyp0 (List.rev dephyps)) indsign names)
]
gl
(* Induction with several induction arguments, main differences with
induction_from_context is that there is no main induction argument,
so we chose one to be the positioning reference. On the other hand,
all args and params must be given, so we help a bit the unifier by
making the "pattern" by hand before calling induction_tac_felim
FIXME: REUNIF AVEC induction_tac_felim? *)
let induction_from_context_l isrec with_evars elim_info lid names gl =
let indsign,scheme = elim_info in
(* number of all args, counting farg and indarg if present. *)
let nargs_indarg_farg = scheme.nargs
+ (if scheme.farg_in_concl then 1 else 0)
+ (if scheme.indarg <> None then 1 else 0) in
(* Number of given induction args must be exact. *)
if List.length lid <> nargs_indarg_farg + scheme.nparams then
error "Not the right number of arguments given to induction scheme.";
(* hyp0 is used for re-introducing hyps at the right place afterward.
We chose the first element of the list of variables on which to
induct. It is probably the first of them appearing in the
context. *)
let hyp0,indvars,lid_params =
match lid with
| [] -> anomaly "induction_from_context_l"
| e::l ->
let nargs_without_first = nargs_indarg_farg - 1 in
let ivs,lp = cut_list nargs_without_first l in
e, ivs, lp in
(* terms to patternify we must patternify indarg or farg if present in concl *)
let lid_in_pattern =
if scheme.indarg <> None & not scheme.indarg_in_concl then List.rev indvars
else List.rev (hyp0::indvars) in
let lidcstr = List.map (fun x -> mkVar x) lid_in_pattern in
let realindvars = (* hyp0 is a real induction arg if it is not the
farg in the conclusion of the induction scheme *)
List.rev ((if scheme.farg_in_concl then indvars else hyp0::indvars) @ lid_params) in
let induct_tac = tclTHENLIST [
(* pattern to make the predicate appear. *)
reduce (Pattern (List.map inj_with_occurrences lidcstr)) onConcl;
(* Induction by "refine (indscheme ?i ?j ?k...)" + resolution of all
possible holes using arguments given by the user (but the
functional one). *)
(* FIXME: Tester ca avec un principe dependant et non-dependant *)
induction_tac_felim with_evars realindvars scheme
] in
apply_induction_in_context isrec
None indsign (hyp0::indvars) names induct_tac gl
let induction_from_context isrec with_evars elim_info (hyp0,lbind) names
inhyps gl =
let indsign,scheme = elim_info in
let indref = match scheme.indref with | None -> assert false | Some x -> x in
let tmptyp0 = pf_get_hyp_typ gl hyp0 in
let typ0 = pf_apply reduce_to_quantified_ref gl indref tmptyp0 in
let indvars =
find_atomic_param_of_ind scheme.nparams (snd (decompose_prod typ0)) in
let induct_tac = tclTHENLIST [
induction_tac with_evars (hyp0,lbind) typ0 scheme;
tclTRY (unfold_body hyp0);
thin [hyp0]
] in
apply_induction_in_context isrec
(Some (hyp0,inhyps)) indsign indvars names induct_tac gl
exception TryNewInduct of exn
let induction_with_atomization_of_ind_arg isrec with_evars elim names (hyp0,lbind) inhyps gl =
let (indsign,scheme as elim_info) = find_elim_signature isrec elim hyp0 gl in
if scheme.indarg = None then (* This is not a standard induction scheme (the
argument is probably a parameter) So try the
more general induction mechanism. *)
induction_from_context_l isrec with_evars elim_info [hyp0] names gl
else
let indref = match scheme.indref with | None -> assert false | Some x -> x in
tclTHEN
(atomize_param_of_ind (indref,scheme.nparams) hyp0)
(induction_from_context isrec with_evars elim_info
(hyp0,lbind) names inhyps) gl
(* Induction on a list of induction arguments. Analyse the elim
scheme (which is mandatory for multiple ind args), check that all
parameters and arguments are given (mandatory too). *)
let induction_without_atomization isrec with_evars elim names lid gl =
let (indsign,scheme as elim_info) =
find_elim_signature isrec elim (List.hd lid) gl in
let awaited_nargs =
scheme.nparams + scheme.nargs
+ (if scheme.farg_in_concl then 1 else 0)
+ (if scheme.indarg <> None then 1 else 0)
in
let nlid = List.length lid in
if nlid <> awaited_nargs
then error "Not the right number of induction arguments."
else induction_from_context_l isrec with_evars elim_info lid names gl
let enforce_eq_name id gl = function
| (b,(loc,IntroAnonymous)) ->
(b,(loc,IntroIdentifier (fresh_id [id] (add_prefix "Heq" id) gl)))
| (b,(loc,IntroFresh heq_base)) ->
(b,(loc,IntroIdentifier (fresh_id [id] heq_base gl)))
| x ->
x
let has_selected_occurrences = function
| None -> false
| Some cls ->
cls.concl_occs <> all_occurrences_expr ||
cls.onhyps <> None && List.exists (fun ((occs,_),hl) ->
occs <> all_occurrences_expr || hl <> InHyp) (Option.get cls.onhyps)
(* assume that no occurrences are selected *)
let clear_unselected_context id inhyps cls gl =
match cls with
| None -> tclIDTAC gl
| Some cls ->
if occur_var (pf_env gl) id (pf_concl gl) &&
cls.concl_occs = no_occurrences_expr
then errorlabstrm ""
(str "Conclusion must be mentioned: it depends on " ++ pr_id id
++ str ".");
match cls.onhyps with
| Some hyps ->
let to_erase (id',_,_ as d) =
if List.mem id' inhyps then (* if selected, do not erase *) None
else
(* erase if not selected and dependent on id or selected hyps *)
let test id = occur_var_in_decl (pf_env gl) id d in
if List.exists test (id::inhyps) then Some id' else None in
let ids = list_map_filter to_erase (pf_hyps gl) in
thin ids gl
| None -> tclIDTAC gl
let new_induct_gen isrec with_evars elim (eqname,names) (c,lbind) cls gl =
let inhyps = match cls with
| Some {onhyps=Some hyps} -> List.map (fun ((_,id),_) -> id) hyps
| _ -> [] in
match kind_of_term c with
| Var id when not (mem_named_context id (Global.named_context()))
& lbind = NoBindings & not with_evars & eqname = None
& not (has_selected_occurrences cls) ->
tclTHEN
(clear_unselected_context id inhyps cls)
(induction_with_atomization_of_ind_arg
isrec with_evars elim names (id,lbind) inhyps) gl
| _ ->
let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c)
Anonymous in
let id = fresh_id [] x gl in
(* We need the equality name now *)
let with_eq = Option.map (fun eq -> (false,eq)) eqname in
(* TODO: if ind has predicate parameters, use JMeq instead of eq *)
tclTHEN
(letin_tac_gen with_eq (Name id) c None (Option.default allClauses cls,false))
(induction_with_atomization_of_ind_arg
isrec with_evars elim names (id,lbind) inhyps) gl
(* Induction on a list of arguments. First make induction arguments
atomic (using letins), then do induction. The specificity here is
that all arguments and parameters of the scheme are given
(mandatory for the moment), so we don't need to deal with
parameters of the inductive type as in new_induct_gen. *)
let new_induct_gen_l isrec with_evars elim (eqname,names) lc gl =
if eqname <> None then
errorlabstrm "" (str "Do not know what to do with " ++
pr_intro_pattern (Option.get eqname));
let newlc = ref [] in
let letids = ref [] in
let rec atomize_list l gl =
match l with
| [] -> tclIDTAC gl
| c::l' ->
match kind_of_term c with
| Var id when not (mem_named_context id (Global.named_context()))
& not with_evars ->
let _ = newlc:= id::!newlc in
atomize_list l' gl
| _ ->
let x =
id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) Anonymous in
let id = fresh_id [] x gl in
let newl' = List.map (replace_term c (mkVar id)) l' in
let _ = newlc:=id::!newlc in
let _ = letids:=id::!letids in
tclTHEN
(letin_tac None (Name id) c None allClauses)
(atomize_list newl') gl in
tclTHENLIST
[
(atomize_list lc);
(fun gl' -> (* recompute each time to have the new value of newlc *)
induction_without_atomization isrec with_evars elim names !newlc gl') ;
(* after induction, try to unfold all letins created by atomize_list
FIXME: unfold_all does not exist anywhere else? *)
(fun gl' -> (* recompute each time to have the new value of letids *)
tclMAP (fun x -> tclTRY (unfold_all x)) !letids gl')
]
gl
let induct_destruct_l isrec with_evars lc elim names cls =
(* Several induction hyps: induction scheme is mandatory *)
let _ =
if elim = None
then
errorlabstrm "" (strbrk "Induction scheme must be given when several induction hypothesis are given.\n" ++
str "Example: induction x1 x2 x3 using my_scheme.") in
let newlc =
List.map
(fun x ->
match x with (* FIXME: should we deal with ElimOnIdent? *)
| ElimOnConstr (x,NoBindings) -> x
| _ -> error "Don't know where to find some argument.")
lc in
if cls <> None then
error
"'in' clause not supported when several induction hypothesis are given.";
new_induct_gen_l isrec with_evars elim names newlc
(* Induction either over a term, over a quantified premisse, or over
several quantified premisses (like with functional induction
principles).
TODO: really unify induction with one and induction with several
args *)
let induct_destruct isrec with_evars (lc,elim,names,cls) =
assert (List.length lc > 0); (* ensured by syntax, but if called inside caml? *)
if List.length lc = 1 then (* induction on one arg: use old mechanism *)
try
onInductionArg
(fun c -> new_induct_gen isrec with_evars elim names c cls)
(List.hd lc)
with (* If this fails, try with new mechanism but if it fails too,
then the exception is the first one. *)
| x ->
(try induct_destruct_l isrec with_evars lc elim names cls
with _ -> raise x)
else induct_destruct_l isrec with_evars lc elim names cls
let induction_destruct isrec with_evars = function
| [] -> tclIDTAC
| [a] -> induct_destruct isrec with_evars a
| a::l ->
tclTHEN
(induct_destruct isrec with_evars a)
(tclMAP (induct_destruct false with_evars) l)
let new_induct ev lc e idl cls = induct_destruct true ev (lc,e,idl,cls)
let new_destruct ev lc e idl cls = induct_destruct false ev (lc,e,idl,cls)
(* The registered tactic, which calls the default elimination
* if no elimination constant is provided. *)
(* Induction tactics *)
(* This was Induction before 6.3 (induction only in quantified premisses) *)
let raw_induct s = tclTHEN (intros_until_id s) (tclLAST_HYP simplest_elim)
let raw_induct_nodep n = tclTHEN (intros_until_n n) (tclLAST_HYP simplest_elim)
let simple_induct_id hyp = raw_induct hyp
let simple_induct_nodep = raw_induct_nodep
let simple_induct = function
| NamedHyp id -> simple_induct_id id
| AnonHyp n -> simple_induct_nodep n
(* Destruction tactics *)
let simple_destruct_id s =
(tclTHEN (intros_until_id s) (tclLAST_HYP simplest_case))
let simple_destruct_nodep n =
(tclTHEN (intros_until_n n) (tclLAST_HYP simplest_case))
let simple_destruct = function
| NamedHyp id -> simple_destruct_id id
| AnonHyp n -> simple_destruct_nodep n
(*
* Eliminations giving the type instead of the proof.
* These tactics use the default elimination constant and
* no substitutions at all.
* May be they should be integrated into Elim ...
*)
let elim_scheme_type elim t gl =
let clause = mk_clenv_type_of gl elim in
match kind_of_term (last_arg clause.templval.rebus) with
| Meta mv ->
let clause' =
(* t is inductive, then CUMUL or CONV is irrelevant *)
clenv_unify true Reduction.CUMUL t
(clenv_meta_type clause mv) clause in
res_pf clause' ~allow_K:true gl
| _ -> anomaly "elim_scheme_type"
let elim_type t gl =
let (ind,t) = pf_reduce_to_atomic_ind gl t in
let elimc = lookup_eliminator ind (elimination_sort_of_goal gl) in
elim_scheme_type elimc t gl
let case_type t gl =
let (ind,t) = pf_reduce_to_atomic_ind gl t in
let env = pf_env gl in
let elimc = make_case_gen env (project gl) ind (elimination_sort_of_goal gl) in
elim_scheme_type elimc t gl
(* Some eliminations frequently used *)
(* These elimination tactics are particularly adapted for sequent
calculus. They take a clause as argument, and yield the
elimination rule if the clause is of the form (Some id) and a
suitable introduction rule otherwise. They do not depend on
the name of the eliminated constant, so they can be also
used on ad-hoc disjunctions and conjunctions introduced by
the user.
-- Eduardo Gimenez (11/8/97)
HH (29/5/99) replaces failures by specific error messages
*)
let andE id gl =
let t = pf_get_hyp_typ gl id in
if is_conjunction (pf_hnf_constr gl t) then
(tclTHEN (simplest_elim (mkVar id)) (tclDO 2 intro)) gl
else
errorlabstrm "andE"
(str("Tactic andE expects "^(string_of_id id)^" is a conjunction."))
let dAnd cls =
onClauses
(function
| None -> simplest_split
| Some ((_,id),_) -> andE id)
cls
let orE id gl =
let t = pf_get_hyp_typ gl id in
if is_disjunction (pf_hnf_constr gl t) then
(tclTHEN (simplest_elim (mkVar id)) intro) gl
else
errorlabstrm "orE"
(str("Tactic orE expects "^(string_of_id id)^" is a disjunction."))
let dorE b cls =
onClauses
(function
| (Some ((_,id),_)) -> orE id
| None -> (if b then right else left) NoBindings)
cls
let impE id gl =
let t = pf_get_hyp_typ gl id in
if is_imp_term (pf_hnf_constr gl t) then
let (dom, _, rng) = destProd (pf_hnf_constr gl t) in
tclTHENLAST
(cut_intro rng)
(apply_term (mkVar id) [mkMeta (new_meta())]) gl
else
errorlabstrm "impE"
(str("Tactic impE expects "^(string_of_id id)^
" is a an implication."))
let dImp cls =
onClauses
(function
| None -> intro
| Some ((_,id),_) -> impE id)
cls
(************************************************)
(* Tactics related with logic connectives *)
(************************************************)
(* Reflexivity tactics *)
let setoid_reflexivity = ref (fun _ -> assert false)
let register_setoid_reflexivity f = setoid_reflexivity := f
let reflexivity_red allowred gl =
(* PL: usual reflexivity don't perform any reduction when searching
for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
in
match match_with_equality_type concl with
| None -> None
| Some _ -> Some (one_constructor 1 NoBindings)
let reflexivity gl =
match reflexivity_red false gl with
| None -> !setoid_reflexivity gl
| Some tac -> tac gl
let intros_reflexivity = (tclTHEN intros reflexivity)
(* Symmetry tactics *)
(* This tactic first tries to apply a constant named sym_eq, where eq
is the name of the equality predicate. If this constant is not
defined and the conclusion is a=b, it solves the goal doing (Cut
b=a;Intro H;Case H;Constructor 1) *)
let setoid_symmetry = ref (fun _ -> assert false)
let register_setoid_symmetry f = setoid_symmetry := f
let symmetry_red allowred gl =
(* PL: usual symmetry don't perform any reduction when searching
for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
in
match match_with_equation concl with
| None -> None
| Some (hdcncl,args) -> Some (fun gl ->
let hdcncls = string_of_inductive hdcncl in
begin
try
tclTHEN
(convert_concl_no_check concl DEFAULTcast)
(apply (pf_parse_const gl ("sym_"^hdcncls))) gl
with _ ->
let symc = match args with
| [t1; c1; t2; c2] -> mkApp (hdcncl, [| t2; c2; t1; c1 |])
| [typ;c1;c2] -> mkApp (hdcncl, [| typ; c2; c1 |])
| [c1;c2] -> mkApp (hdcncl, [| c2; c1 |])
| _ -> assert false
in
tclTHENFIRST (cut symc)
(tclTHENLIST
[ intro;
tclLAST_HYP simplest_case;
one_constructor 1 NoBindings ])
gl
end)
let symmetry gl =
match symmetry_red false gl with
| None -> !setoid_symmetry gl
| Some tac -> tac gl
let setoid_symmetry_in = ref (fun _ _ -> assert false)
let register_setoid_symmetry_in f = setoid_symmetry_in := f
let symmetry_in id gl =
let ctype = pf_type_of gl (mkVar id) in
let sign,t = decompose_prod_assum ctype in
match match_with_equation t with
| None -> !setoid_symmetry_in id gl
| Some (hdcncl,args) ->
let symccl = match args with
| [t1; c1; t2; c2] -> mkApp (hdcncl, [| t2; c2; t1; c1 |])
| [typ;c1;c2] -> mkApp (hdcncl, [| typ; c2; c1 |])
| [c1;c2] -> mkApp (hdcncl, [| c2; c1 |])
| _ -> assert false in
tclTHENS (cut (it_mkProd_or_LetIn symccl sign))
[ intro_replacing id;
tclTHENLIST [ intros; symmetry; apply (mkVar id); assumption ] ]
gl
let intros_symmetry =
onClauses
(function
| None -> tclTHEN intros symmetry
| Some ((_,id),_) -> symmetry_in id)
(* Transitivity tactics *)
(* This tactic first tries to apply a constant named trans_eq, where eq
is the name of the equality predicate. If this constant is not
defined and the conclusion is a=b, it solves the goal doing
Cut x1=x2;
[Cut x2=x3; [Intros e1 e2; Case e2;Assumption
| Idtac]
| Idtac]
--Eduardo (19/8/97)
*)
let setoid_transitivity = ref (fun _ _ -> assert false)
let register_setoid_transitivity f = setoid_transitivity := f
let transitivity_red allowred t gl =
(* PL: usual transitivity don't perform any reduction when searching
for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
in
match match_with_equation concl with
| None -> None
| Some (hdcncl,args) -> Some (fun gl ->
let hdcncls = string_of_inductive hdcncl in
begin
try
apply_list [(pf_parse_const gl ("trans_"^hdcncls));t] gl
with _ ->
let eq1, eq2 = match args with
| [typ1;c1;typ2;c2] -> let typt = pf_type_of gl t in
( mkApp(hdcncl, [| typ1; c1; typt ;t |]),
mkApp(hdcncl, [| typt; t; typ2; c2 |]) )
| [typ;c1;c2] ->
( mkApp (hdcncl, [| typ; c1; t |]),
mkApp (hdcncl, [| typ; t; c2 |]) )
| [c1;c2] ->
( mkApp (hdcncl, [| c1; t|]),
mkApp (hdcncl, [| t; c2 |]) )
| _ -> assert false
in
tclTHENFIRST (cut eq2)
(tclTHENFIRST (cut eq1)
(tclTHENLIST
[ tclDO 2 intro;
tclLAST_HYP simplest_case;
assumption ])) gl
end)
let transitivity t gl =
match transitivity_red false t gl with
| None -> !setoid_transitivity t gl
| Some tac -> tac gl
let intros_transitivity n = tclTHEN intros (transitivity n)
(* tactical to save as name a subproof such that the generalisation of
the current goal, abstracted with respect to the local signature,
is solved by tac *)
let interpretable_as_section_decl d1 d2 = match d1,d2 with
| (_,Some _,_), (_,None,_) -> false
| (_,Some b1,t1), (_,Some b2,t2) -> eq_constr b1 b2 & eq_constr t1 t2
| (_,None,t1), (_,_,t2) -> eq_constr t1 t2
let abstract_subproof name tac gl =
let current_sign = Global.named_context()
and global_sign = pf_hyps gl in
let sign,secsign =
List.fold_right
(fun (id,_,_ as d) (s1,s2) ->
if mem_named_context id current_sign &
interpretable_as_section_decl (Sign.lookup_named id current_sign) d
then (s1,push_named_context_val d s2)
else (add_named_decl d s1,s2))
global_sign (empty_named_context,empty_named_context_val) in
let na = next_global_ident_away false name (pf_ids_of_hyps gl) in
let concl = it_mkNamedProd_or_LetIn (pf_concl gl) sign in
if occur_existential concl then
error "\"abstract\" cannot handle existentials.";
let lemme =
start_proof na (Global, Proof Lemma) secsign concl (fun _ _ -> ());
let _,(const,_,kind,_) =
try
by (tclCOMPLETE (tclTHEN (tclDO (List.length sign) intro) tac));
let r = cook_proof ignore in
delete_current_proof (); r
with
e ->
(delete_current_proof(); raise e)
in (* Faudrait un peu fonctionnaliser cela *)
let cd = Entries.DefinitionEntry const in
let con = Declare.declare_internal_constant na (cd,IsProof Lemma) in
constr_of_global (ConstRef con)
in
exact_no_check
(applist (lemme,
List.rev (Array.to_list (instance_from_named_context sign))))
gl
let tclABSTRACT name_op tac gl =
let s = match name_op with
| Some s -> s
| None -> add_suffix (get_current_proof_name ()) "_subproof"
in
abstract_subproof s tac gl
let admit_as_an_axiom gl =
let current_sign = Global.named_context()
and global_sign = pf_hyps gl in
let sign,secsign =
List.fold_right
(fun (id,_,_ as d) (s1,s2) ->
if mem_named_context id current_sign &
interpretable_as_section_decl (Sign.lookup_named id current_sign) d
then (s1,add_named_decl d s2)
else (add_named_decl d s1,s2))
global_sign (empty_named_context,empty_named_context) in
let name = add_suffix (get_current_proof_name ()) "_admitted" in
let na = next_global_ident_away false name (pf_ids_of_hyps gl) in
let concl = it_mkNamedProd_or_LetIn (pf_concl gl) sign in
if occur_existential concl then error"\"admit\" cannot handle existentials.";
let axiom =
let cd = Entries.ParameterEntry (concl,false) in
let con = Declare.declare_internal_constant na (cd,IsAssumption Logical) in
constr_of_global (ConstRef con)
in
exact_no_check
(applist (axiom,
List.rev (Array.to_list (instance_from_named_context sign))))
gl
let unify ?(state=full_transparent_state) x y gl =
try
let flags =
{default_unify_flags with
modulo_delta = state;
modulo_conv_on_closed_terms = Some state}
in
let evd = w_unify false (pf_env gl) Reduction.CONV
~flags x y (Evd.create_evar_defs (project gl))
in tclEVARS (Evd.evars_of evd) gl
with _ -> tclFAIL 0 (str"Not unifiable") gl
|