1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: extratactics.ml4 11800 2009-01-18 18:34:15Z msozeau $ *)
open Pp
open Pcoq
open Genarg
open Extraargs
open Mod_subst
open Names
open Tacexpr
open Rawterm
open Tactics
(* Equality *)
open Equality
TACTIC EXTEND replace
["replace" constr(c1) "with" constr(c2) in_arg_hyp(in_hyp) by_arg_tac(tac) ]
-> [ replace_in_clause_maybe_by c1 c2 (glob_in_arg_hyp_to_clause in_hyp) (Option.map Tacinterp.eval_tactic tac) ]
END
TACTIC EXTEND replace_term_left
[ "replace" "->" constr(c) in_arg_hyp(in_hyp) ]
-> [ replace_multi_term (Some true) c (glob_in_arg_hyp_to_clause in_hyp)]
END
TACTIC EXTEND replace_term_right
[ "replace" "<-" constr(c) in_arg_hyp(in_hyp) ]
-> [replace_multi_term (Some false) c (glob_in_arg_hyp_to_clause in_hyp)]
END
TACTIC EXTEND replace_term
[ "replace" constr(c) in_arg_hyp(in_hyp) ]
-> [ replace_multi_term None c (glob_in_arg_hyp_to_clause in_hyp) ]
END
let induction_arg_of_quantified_hyp = function
| AnonHyp n -> ElimOnAnonHyp n
| NamedHyp id -> ElimOnIdent (Util.dummy_loc,id)
(* Versions *_main must come first!! so that "1" is interpreted as a
ElimOnAnonHyp and not as a "constr", and "id" is interpreted as a
ElimOnIdent and not as "constr" *)
TACTIC EXTEND simplify_eq_main
| [ "simplify_eq" constr_with_bindings(c) ] ->
[ dEq false (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND simplify_eq
[ "simplify_eq" ] -> [ dEq false None ]
| [ "simplify_eq" quantified_hypothesis(h) ] ->
[ dEq false (Some (induction_arg_of_quantified_hyp h)) ]
END
TACTIC EXTEND esimplify_eq_main
| [ "esimplify_eq" constr_with_bindings(c) ] ->
[ dEq true (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND esimplify_eq
| [ "esimplify_eq" ] -> [ dEq true None ]
| [ "esimplify_eq" quantified_hypothesis(h) ] ->
[ dEq true (Some (induction_arg_of_quantified_hyp h)) ]
END
TACTIC EXTEND discriminate_main
| [ "discriminate" constr_with_bindings(c) ] ->
[ discr_tac false (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND discriminate
| [ "discriminate" ] -> [ discr_tac false None ]
| [ "discriminate" quantified_hypothesis(h) ] ->
[ discr_tac false (Some (induction_arg_of_quantified_hyp h)) ]
END
TACTIC EXTEND ediscriminate_main
| [ "ediscriminate" constr_with_bindings(c) ] ->
[ discr_tac true (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND ediscriminate
| [ "ediscriminate" ] -> [ discr_tac true None ]
| [ "ediscriminate" quantified_hypothesis(h) ] ->
[ discr_tac true (Some (induction_arg_of_quantified_hyp h)) ]
END
let h_discrHyp id = h_discriminate_main (Term.mkVar id,NoBindings)
TACTIC EXTEND injection_main
| [ "injection" constr_with_bindings(c) ] ->
[ injClause [] false (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND injection
| [ "injection" ] -> [ injClause [] false None ]
| [ "injection" quantified_hypothesis(h) ] ->
[ injClause [] false (Some (induction_arg_of_quantified_hyp h)) ]
END
TACTIC EXTEND einjection_main
| [ "einjection" constr_with_bindings(c) ] ->
[ injClause [] true (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND einjection
| [ "einjection" ] -> [ injClause [] true None ]
| [ "einjection" quantified_hypothesis(h) ] -> [ injClause [] true (Some (induction_arg_of_quantified_hyp h)) ]
END
TACTIC EXTEND injection_as_main
| [ "injection" constr_with_bindings(c) "as" simple_intropattern_list(ipat)] ->
[ injClause ipat false (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND injection_as
| [ "injection" "as" simple_intropattern_list(ipat)] ->
[ injClause ipat false None ]
| [ "injection" quantified_hypothesis(h) "as" simple_intropattern_list(ipat) ] ->
[ injClause ipat false (Some (induction_arg_of_quantified_hyp h)) ]
END
TACTIC EXTEND einjection_as_main
| [ "einjection" constr_with_bindings(c) "as" simple_intropattern_list(ipat)] ->
[ injClause ipat true (Some (ElimOnConstr c)) ]
END
TACTIC EXTEND einjection_as
| [ "einjection" "as" simple_intropattern_list(ipat)] ->
[ injClause ipat true None ]
| [ "einjection" quantified_hypothesis(h) "as" simple_intropattern_list(ipat) ] ->
[ injClause ipat true (Some (induction_arg_of_quantified_hyp h)) ]
END
let h_injHyp id = h_injection_main (Term.mkVar id,NoBindings)
TACTIC EXTEND conditional_rewrite
| [ "conditional" tactic(tac) "rewrite" orient(b) constr_with_bindings(c) ]
-> [ conditional_rewrite b (snd tac) (inj_open (fst c), snd c) ]
| [ "conditional" tactic(tac) "rewrite" orient(b) constr_with_bindings(c)
"in" hyp(h) ]
-> [ conditional_rewrite_in b h (snd tac) (inj_open (fst c), snd c) ]
END
TACTIC EXTEND dependent_rewrite
| [ "dependent" "rewrite" orient(b) constr(c) ] -> [ rewriteInConcl b c ]
| [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ]
-> [ rewriteInHyp b c id ]
END
TACTIC EXTEND cut_rewrite
| [ "cutrewrite" orient(b) constr(eqn) ] -> [ cutRewriteInConcl b eqn ]
| [ "cutrewrite" orient(b) constr(eqn) "in" hyp(id) ]
-> [ cutRewriteInHyp b eqn id ]
END
(* Contradiction *)
open Contradiction
TACTIC EXTEND absurd
[ "absurd" constr(c) ] -> [ absurd c ]
END
TACTIC EXTEND contradiction
[ "contradiction" constr_with_bindings_opt(c) ] -> [ contradiction c ]
END
(* AutoRewrite *)
open Autorewrite
(* J.F : old version
TACTIC EXTEND autorewrite
[ "autorewrite" "with" ne_preident_list(l) ] ->
[ autorewrite Refiner.tclIDTAC l ]
| [ "autorewrite" "with" ne_preident_list(l) "using" tactic(t) ] ->
[ autorewrite (snd t) l ]
| [ "autorewrite" "with" ne_preident_list(l) "in" hyp(id) ] ->
[ autorewrite_in id Refiner.tclIDTAC l ]
| [ "autorewrite" "with" ne_preident_list(l) "in" hyp(id) "using" tactic(t) ] ->
[ autorewrite_in id (snd t) l ]
END
*)
TACTIC EXTEND autorewrite
| [ "autorewrite" "with" ne_preident_list(l) in_arg_hyp(cl) ] ->
[ auto_multi_rewrite l (glob_in_arg_hyp_to_clause cl) ]
| [ "autorewrite" "with" ne_preident_list(l) in_arg_hyp(cl) "using" tactic(t) ] ->
[
let cl = glob_in_arg_hyp_to_clause cl in
auto_multi_rewrite_with (snd t) l cl
]
END
let add_rewrite_hint name ort t lcsr =
let env = Global.env() and sigma = Evd.empty in
let f c = Constrintern.interp_constr sigma env c, ort, t in
add_rew_rules name (List.map f lcsr)
VERNAC COMMAND EXTEND HintRewrite
[ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident(b) ] ->
[ add_rewrite_hint b o (Tacexpr.TacId []) l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t)
":" preident(b) ] ->
[ add_rewrite_hint b o t l ]
END
(* Refine *)
open Refine
TACTIC EXTEND refine
[ "refine" casted_open_constr(c) ] -> [ refine c ]
END
let refine_tac = h_refine
(* Inversion lemmas (Leminv) *)
open Inv
open Leminv
VERNAC COMMAND EXTEND DeriveInversionClear
[ "Derive" "Inversion_clear" ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal 1 na id Term.prop_sort false inv_clear_tac ]
| [ "Derive" "Inversion_clear" natural(n) ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal n na id Term.prop_sort false inv_clear_tac ]
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s false inv_clear_tac ]
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ]
-> [ add_inversion_lemma_exn na c (Rawterm.RProp Term.Null) false inv_clear_tac ]
END
open Term
open Rawterm
VERNAC COMMAND EXTEND DeriveInversion
| [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s false inv_tac ]
| [ "Derive" "Inversion" ident(na) "with" constr(c) ]
-> [ add_inversion_lemma_exn na c (RProp Null) false inv_tac ]
| [ "Derive" "Inversion" ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal 1 na id Term.prop_sort false inv_tac ]
| [ "Derive" "Inversion" natural(n) ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal n na id Term.prop_sort false inv_tac ]
END
VERNAC COMMAND EXTEND DeriveDependentInversion
| [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s true dinv_tac ]
END
VERNAC COMMAND EXTEND DeriveDependentInversionClear
| [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s true dinv_clear_tac ]
END
(* Subst *)
TACTIC EXTEND subst
| [ "subst" ne_var_list(l) ] -> [ subst l ]
| [ "subst" ] -> [ subst_all ]
END
open Evar_tactics
(* evar creation *)
TACTIC EXTEND evar
[ "evar" "(" ident(id) ":" lconstr(typ) ")" ] -> [ let_evar (Name id) typ ]
| [ "evar" constr(typ) ] -> [ let_evar Anonymous typ ]
END
open Tacexpr
open Tacticals
TACTIC EXTEND instantiate
[ "instantiate" "(" integer(i) ":=" raw(c) ")" hloc(hl) ] ->
[instantiate i c hl ]
| [ "instantiate" ] -> [ tclNORMEVAR ]
END
(** Nijmegen "step" tactic for setoid rewriting *)
open Tactics
open Tactics
open Libnames
open Rawterm
open Summary
open Libobject
open Lib
(* Registered lemmas are expected to be of the form
x R y -> y == z -> x R z (in the right table)
x R y -> x == z -> z R y (in the left table)
*)
let transitivity_right_table = ref []
let transitivity_left_table = ref []
(* [step] tries to apply a rewriting lemma; then apply [tac] intended to
complete to proof of the last hypothesis (assumed to state an equality) *)
let step left x tac =
let l =
List.map (fun lem ->
tclTHENLAST
(apply_with_bindings (lem, ImplicitBindings [x]))
tac)
!(if left then transitivity_left_table else transitivity_right_table)
in
tclFIRST l
(* Main function to push lemmas in persistent environment *)
let cache_transitivity_lemma (_,(left,lem)) =
if left then
transitivity_left_table := lem :: !transitivity_left_table
else
transitivity_right_table := lem :: !transitivity_right_table
let subst_transitivity_lemma (_,subst,(b,ref)) = (b,subst_mps subst ref)
let (inTransitivity,_) =
declare_object {(default_object "TRANSITIVITY-STEPS") with
cache_function = cache_transitivity_lemma;
open_function = (fun i o -> if i=1 then cache_transitivity_lemma o);
subst_function = subst_transitivity_lemma;
classify_function = (fun (_,o) -> Substitute o);
export_function = (fun x -> Some x) }
(* Synchronisation with reset *)
let freeze () = !transitivity_left_table, !transitivity_right_table
let unfreeze (l,r) =
transitivity_left_table := l;
transitivity_right_table := r
let init () =
transitivity_left_table := [];
transitivity_right_table := []
let _ =
declare_summary "transitivity-steps"
{ freeze_function = freeze;
unfreeze_function = unfreeze;
init_function = init;
survive_module = false;
survive_section = false }
(* Main entry points *)
let add_transitivity_lemma left lem =
let lem' = Constrintern.interp_constr Evd.empty (Global.env ()) lem in
add_anonymous_leaf (inTransitivity (left,lem'))
(* Vernacular syntax *)
TACTIC EXTEND stepl
| ["stepl" constr(c) "by" tactic(tac) ] -> [ step true c (snd tac) ]
| ["stepl" constr(c) ] -> [ step true c tclIDTAC ]
END
TACTIC EXTEND stepr
| ["stepr" constr(c) "by" tactic(tac) ] -> [ step false c (snd tac) ]
| ["stepr" constr(c) ] -> [ step false c tclIDTAC ]
END
VERNAC COMMAND EXTEND AddStepl
| [ "Declare" "Left" "Step" constr(t) ] ->
[ add_transitivity_lemma true t ]
END
VERNAC COMMAND EXTEND AddStepr
| [ "Declare" "Right" "Step" constr(t) ] ->
[ add_transitivity_lemma false t ]
END
VERNAC COMMAND EXTEND ImplicitTactic
| [ "Declare" "Implicit" "Tactic" tactic(tac) ] ->
[ Tacinterp.declare_implicit_tactic (Tacinterp.interp tac) ]
END
(*spiwack : Vernac commands for retroknowledge *)
VERNAC COMMAND EXTEND RetroknowledgeRegister
| [ "Register" constr(c) "as" retroknowledge_field(f) "by" constr(b)] ->
[ let tc = Constrintern.interp_constr Evd.empty (Global.env ()) c in
let tb = Constrintern.interp_constr Evd.empty (Global.env ()) b in
Global.register f tc tb ]
END
(* sozeau: abs/gen for induction on instantiated dependent inductives, using "Ford" induction as
defined by Conor McBride *)
TACTIC EXTEND generalize_eqs
| ["generalize_eqs" hyp(id) ] -> [ abstract_generalize id ~generalize_vars:false ]
END
TACTIC EXTEND generalize_eqs_vars
| ["generalize_eqs_vars" hyp(id) ] -> [ abstract_generalize id ~generalize_vars:true ]
END
TACTIC EXTEND dependent_pattern
| ["dependent_pattern" constr(c) ] -> [ dependent_pattern c ]
END
TACTIC EXTEND resolve_classes
| ["resolve_classes" ] -> [ resolve_classes ]
END
|