1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: setoid_replace.ml,v 1.31.2.1 2004/07/16 19:30:55 herbelin Exp $ *)
open Tacmach
open Proof_type
open Libobject
open Reductionops
open Term
open Termops
open Names
open Entries
open Libnames
open Nameops
open Util
open Pp
open Printer
open Environ
open Tactics
open Tacticals
open Vernacexpr
open Safe_typing
open Nametab
open Decl_kinds
open Constrintern
type setoid =
{ set_a : constr;
set_aeq : constr;
set_th : constr
}
type morphism =
{ lem : constr;
profil : bool list;
arg_types : constr list;
lem2 : constr option
}
let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c
let constant dir s = Coqlib.gen_constant "Setoid_replace" ("Setoids"::dir) s
let global_constant dir s =Coqlib.gen_constant "Setoid_replace" ("Init"::dir) s
let current_constant id =
try
global_reference id
with Not_found ->
anomaly ("Setoid: cannot find "^(string_of_id id))
(* Setoid_theory *)
let coq_Setoid_Theory = lazy(constant ["Setoid"] "Setoid_Theory")
let coq_seq_refl = lazy(constant ["Setoid"] "Seq_refl")
let coq_seq_sym = lazy(constant ["Setoid"] "Seq_sym")
let coq_seq_trans = lazy(constant ["Setoid"] "Seq_trans")
let coq_fleche = lazy(constant ["Setoid"] "fleche")
(* Coq constants *)
let coqeq = lazy(global_constant ["Logic"] "eq")
let coqconj = lazy(global_constant ["Logic"] "conj")
let coqand = lazy(global_constant ["Logic"] "and")
let coqproj1 = lazy(global_constant ["Logic"] "proj1")
let coqproj2 = lazy(global_constant ["Logic"] "proj2")
(************************* Table of declared setoids **********************)
(* Setoids are stored in a table which is synchronised with the Reset mechanism. *)
module Cmap = Map.Make(struct type t = constr let compare = compare end)
let setoid_table = ref Gmap.empty
let setoid_table_add (s,th) = setoid_table := Gmap.add s th !setoid_table
let setoid_table_find s = Gmap.find s !setoid_table
let setoid_table_mem s = Gmap.mem s !setoid_table
let subst_setoid subst setoid =
let set_a' = subst_mps subst setoid.set_a in
let set_aeq' = subst_mps subst setoid.set_aeq in
let set_th' = subst_mps subst setoid.set_th in
if set_a' == setoid.set_a
&& set_aeq' == setoid.set_aeq
&& set_th' == setoid.set_th
then
setoid
else
{ set_a = set_a' ;
set_aeq = set_aeq' ;
set_th = set_th' ;
}
let equiv_list () = List.map (fun x -> x.set_aeq) (Gmap.rng !setoid_table)
let _ =
Summary.declare_summary "setoid-table"
{ Summary.freeze_function = (fun () -> !setoid_table);
Summary.unfreeze_function = (fun t -> setoid_table := t);
Summary.init_function = (fun () -> setoid_table := Gmap .empty);
Summary.survive_module = false;
Summary.survive_section = false }
(* Declare a new type of object in the environment : "setoid-theory". *)
let (setoid_to_obj, obj_to_setoid)=
let cache_set (_,(s, th)) = setoid_table_add (s,th)
and subst_set (_,subst,(s,th as obj)) =
let s' = subst_mps subst s in
let th' = subst_setoid subst th in
if s' == s && th' == th then obj else
(s',th')
and export_set x = Some x
in
declare_object {(default_object "setoid-theory") with
cache_function = cache_set;
open_function = (fun i o -> if i=1 then cache_set o);
subst_function = subst_set;
classify_function = (fun (_,x) -> Substitute x);
export_function = export_set}
(******************************* Table of declared morphisms ********************)
(* Setoids are stored in a table which is synchronised with the Reset mechanism. *)
let morphism_table = ref Gmap.empty
let morphism_table_add (m,c) = morphism_table := Gmap.add m c !morphism_table
let morphism_table_find m = Gmap.find m !morphism_table
let morphism_table_mem m = Gmap.mem m !morphism_table
let subst_morph subst morph =
let lem' = subst_mps subst morph.lem in
let arg_types' = list_smartmap (subst_mps subst) morph.arg_types in
let lem2' = option_smartmap (subst_mps subst) morph.lem2 in
if lem' == morph.lem
&& arg_types' == morph.arg_types
&& lem2' == morph.lem2
then
morph
else
{ lem = lem' ;
profil = morph.profil ;
arg_types = arg_types' ;
lem2 = lem2' ;
}
let _ =
Summary.declare_summary "morphism-table"
{ Summary.freeze_function = (fun () -> !morphism_table);
Summary.unfreeze_function = (fun t -> morphism_table := t);
Summary.init_function = (fun () -> morphism_table := Gmap .empty);
Summary.survive_module = false;
Summary.survive_section = false }
(* Declare a new type of object in the environment : "morphism-definition". *)
let (morphism_to_obj, obj_to_morphism)=
let cache_set (_,(m, c)) = morphism_table_add (m, c)
and subst_set (_,subst,(m,c as obj)) =
let m' = subst_mps subst m in
let c' = subst_morph subst c in
if m' == m && c' == c then obj else
(m',c')
and export_set x = Some x
in
declare_object {(default_object "morphism-definition") with
cache_function = cache_set;
open_function = (fun i o -> if i=1 then cache_set o);
subst_function = subst_set;
classify_function = (fun (_,x) -> Substitute x);
export_function = export_set}
(************************** Adding a setoid to the database *********************)
(* Find the setoid theory associated with a given type A.
This implies that only one setoid theory can be declared for
a given type A. *)
let find_theory a =
try
setoid_table_find a
with Not_found ->
errorlabstrm "Setoid"
(str "No Declared Setoid Theory for " ++
prterm a ++ fnl () ++
str "Use Add Setoid to declare it")
(* Add a Setoid to the database after a type verification. *)
let eq_lem_common_sign env a eq =
let na = named_hd env a Anonymous in
let ne = named_hd env eq Anonymous in
[(ne,None,mkApp (eq, [|(mkRel 3);(mkRel 2)|]));
(ne,None,mkApp (eq, [|(mkRel 4);(mkRel 3)|]));
(na,None,a);(na,None,a);(na,None,a);(na,None,a)]
(* Proof of (a,b,c,d:A)(eq a b)->(eq c d)->(eq a c)->(eq b d) *)
let eq_lem_proof env a eq sym trans =
let sign = eq_lem_common_sign env a eq in
let ne = named_hd env eq Anonymous in
let sign = (ne,None,mkApp (eq, [|(mkRel 6);(mkRel 4)|]))::sign in
let ccl = mkApp (eq, [|(mkRel 6);(mkRel 4)|]) in
let body =
mkApp (trans,
[|(mkRel 6);(mkRel 7);(mkRel 4);
(mkApp (sym, [|(mkRel 7);(mkRel 6);(mkRel 3)|]));
(mkApp (trans,
[|(mkRel 7);(mkRel 5);(mkRel 4);(mkRel 1);(mkRel 2)|]))|]) in
let p = it_mkLambda_or_LetIn body sign in
let t = it_mkProd_or_LetIn ccl sign in
(p,t)
(* Proof of (a,b,c,d:A)(eq a b)->(eq c d)->((eq a c)<->(eq b d)) *)
let eq_lem2_proof env a eq sym trans =
let sign = eq_lem_common_sign env a eq in
let ccl1 =
mkArrow
(mkApp (eq, [|(mkRel 6);(mkRel 4)|]))
(mkApp (eq, [|(mkRel 6);(mkRel 4)|])) in
let ccl2 =
mkArrow
(mkApp (eq, [|(mkRel 5);(mkRel 3)|]))
(mkApp (eq, [|(mkRel 7);(mkRel 5)|])) in
let ccl = mkApp (Lazy.force coqand, [|ccl1;ccl2|]) in
let body =
mkApp ((Lazy.force coqconj),
[|ccl1;ccl2;
lambda_create env
(mkApp (eq, [|(mkRel 6);(mkRel 4)|]),
(mkApp (trans,
[|(mkRel 6);(mkRel 7);(mkRel 4);
(mkApp (sym, [|(mkRel 7);(mkRel 6);(mkRel 3)|]));
(mkApp (trans,
[|(mkRel 7);(mkRel 5);(mkRel 4);(mkRel 1);(mkRel 2)|]))|])));
lambda_create env
(mkApp (eq, [|(mkRel 5);(mkRel 3)|]),
(mkApp (trans,
[|(mkRel 7);(mkRel 6);(mkRel 5);(mkRel 3);
(mkApp (trans,
[|(mkRel 6);(mkRel 4);(mkRel 5);(mkRel 1);
(mkApp (sym, [|(mkRel 5);(mkRel 4);(mkRel 2)|]))|]))|])))|])
in
let p = it_mkLambda_or_LetIn body sign in
let t = it_mkProd_or_LetIn ccl sign in
(p,t)
let gen_eq_lem_name =
let i = ref 0 in
function () ->
incr i;
make_ident "setoid_eq_ext" (Some !i)
let add_setoid a aeq th =
if setoid_table_mem a
then errorlabstrm "Add Setoid"
(str "A Setoid Theory is already declared for " ++ prterm a)
else let env = Global.env () in
if (is_conv env Evd.empty (Typing.type_of env Evd.empty th)
(mkApp ((Lazy.force coq_Setoid_Theory), [| a; aeq |])))
then (Lib.add_anonymous_leaf
(setoid_to_obj
(a, { set_a = a;
set_aeq = aeq;
set_th = th}));
let sym = mkApp ((Lazy.force coq_seq_sym), [|a; aeq; th|]) in
let trans = mkApp ((Lazy.force coq_seq_trans), [|a; aeq; th|]) in
let (eq_morph, eq_morph_typ) = eq_lem_proof env a aeq sym trans in
let (eq_morph2, eq_morph2_typ) = eq_lem2_proof env a aeq sym trans in
Options.if_verbose ppnl (prterm a ++str " is registered as a setoid");
let eq_ext_name = gen_eq_lem_name () in
let eq_ext_name2 = gen_eq_lem_name () in
let _ = Declare.declare_constant eq_ext_name
((DefinitionEntry {const_entry_body = eq_morph;
const_entry_type = Some eq_morph_typ;
const_entry_opaque = true}),
IsProof Lemma) in
let _ = Declare.declare_constant eq_ext_name2
((DefinitionEntry {const_entry_body = eq_morph2;
const_entry_type = Some eq_morph2_typ;
const_entry_opaque = true}),
IsProof Lemma) in
let eqmorph = (current_constant eq_ext_name) in
let eqmorph2 = (current_constant eq_ext_name2) in
(Lib.add_anonymous_leaf
(morphism_to_obj (aeq,
{ lem = eqmorph;
profil = [true; true];
arg_types = [a;a];
lem2 = (Some eqmorph2)})));
Options.if_verbose ppnl (prterm aeq ++str " is registered as a morphism"))
else errorlabstrm "Add Setoid" (str "Not a valid setoid theory")
(* The vernac command "Add Setoid" *)
let add_setoid a aeq th =
add_setoid (constr_of a) (constr_of aeq) (constr_of th)
(***************** Adding a morphism to the database ****************************)
(* We maintain a table of the currently edited proofs of morphism lemma
in order to add them in the morphism_table when the user does Save *)
let edited = ref Gmap.empty
let new_edited id m profil =
edited := Gmap.add id (m,profil) !edited
let is_edited id =
Gmap.mem id !edited
let no_more_edited id =
edited := Gmap.remove id !edited
let what_edited id =
Gmap.find id !edited
let check_is_dependent t n =
let rec aux t i n =
if (i<n)
then (dependent (mkRel i) t) || (aux t (i+1) n)
else false
in aux t 0 n
let gen_lem_name m = match kind_of_term m with
| Var id -> add_suffix id "_ext"
| Const kn -> add_suffix (id_of_label (label kn)) "_ext"
| Ind (kn, i) -> add_suffix (id_of_label (label kn)) ((string_of_int i)^"_ext")
| Construct ((kn,i),j) -> add_suffix
(id_of_label (label kn)) ((string_of_int i)^(string_of_int j)^"_ext")
| _ -> errorlabstrm "New Morphism" (str "The term " ++ prterm m ++ str "is not a known name")
let gen_lemma_tail m lisset body n =
let l = (List.length lisset) in
let a1 = Array.create l (mkRel 0) in
let a2 = Array.create l (mkRel 0) in
let rec aux i n = function
| true::q ->
a1.(i) <- (mkRel n);
a2.(i) <- (mkRel (n-1));
aux (i+1) (n-2) q
| false::q ->
a1.(i) <- (mkRel n);
a2.(i) <- (mkRel n);
aux (i+1) (n-1) q
| [] -> () in
aux 0 n lisset;
if (eq_constr body mkProp)
then mkArrow (mkApp (m,a1)) (lift 1 (mkApp (m, a2)))
else if (setoid_table_mem body)
then mkApp ((setoid_table_find body).set_aeq, [|(mkApp (m, a1)); (mkApp (m, a2))|])
else mkApp ((Lazy.force coqeq), [|body; (mkApp (m, a1)); (mkApp (m, a2))|])
let gen_lemma_middle m larg lisset body n =
let rec aux la li i n = match (la, li) with
| ([], []) -> gen_lemma_tail m lisset body n
| (t::q, true::lq) ->
mkArrow (mkApp ((setoid_table_find t).set_aeq,
[|(mkRel i); (mkRel (i-1))|])) (aux q lq (i-1) (n+1))
| (t::q, false::lq) -> aux q lq (i-1) n
| _ -> assert false
in aux larg lisset n n
let gen_compat_lemma env m body larg lisset =
let rec aux la li n = match (la, li) with
| (t::q, true::lq) ->
prod_create env (t,(prod_create env (t, (aux q lq (n+2)))))
| (t::q, false::lq) ->
prod_create env (t, (aux q lq (n+1)))
| ([],[]) -> gen_lemma_middle m larg lisset body n
| _ -> assert false
in aux larg lisset 0
let new_morphism m id hook =
if morphism_table_mem m
then errorlabstrm "New Morphism"
(str "The term " ++ prterm m ++ str " is already declared as a morphism")
else
let env = Global.env() in
let typeofm = (Typing.type_of env Evd.empty m) in
let typ = (nf_betaiota typeofm) in (* nf_bdi avant, mais bug *)
let (argsrev, body) = (decompose_prod typ) in
let args = (List.rev argsrev) in
if (args=[])
then errorlabstrm "New Morphism"
(str "The term " ++ prterm m ++ str " is not a product")
else if (check_is_dependent typ (List.length args))
then errorlabstrm "New Morphism"
(str "The term " ++ prterm m ++ str " should not be a dependent product")
else (
let args_t = (List.map snd args) in
let poss = (List.map setoid_table_mem args_t) in
let lem = (gen_compat_lemma env m body args_t poss) in
new_edited id m poss;
Pfedit.start_proof id (IsGlobal (Proof Lemma))
(Declare.clear_proofs (Global.named_context ()))
lem hook;
(Options.if_verbose msg (Pfedit.pr_open_subgoals ())))
let rec sub_bool l1 n = function
| [] -> []
| true::q -> ((List.hd l1), n)::(sub_bool (List.tl l1) (n-2) q)
| false::q -> (sub_bool (List.tl l1) (n-1) q)
let gen_lemma_iff_tail m mext larg lisset n k =
let a1 = Array.create k (mkRel 0) in
let a2 = Array.create k (mkRel 0) in
let nb = List.length lisset in
let b1 = Array.create nb (mkRel 0) in
let b2 = Array.create nb (mkRel 0) in
let rec aux i j = function
|[] -> ()
|true::q ->
(a1.(i) <- (mkRel j);
a1.(i+1) <- (mkRel (j-1));
a2.(i) <- (mkRel (j-1));
a2.(i+1) <- (mkRel j);
aux (i+2) (j-2) q)
|false::q ->
(a1.(i) <- (mkRel j);
a2.(i) <- (mkRel j);
aux (i+1) (j-1) q) in
let rec aux2 i j = function
| (t,p)::q ->
let th = (setoid_table_find t).set_th
and equiv = (setoid_table_find t).set_aeq in
a1.(i) <- (mkRel j);
a2.(i) <- mkApp ((Lazy.force coq_seq_sym),
[|t; equiv; th; (mkRel p); (mkRel (p-1)); (mkRel j)|]);
aux2 (i+1) (j-1) q
| [] -> () in
let rec aux3 i j = function
| true::q ->
b1.(i) <- (mkRel j);
b2.(i) <- (mkRel (j-1));
aux3 (i+1) (j-2) q
| false::q ->
b1.(i) <- (mkRel j);
b2.(i) <- (mkRel j);
aux3 (i+1) (j-1) q
| [] -> () in
aux 0 k lisset;
aux2 n (k-n) (sub_bool larg k lisset);
aux3 0 k lisset;
mkApp ((Lazy.force coqconj),
[|(mkArrow (mkApp (m,b1)) (lift 1 (mkApp (m, b2))));
(mkArrow (mkApp (m,b2)) (lift 1 (mkApp (m, b1))));
(mkApp (mext, a1));(mkApp (mext, a2))|])
let gen_lemma_iff_middle env m mext larg lisset n =
let rec aux la li i k = match (la, li) with
| ([], []) -> gen_lemma_iff_tail m mext larg lisset n k
| (t::q, true::lq) ->
lambda_create env ((mkApp ((setoid_table_find t).set_aeq, [|(mkRel i); (mkRel (i-1))|])),
(aux q lq (i-1) (k+1)))
| (t::q, false::lq) -> aux q lq (i-1) k
| _ -> assert false
in aux larg lisset n n
let gen_lem_iff env m mext larg lisset =
let rec aux la li n = match (la, li) with
| (t::q, true::lq) ->
lambda_create env (t,(lambda_create env (t, (aux q lq (n+2)))))
| (t::q, false::lq) ->
lambda_create env (t, (aux q lq (n+1)))
| ([],[]) -> gen_lemma_iff_middle env m mext larg lisset n
| _ -> assert false
in aux larg lisset 0
let add_morphism lem_name (m,profil) =
if morphism_table_mem m
then errorlabstrm "New Morphism"
(str "The term " ++ prterm m ++ str " is already declared as a morpism")
else
let env = Global.env() in
let mext = (current_constant lem_name) in
let typeofm = (Typing.type_of env Evd.empty m) in
let typ = (nf_betaiota typeofm) in
let (argsrev, body) = (decompose_prod typ) in
let args = List.rev argsrev in
let args_t = (List.map snd args) in
let poss = (List.map setoid_table_mem args_t) in
let _ = assert (poss=profil) in
(if (eq_constr body mkProp)
then
(let lem_2 = gen_lem_iff env m mext args_t poss in
let lem2_name = add_suffix lem_name "2" in
let _ = Declare.declare_constant lem2_name
((DefinitionEntry {const_entry_body = lem_2;
const_entry_type = None;
const_entry_opaque = true}),
IsProof Lemma) in
let lem2 = (current_constant lem2_name) in
(Lib.add_anonymous_leaf
(morphism_to_obj (m,
{ lem = mext;
profil = poss;
arg_types = args_t;
lem2 = (Some lem2)})));
Options.if_verbose message ((string_of_id lem2_name) ^ " is defined"))
else
(Lib.add_anonymous_leaf
(morphism_to_obj (m,
{ lem = mext;
profil = poss;
arg_types = args_t;
lem2 = None}))));
Options.if_verbose ppnl (prterm m ++str " is registered as a morphism")
let morphism_hook stre ref =
let pf_id = id_of_global ref in
if (is_edited pf_id)
then
(add_morphism pf_id (what_edited pf_id); no_more_edited pf_id)
let new_named_morphism id m = new_morphism (constr_of m) id morphism_hook
(****************************** The tactic itself *******************************)
type constr_with_marks =
| MApp of constr_with_marks array
| Toreplace
| Tokeep
| Mimp of constr_with_marks * constr_with_marks
let is_to_replace = function
| Tokeep -> false
| Toreplace -> true
| MApp _ -> true
| Mimp _ -> true
let get_mark a =
Array.fold_left (||) false (Array.map is_to_replace a)
let rec mark_occur t in_c =
if (eq_constr t in_c) then Toreplace else
match kind_of_term in_c with
| App (c,al) ->
let a = Array.map (mark_occur t) al
in if (get_mark a) then (MApp a) else Tokeep
| Prod (_, c1, c2) ->
if (dependent (mkRel 1) c2)
then Tokeep
else
let c1m = mark_occur t c1 in
let c2m = mark_occur t c2 in
if ((is_to_replace c1m)||(is_to_replace c2m))
then (Mimp (c1m, c2m))
else Tokeep
| _ -> Tokeep
let create_args ca ma bl c1 c2 =
let rec aux i = function
| [] -> []
| true::q ->
if (is_to_replace ma.(i))
then (replace_term c1 c2 ca.(i))::ca.(i)::(aux (i+1) q)
else ca.(i)::ca.(i)::(aux (i+1) q)
| false::q -> ca.(i)::(aux (i+1) q)
in
aux 0 bl
let res_tac c a hyp =
let sa = setoid_table_find a in
let fin = match hyp with
| None -> Auto.full_trivial
| Some h ->
tclORELSE (tclTHEN (tclTRY (apply h)) (tclFAIL 0 ""))
(tclORELSE (tclTHEN (tclTRY (tclTHEN (apply (mkApp ((Lazy.force coq_seq_sym), [|sa.set_a; sa.set_aeq; sa.set_th|]))) (apply h))) (tclFAIL 0 ""))
Auto.full_trivial) in
tclORELSE (tclTHEN (tclTRY (apply (mkApp ((Lazy.force coq_seq_refl), [|sa.set_a; sa.set_aeq; sa.set_th;c|])))) (tclFAIL 0 ""))
(tclORELSE assumption
(tclORELSE (tclTHEN (tclTRY (apply (mkApp ((Lazy.force coq_seq_sym), [|sa.set_a; sa.set_aeq; sa.set_th|])))) assumption)
fin))
let id_res_tac c a =
let sa = setoid_table_find a in
(tclTRY (apply (mkApp ((Lazy.force coq_seq_refl), [|sa.set_a; sa.set_aeq; sa.set_th; c|]))))
(* An exception to catchs errors *)
exception Nothing_found of constr;;
let rec create_tac_list i a al c1 c2 hyp args_t = function
| [] -> []
| false::q -> create_tac_list (i+1) a al c1 c2 hyp args_t q
| true::q ->
if (is_to_replace a.(i))
then (zapply false al.(i) a.(i) c1 c2 hyp)::(create_tac_list (i+1) a al c1 c2 hyp args_t q)
else (id_res_tac al.(i) (List.nth args_t i))::(create_tac_list (i+1) a al c1 c2 hyp args_t q)
(* else tclIDTAC::(create_tac_list (i+1) a al c1 c2 hyp q) *)
and zapply is_r gl gl_m c1 c2 hyp glll = (match ((kind_of_term gl), gl_m) with
| ((App (c,al)),(MApp a)) -> (
try
let m = morphism_table_find c in
let args = Array.of_list (create_args al a m.profil c1 c2) in
if is_r
then tclTHENS (apply (mkApp (m.lem, args)))
((create_tac_list 0 a al c1 c2 hyp m.arg_types m.profil)@[tclIDTAC])
else (match m.lem2 with
| None ->
tclTHENS (apply (mkApp (m.lem, args))) (create_tac_list 0 a al c1 c2 hyp m.arg_types m.profil)
| Some xom ->
tclTHENS (apply (mkApp (xom, args))) (create_tac_list 0 a al c1 c2 hyp m.arg_types m.profil))
with Not_found -> errorlabstrm "Setoid_replace"
(str "The term " ++ prterm c ++ str " has not been declared as a morphism"))
| ((Prod (_,hh, cc)),(Mimp (hhm, ccm))) ->
let al = [|hh; cc|] in
let a = [|hhm; ccm|] in
let fleche_constr = (Lazy.force coq_fleche) in
let fleche_cp = destConst fleche_constr in
let new_concl = (mkApp (fleche_constr, al)) in
if is_r
then
let m = morphism_table_find fleche_constr in
let args = Array.of_list (create_args al a m.profil c1 c2) in
tclTHEN (change_in_concl None new_concl)
(tclTHENS (apply (mkApp (m.lem, args)))
((create_tac_list 0 a al c1 c2 hyp m.arg_types m.profil)@[unfold_constr (ConstRef fleche_cp)]))
(* ((create_tac_list 0 a al c1 c2 hyp m.arg_types m.profil)@[tclIDTAC])) *)
else (zapply is_r new_concl (MApp a) c1 c2 hyp)
(* let args = Array.of_list (create_args [|hh; cc|] [|hhm; ccm|] [true;true] c1 c2) in
if is_r
then tclTHENS (apply (mkApp ((Lazy.force coq_fleche_ext), args)))
((create_tac_list 0 [|hhm; ccm|] [|hh; cc|] c1 c2 hyp [mkProp; mkProp] [true;true])@[tclIDTAC])
else tclTHENS (apply (mkApp ((Lazy.force coq_fleche_ext2), args)))
((create_tac_list 0 [|hhm; ccm|] [|hh; cc|] c1 c2 hyp [mkProp; mkProp] [true;true])@[tclIDTAC])
*)
| (_, Toreplace) ->
if is_r
then (match hyp with
| None -> errorlabstrm "Setoid_replace"
(str "You should use the tactic Replace here")
| Some h ->
let hypt = pf_type_of glll h in
let (heq, hargs) = decompose_app hypt in
let rec get_last_two = function
| [c1;c2] -> (c1, c2)
| x::y::z -> get_last_two (y::z)
| _ -> assert false in
let (hc1,hc2) = get_last_two hargs in
if c1 = hc1
then
apply (mkApp (Lazy.force coqproj2,[|(mkArrow hc1 hc2);(mkArrow hc2 hc1);h|]))
else
apply (mkApp (Lazy.force coqproj1,[|(mkArrow hc1 hc2);(mkArrow hc2 hc1);h|]))
)
else (res_tac gl (pf_type_of glll gl) hyp) (* tclORELSE Auto.full_trivial tclIDTAC *)
| (_, Tokeep) -> (match hyp with
| None -> errorlabstrm "Setoid_replace"
(str "No replacable occurence of " ++ prterm c1 ++ str " found")
| Some _ ->errorlabstrm "Setoid_replace"
(str "No rewritable occurence of " ++ prterm c1 ++ str " found"))
| _ -> anomaly ("Bug in Setoid_replace")) glll
let setoid_replace c1 c2 hyp gl =
let but = (pf_concl gl) in
(zapply true but (mark_occur c1 but) c1 c2 hyp) gl
let general_s_rewrite lft2rgt c gl =
let ctype = pf_type_of gl c in
let (equiv, args) = decompose_app ctype in
let rec get_last_two = function
| [c1;c2] -> (c1, c2)
| x::y::z -> get_last_two (y::z)
| _ -> error "The term provided is not an equivalence" in
let (c1,c2) = get_last_two args in
if lft2rgt
then setoid_replace c1 c2 (Some c) gl
else setoid_replace c2 c1 (Some c) gl
let setoid_rewriteLR = general_s_rewrite true
let setoid_rewriteRL = general_s_rewrite false
|