1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Names
open Term
open Termops
open Sign
open Declarations
open Inductive
open Reduction
open Environ
open Libnames
open Refiner
open Tacmach
open Clenv
open Clenvtac
open Glob_term
open Pattern
open Matching
open Genarg
open Tacexpr
(************************************************************************)
(* Tacticals re-exported from the Refiner module *)
(************************************************************************)
let tclNORMEVAR = Refiner.tclNORMEVAR
let tclIDTAC = Refiner.tclIDTAC
let tclIDTAC_MESSAGE = Refiner.tclIDTAC_MESSAGE
let tclORELSE0 = Refiner.tclORELSE0
let tclORELSE = Refiner.tclORELSE
let tclTHEN = Refiner.tclTHEN
let tclTHENLIST = Refiner.tclTHENLIST
let tclMAP = Refiner.tclMAP
let tclTHEN_i = Refiner.tclTHEN_i
let tclTHENFIRST = Refiner.tclTHENFIRST
let tclTHENLAST = Refiner.tclTHENLAST
let tclTHENS = Refiner.tclTHENS
let tclTHENSV = Refiner.tclTHENSV
let tclTHENSFIRSTn = Refiner.tclTHENSFIRSTn
let tclTHENSLASTn = Refiner.tclTHENSLASTn
let tclTHENFIRSTn = Refiner.tclTHENFIRSTn
let tclTHENLASTn = Refiner.tclTHENLASTn
let tclREPEAT = Refiner.tclREPEAT
let tclREPEAT_MAIN = Refiner.tclREPEAT_MAIN
let tclFIRST = Refiner.tclFIRST
let tclSOLVE = Refiner.tclSOLVE
let tclTRY = Refiner.tclTRY
let tclINFO = Refiner.tclINFO
let tclCOMPLETE = Refiner.tclCOMPLETE
let tclAT_LEAST_ONCE = Refiner.tclAT_LEAST_ONCE
let tclFAIL = Refiner.tclFAIL
let tclFAIL_lazy = Refiner.tclFAIL_lazy
let tclDO = Refiner.tclDO
let tclTIMEOUT = Refiner.tclTIMEOUT
let tclWEAK_PROGRESS = Refiner.tclWEAK_PROGRESS
let tclPROGRESS = Refiner.tclPROGRESS
let tclNOTSAMEGOAL = Refiner.tclNOTSAMEGOAL
let tclTHENTRY = Refiner.tclTHENTRY
let tclIFTHENELSE = Refiner.tclIFTHENELSE
let tclIFTHENSELSE = Refiner.tclIFTHENSELSE
let tclIFTHENSVELSE = Refiner.tclIFTHENSVELSE
let tclIFTHENTRYELSEMUST = Refiner.tclIFTHENTRYELSEMUST
(* Synonyms *)
let tclTHENSEQ = tclTHENLIST
(* Experimental *)
let rec tclFIRST_PROGRESS_ON tac = function
| [] -> tclFAIL 0 (str "No applicable tactic")
| [a] -> tac a (* so that returned failure is the one from last item *)
| a::tl -> tclORELSE (tac a) (tclFIRST_PROGRESS_ON tac tl)
(************************************************************************)
(* Tacticals applying on hypotheses *)
(************************************************************************)
let nthDecl m gl =
try List.nth (pf_hyps gl) (m-1)
with Failure _ -> error "No such assumption."
let nthHypId m gl = pi1 (nthDecl m gl)
let nthHyp m gl = mkVar (nthHypId m gl)
let lastDecl gl = nthDecl 1 gl
let lastHypId gl = nthHypId 1 gl
let lastHyp gl = nthHyp 1 gl
let nLastDecls n gl =
try list_firstn n (pf_hyps gl)
with Failure _ -> error "Not enough hypotheses in the goal."
let nLastHypsId n gl = List.map pi1 (nLastDecls n gl)
let nLastHyps n gl = List.map mkVar (nLastHypsId n gl)
let onNthDecl m tac gl = tac (nthDecl m gl) gl
let onNthHypId m tac gl = tac (nthHypId m gl) gl
let onNthHyp m tac gl = tac (nthHyp m gl) gl
let onLastDecl = onNthDecl 1
let onLastHypId = onNthHypId 1
let onLastHyp = onNthHyp 1
let onHyps find tac gl = tac (find gl) gl
let onNLastDecls n tac = onHyps (nLastDecls n) tac
let onNLastHypsId n tac = onHyps (nLastHypsId n) tac
let onNLastHyps n tac = onHyps (nLastHyps n) tac
let afterHyp id gl =
fst (list_split_when (fun (hyp,_,_) -> hyp = id) (pf_hyps gl))
(***************************************)
(* Clause Tacticals *)
(***************************************)
(* The following functions introduce several tactic combinators and
functions useful for working with clauses. A clause is either None
or (Some id), where id is an identifier. This type is useful for
defining tactics that may be used either to transform the
conclusion (None) or to transform a hypothesis id (Some id). --
--Eduardo (8/8/97)
*)
(* A [simple_clause] is a set of hypotheses, possibly extended with
the conclusion (conclusion is represented by None) *)
type simple_clause = identifier option list
(* An [clause] is the algebraic form of a
[concrete_clause]; it may refer to all hypotheses
independently of the effective contents of the current goal *)
type clause = identifier gclause
let allHypsAndConcl = { onhyps=None; concl_occs=all_occurrences_expr }
let allHyps = { onhyps=None; concl_occs=no_occurrences_expr }
let onConcl = { onhyps=Some[]; concl_occs=all_occurrences_expr }
let onHyp id =
{ onhyps=Some[((all_occurrences_expr,id),InHyp)];
concl_occs=no_occurrences_expr }
let simple_clause_of cl gls =
let error_occurrences () =
error "This tactic does not support occurrences selection" in
let error_body_selection () =
error "This tactic does not support body selection" in
let hyps =
match cl.onhyps with
| None ->
List.map Option.make (pf_ids_of_hyps gls)
| Some l ->
List.map (fun ((occs,id),w) ->
if occs <> all_occurrences_expr then error_occurrences ();
if w = InHypValueOnly then error_body_selection ();
Some id) l in
if cl.concl_occs = no_occurrences_expr then hyps
else
if cl.concl_occs <> all_occurrences_expr then error_occurrences ()
else None :: hyps
let fullGoal gl = None :: List.map Option.make (pf_ids_of_hyps gl)
let onAllHyps tac gl = tclMAP tac (pf_ids_of_hyps gl) gl
let onAllHypsAndConcl tac gl = tclMAP tac (fullGoal gl) gl
let tryAllHyps tac gl = tclFIRST_PROGRESS_ON tac (pf_ids_of_hyps gl) gl
let tryAllHypsAndConcl tac gl = tclFIRST_PROGRESS_ON tac (fullGoal gl) gl
let onClause tac cl gls = tclMAP tac (simple_clause_of cl gls) gls
let onClauseLR tac cl gls = tclMAP tac (List.rev (simple_clause_of cl gls)) gls
let ifOnHyp pred tac1 tac2 id gl =
if pred (id,pf_get_hyp_typ gl id) then
tac1 id gl
else
tac2 id gl
(************************************************************************)
(* An intermediate form of occurrence clause that select components *)
(* of a definition, hypotheses and possibly the goal *)
(* (used for reduction tactics) *)
(************************************************************************)
(* A [hyp_location] is an hypothesis together with a position, in
body if any, in type or in both *)
type hyp_location = identifier * hyp_location_flag
(* A [goal_location] is either an hypothesis (together with a position, in
body if any, in type or in both) or the goal *)
type goal_location = hyp_location option
(************************************************************************)
(* An intermediate structure for dealing with occurrence clauses *)
(************************************************************************)
(* [clause_atom] refers either to an hypothesis location (i.e. an
hypothesis with occurrences and a position, in body if any, in type
or in both) or to some occurrences of the conclusion *)
type clause_atom =
| OnHyp of identifier * occurrences_expr * hyp_location_flag
| OnConcl of occurrences_expr
(* A [concrete_clause] is an effective collection of
occurrences in the hypotheses and the conclusion *)
type concrete_clause = clause_atom list
let concrete_clause_of cl gls =
let hyps =
match cl.onhyps with
| None ->
let f id = OnHyp (id,all_occurrences_expr,InHyp) in
List.map f (pf_ids_of_hyps gls)
| Some l ->
List.map (fun ((occs,id),w) -> OnHyp (id,occs,w)) l in
if cl.concl_occs = no_occurrences_expr then hyps
else
OnConcl cl.concl_occs :: hyps
(************************************************************************)
(* Elimination Tacticals *)
(************************************************************************)
(* The following tacticals allow to apply a tactic to the
branches generated by the application of an elimination
tactic.
Two auxiliary types --branch_args and branch_assumptions-- are
used to keep track of some information about the ``branches'' of
the elimination. *)
type branch_args = {
ity : inductive; (* the type we were eliminating on *)
largs : constr list; (* its arguments *)
branchnum : int; (* the branch number *)
pred : constr; (* the predicate we used *)
nassums : int; (* the number of assumptions to be introduced *)
branchsign : bool list; (* the signature of the branch.
true=recursive argument, false=constant *)
branchnames : intro_pattern_expr located list}
type branch_assumptions = {
ba : branch_args; (* the branch args *)
assums : named_context} (* the list of assumptions introduced *)
let fix_empty_or_and_pattern nv l =
(* 1- The syntax does not distinguish between "[ ]" for one clause with no
names and "[ ]" for no clause at all *)
(* 2- More generally, we admit "[ ]" for any disjunctive pattern of
arbitrary length *)
if l = [[]] then list_make nv [] else l
let check_or_and_pattern_size loc names n =
if List.length names <> n then
if n = 1 then
user_err_loc (loc,"",str "Expects a conjunctive pattern.")
else
user_err_loc (loc,"",str "Expects a disjunctive pattern with " ++ int n
++ str " branches.")
let compute_induction_names n = function
| None ->
Array.make n []
| Some (loc,IntroOrAndPattern names) ->
let names = fix_empty_or_and_pattern n names in
check_or_and_pattern_size loc names n;
Array.of_list names
| Some (loc,_) ->
user_err_loc (loc,"",str "Disjunctive/conjunctive introduction pattern expected.")
let compute_construtor_signatures isrec (_,k as ity) =
let rec analrec c recargs =
match kind_of_term c, recargs with
| Prod (_,_,c), recarg::rest ->
let b = match dest_recarg recarg with
| Norec | Imbr _ -> false
| Mrec (_,j) -> isrec & j=k
in b :: (analrec c rest)
| LetIn (_,_,_,c), rest -> false :: (analrec c rest)
| _, [] -> []
| _ -> anomaly "compute_construtor_signatures"
in
let (mib,mip) = Global.lookup_inductive ity in
let n = mib.mind_nparams in
let lc =
Array.map (fun c -> snd (decompose_prod_n_assum n c)) mip.mind_nf_lc in
let lrecargs = dest_subterms mip.mind_recargs in
array_map2 analrec lc lrecargs
let elimination_sort_of_goal gl =
pf_apply Retyping.get_sort_family_of gl (pf_concl gl)
let elimination_sort_of_hyp id gl =
pf_apply Retyping.get_sort_family_of gl (pf_get_hyp_typ gl id)
let elimination_sort_of_clause = function
| None -> elimination_sort_of_goal
| Some id -> elimination_sort_of_hyp id
(* Find the right elimination suffix corresponding to the sort of the goal *)
(* c should be of type A1->.. An->B with B an inductive definition *)
let general_elim_then_using mk_elim
isrec allnames tac predicate (indbindings,elimbindings)
ind indclause gl =
let elim = mk_elim ind gl in
(* applying elimination_scheme just a little modified *)
let indclause' = clenv_match_args indbindings indclause in
let elimclause = mk_clenv_from gl (elim,pf_type_of gl elim) in
let indmv =
match kind_of_term (last_arg elimclause.templval.Evd.rebus) with
| Meta mv -> mv
| _ -> anomaly "elimination"
in
let pmv =
let p, _ = decompose_app elimclause.templtyp.Evd.rebus in
match kind_of_term p with
| Meta p -> p
| _ ->
let name_elim =
match kind_of_term elim with
| Const kn -> string_of_con kn
| Var id -> string_of_id id
| _ -> "\b"
in
error ("The elimination combinator " ^ name_elim ^ " is unknown.")
in
let elimclause' = clenv_fchain indmv elimclause indclause' in
let elimclause' = clenv_match_args elimbindings elimclause' in
let branchsigns = compute_construtor_signatures isrec ind in
let brnames = compute_induction_names (Array.length branchsigns) allnames in
let after_tac ce i gl =
let (hd,largs) = decompose_app ce.templtyp.Evd.rebus in
let ba = { branchsign = branchsigns.(i);
branchnames = brnames.(i);
nassums =
List.fold_left
(fun acc b -> if b then acc+2 else acc+1)
0 branchsigns.(i);
branchnum = i+1;
ity = ind;
largs = List.map (clenv_nf_meta ce) largs;
pred = clenv_nf_meta ce hd }
in
tac ba gl
in
let branchtacs ce = Array.init (Array.length branchsigns) (after_tac ce) in
let elimclause' =
match predicate with
| None -> elimclause'
| Some p ->
clenv_unify ~flags:Unification.elim_flags
Reduction.CONV (mkMeta pmv) p elimclause'
in
elim_res_pf_THEN_i elimclause' branchtacs gl
(* computing the case/elim combinators *)
let gl_make_elim ind gl =
Indrec.lookup_eliminator ind (elimination_sort_of_goal gl)
let gl_make_case_dep ind gl =
pf_apply Indrec.build_case_analysis_scheme gl ind true
(elimination_sort_of_goal gl)
let gl_make_case_nodep ind gl =
pf_apply Indrec.build_case_analysis_scheme gl ind false
(elimination_sort_of_goal gl)
let elimination_then_using tac predicate bindings c gl =
let (ind,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
let indclause = mk_clenv_from gl (c,t) in
general_elim_then_using gl_make_elim
true None tac predicate bindings ind indclause gl
let case_then_using =
general_elim_then_using gl_make_case_dep false
let case_nodep_then_using =
general_elim_then_using gl_make_case_nodep false
let elimination_then tac = elimination_then_using tac None
let simple_elimination_then tac = elimination_then tac ([],[])
let make_elim_branch_assumptions ba gl =
let rec makerec (assums,cargs,constargs,recargs,indargs) lb lc =
match lb,lc with
| ([], _) ->
{ ba = ba;
assums = assums}
| ((true::tl), ((idrec,_,_ as recarg)::(idind,_,_ as indarg)::idtl)) ->
makerec (recarg::indarg::assums,
idrec::cargs,
idrec::recargs,
constargs,
idind::indargs) tl idtl
| ((false::tl), ((id,_,_ as constarg)::idtl)) ->
makerec (constarg::assums,
id::cargs,
id::constargs,
recargs,
indargs) tl idtl
| (_, _) -> anomaly "make_elim_branch_assumptions"
in
makerec ([],[],[],[],[]) ba.branchsign
(try list_firstn ba.nassums (pf_hyps gl)
with Failure _ -> anomaly "make_elim_branch_assumptions")
let elim_on_ba tac ba gl = tac (make_elim_branch_assumptions ba gl) gl
let make_case_branch_assumptions ba gl =
let rec makerec (assums,cargs,constargs,recargs) p_0 p_1 =
match p_0,p_1 with
| ([], _) ->
{ ba = ba;
assums = assums}
| ((true::tl), ((idrec,_,_ as recarg)::idtl)) ->
makerec (recarg::assums,
idrec::cargs,
idrec::recargs,
constargs) tl idtl
| ((false::tl), ((id,_,_ as constarg)::idtl)) ->
makerec (constarg::assums,
id::cargs,
recargs,
id::constargs) tl idtl
| (_, _) -> anomaly "make_case_branch_assumptions"
in
makerec ([],[],[],[]) ba.branchsign
(try list_firstn ba.nassums (pf_hyps gl)
with Failure _ -> anomaly "make_case_branch_assumptions")
let case_on_ba tac ba gl = tac (make_case_branch_assumptions ba gl) gl
|