1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: extratactics.ml4 8979 2006-06-23 10:17:14Z herbelin $ *)
open Pp
open Pcoq
open Genarg
open Extraargs
open Mod_subst
open Names
(* Equality *)
open Equality
(* Pierre L: for an easy implementation of "rewrite ... in <clause>", rewrite
has moved to g_tactics.ml4
TACTIC EXTEND rewrite
| [ "rewrite" orient(b) constr_with_bindings(c) ] ->
[general_rewrite_bindings b c]
END
TACTIC EXTEND rewrite_in
| [ "rewrite" orient(b) constr_with_bindings(c) "in" hyp(h) ] ->
[general_rewrite_bindings_in b h c]
END
let h_rewriteLR x = h_rewrite true (x,Rawterm.NoBindings)
*)
(* Julien: Mise en commun des differentes version de replace with in by
TODO: deplacer dans extraargs
*)
let pr_by_arg_tac _prc _prlc prtac opt_c =
match opt_c with
| None -> mt ()
| Some t -> spc () ++ hov 2 (str "by" ++ spc () ++ prtac (3,Ppextend.E) t)
let pr_in_hyp = function
| None -> mt ()
| Some id -> spc () ++ hov 2 (str "in" ++ spc () ++ Nameops.pr_id id)
let pr_in_arg_hyp _prc _prlc _prtac opt_c =
pr_in_hyp (Util.option_map snd opt_c)
let pr_in_arg_hyp_typed _prc _prlc _prtac =
pr_in_hyp
ARGUMENT EXTEND by_arg_tac
TYPED AS tactic_opt
PRINTED BY pr_by_arg_tac
| [ "by" tactic3(c) ] -> [ Some c ]
| [ ] -> [ None ]
END
ARGUMENT EXTEND in_arg_hyp
TYPED AS var_opt
PRINTED BY pr_in_arg_hyp_typed
RAW_TYPED AS var_opt
RAW_PRINTED BY pr_in_arg_hyp
GLOB_TYPED AS var_opt
GLOB_PRINTED BY pr_in_arg_hyp
| [ "in" hyp(c) ] -> [ Some (c) ]
| [ ] -> [ None ]
END
TACTIC EXTEND replace
["replace" constr(c1) "with" constr(c2) in_arg_hyp(in_hyp) by_arg_tac(tac) ]
-> [ new_replace c1 c2 in_hyp (Util.option_map Tacinterp.eval_tactic tac) ]
END
(* Julien:
old version
TACTIC EXTEND replace
| [ "replace" constr(c1) "with" constr(c2) ] ->
[ replace c1 c2 ]
END
TACTIC EXTEND replace_by
| [ "replace" constr(c1) "with" constr(c2) "by" tactic(tac) ] ->
[ replace_by c1 c2 (snd tac) ]
END
TACTIC EXTEND replace_in
| [ "replace" constr(c1) "with" constr(c2) "in" hyp(h) ] ->
[ replace_in h c1 c2 ]
END
TACTIC EXTEND replace_in_by
| [ "replace" constr(c1) "with" constr(c2) "in" hyp(h) "by" tactic(tac) ] ->
[ replace_in_by h c1 c2 (snd tac) ]
END
*)
TACTIC EXTEND replace_term_left
[ "replace" "->" constr(c) ] -> [ replace_term_left c ]
END
TACTIC EXTEND replace_term_right
[ "replace" "<-" constr(c) ] -> [ replace_term_right c ]
END
TACTIC EXTEND replace_term
[ "replace" constr(c) ] -> [ replace_term c ]
END
TACTIC EXTEND replace_term_in_left
[ "replace" "->" constr(c) "in" hyp(h) ]
-> [ replace_term_in_left c h ]
END
TACTIC EXTEND replace_term_in_right
[ "replace" "<-" constr(c) "in" hyp(h) ]
-> [ replace_term_in_right c h ]
END
TACTIC EXTEND replace_term_in
[ "replace" constr(c) "in" hyp(h) ]
-> [ replace_term_in c h ]
END
TACTIC EXTEND simplify_eq
[ "simplify_eq" quantified_hypothesis_opt(h) ] -> [ dEq h ]
END
TACTIC EXTEND discriminate
[ "discriminate" quantified_hypothesis_opt(h) ] -> [ discr_tac h ]
END
let h_discrHyp id = h_discriminate (Some id)
TACTIC EXTEND injection
[ "injection" quantified_hypothesis_opt(h) ] -> [ injClause h ]
END
let h_injHyp id = h_injection (Some id)
TACTIC EXTEND conditional_rewrite
| [ "conditional" tactic(tac) "rewrite" orient(b) constr_with_bindings(c) ]
-> [ conditional_rewrite b (snd tac) c ]
| [ "conditional" tactic(tac) "rewrite" orient(b) constr_with_bindings(c)
"in" hyp(h) ]
-> [ conditional_rewrite_in b h (snd tac) c ]
END
TACTIC EXTEND dependent_rewrite
| [ "dependent" "rewrite" orient(b) constr(c) ] -> [ rewriteInConcl b c ]
| [ "dependent" "rewrite" orient(b) constr(c) "in" hyp(id) ]
-> [ rewriteInHyp b c id ]
END
TACTIC EXTEND cut_rewrite
| [ "cutrewrite" orient(b) constr(eqn) ] -> [ cutRewriteInConcl b eqn ]
| [ "cutrewrite" orient(b) constr(eqn) "in" hyp(id) ]
-> [ cutRewriteInHyp b eqn id ]
END
(* Contradiction *)
open Contradiction
TACTIC EXTEND absurd
[ "absurd" constr(c) ] -> [ absurd c ]
END
TACTIC EXTEND contradiction
[ "contradiction" constr_with_bindings_opt(c) ] -> [ contradiction c ]
END
(* AutoRewrite *)
open Autorewrite
TACTIC EXTEND autorewrite
[ "autorewrite" "with" ne_preident_list(l) ] ->
[ autorewrite Refiner.tclIDTAC l ]
| [ "autorewrite" "with" ne_preident_list(l) "using" tactic(t) ] ->
[ autorewrite (snd t) l ]
| [ "autorewrite" "with" ne_preident_list(l) "in" hyp(id) ] ->
[ autorewrite_in id Refiner.tclIDTAC l ]
| [ "autorewrite" "with" ne_preident_list(l) "in" hyp(id) "using" tactic(t) ] ->
[ autorewrite_in id (snd t) l ]
END
let add_rewrite_hint name ort t lcsr =
let env = Global.env() and sigma = Evd.empty in
let f c = Constrintern.interp_constr sigma env c, ort, t in
add_rew_rules name (List.map f lcsr)
VERNAC COMMAND EXTEND HintRewrite
[ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident(b) ] ->
[ add_rewrite_hint b o (Tacexpr.TacId []) l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t)
":" preident(b) ] ->
[ add_rewrite_hint b o t l ]
END
(* Refine *)
open Refine
TACTIC EXTEND refine
[ "refine" casted_open_constr(c) ] -> [ refine c ]
END
let refine_tac = h_refine
(* Setoid_replace *)
open Setoid_replace
TACTIC EXTEND setoid_replace
[ "setoid_replace" constr(c1) "with" constr(c2) ] ->
[ setoid_replace None c1 c2 ~new_goals:[] ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "using" "relation" constr(rel)] ->
[ setoid_replace (Some rel) c1 c2 ~new_goals:[] ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "generate" "side" "conditions" constr_list(l) ] ->
[ setoid_replace None c1 c2 ~new_goals:l ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "using" "relation" constr(rel) "generate" "side" "conditions" constr_list(l) ] ->
[ setoid_replace (Some rel) c1 c2 ~new_goals:l ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "in" hyp(h) ] ->
[ setoid_replace_in h None c1 c2 ~new_goals:[] ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "in" hyp(h) "using" "relation" constr(rel)] ->
[ setoid_replace_in h (Some rel) c1 c2 ~new_goals:[] ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "in" hyp(h) "generate" "side" "conditions" constr_list(l) ] ->
[ setoid_replace_in h None c1 c2 ~new_goals:l ]
| [ "setoid_replace" constr(c1) "with" constr(c2) "in" hyp(h) "using" "relation" constr(rel) "generate" "side" "conditions" constr_list(l) ] ->
[ setoid_replace_in h (Some rel) c1 c2 ~new_goals:l ]
END
TACTIC EXTEND setoid_rewrite
[ "setoid_rewrite" orient(b) constr(c) ]
-> [ general_s_rewrite b c ~new_goals:[] ]
| [ "setoid_rewrite" orient(b) constr(c) "generate" "side" "conditions" constr_list(l) ]
-> [ general_s_rewrite b c ~new_goals:l ]
| [ "setoid_rewrite" orient(b) constr(c) "in" hyp(h) ] ->
[ general_s_rewrite_in h b c ~new_goals:[] ]
| [ "setoid_rewrite" orient(b) constr(c) "in" hyp(h) "generate" "side" "conditions" constr_list(l) ] ->
[ general_s_rewrite_in h b c ~new_goals:l ]
END
VERNAC COMMAND EXTEND AddSetoid1
[ "Add" "Setoid" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
[ add_setoid n a aeq t ]
| [ "Add" "Morphism" constr(m) ":" ident(n) ] ->
[ new_named_morphism n m None ]
| [ "Add" "Morphism" constr(m) "with" "signature" morphism_signature(s) "as" ident(n) ] ->
[ new_named_morphism n m (Some s)]
END
VERNAC COMMAND EXTEND AddRelation1
[ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(t) "symmetry" "proved" "by" constr(t') "as" ident(n) ] ->
[ add_relation n a aeq (Some t) (Some t') None ]
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(t) "as" ident(n) ] ->
[ add_relation n a aeq (Some t) None None ]
| [ "Add" "Relation" constr(a) constr(aeq) "as" ident(n) ] ->
[ add_relation n a aeq None None None ]
END
VERNAC COMMAND EXTEND AddRelation2
[ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(t') "as" ident(n) ] ->
[ add_relation n a aeq None (Some t') None ]
| [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(t') "transitivity" "proved" "by" constr(t'') "as" ident(n) ] ->
[ add_relation n a aeq None (Some t') (Some t'') ]
END
VERNAC COMMAND EXTEND AddRelation3
[ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(t) "transitivity" "proved" "by" constr(t') "as" ident(n) ] ->
[ add_relation n a aeq (Some t) None (Some t') ]
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(t) "symmetry" "proved" "by" constr(t') "transitivity" "proved" "by" constr(t'') "as" ident(n) ] ->
[ add_relation n a aeq (Some t) (Some t') (Some t'') ]
| [ "Add" "Relation" constr(a) constr(aeq) "transitivity" "proved" "by" constr(t) "as" ident(n) ] ->
[ add_relation n a aeq None None (Some t) ]
END
TACTIC EXTEND setoid_symmetry
[ "setoid_symmetry" ] -> [ setoid_symmetry ]
| [ "setoid_symmetry" "in" hyp(n) ] -> [ setoid_symmetry_in n ]
END
TACTIC EXTEND setoid_reflexivity
[ "setoid_reflexivity" ] -> [ setoid_reflexivity ]
END
TACTIC EXTEND setoid_transitivity
[ "setoid_transitivity" constr(t) ] -> [ setoid_transitivity t ]
END
(* Inversion lemmas (Leminv) *)
open Inv
open Leminv
VERNAC COMMAND EXTEND DeriveInversionClear
[ "Derive" "Inversion_clear" ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal 1 na id Term.mk_Prop false inv_clear_tac ]
| [ "Derive" "Inversion_clear" natural(n) ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal n na id Term.mk_Prop false inv_clear_tac ]
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s false inv_clear_tac ]
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ]
-> [ add_inversion_lemma_exn na c (Rawterm.RProp Term.Null) false inv_clear_tac ]
END
open Term
open Rawterm
VERNAC COMMAND EXTEND DeriveInversion
| [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s false inv_tac ]
| [ "Derive" "Inversion" ident(na) "with" constr(c) ]
-> [ add_inversion_lemma_exn na c (RProp Null) false inv_tac ]
| [ "Derive" "Inversion" ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal 1 na id Term.mk_Prop false inv_tac ]
| [ "Derive" "Inversion" natural(n) ident(na) hyp(id) ]
-> [ inversion_lemma_from_goal n na id Term.mk_Prop false inv_tac ]
END
VERNAC COMMAND EXTEND DeriveDependentInversion
| [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s true dinv_tac ]
END
VERNAC COMMAND EXTEND DeriveDependentInversionClear
| [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s true dinv_clear_tac ]
END
(* Subst *)
TACTIC EXTEND subst
| [ "subst" ne_var_list(l) ] -> [ subst l ]
| [ "subst" ] -> [ subst_all ]
END
open Evar_tactics
(* evar creation *)
TACTIC EXTEND evar
[ "evar" "(" ident(id) ":" constr(typ) ")" ] -> [ let_evar (Name id) typ ]
| [ "evar" constr(typ) ] -> [ let_evar Anonymous typ ]
END
open Tacexpr
TACTIC EXTEND instantiate
[ "instantiate" "(" integer(i) ":=" raw(c) ")" hloc(hl) ] ->
[instantiate i c hl ]
END
(** Nijmegen "step" tactic for setoid rewriting *)
open Tacticals
open Tactics
open Tactics
open Libnames
open Rawterm
open Summary
open Libobject
open Lib
(* Registered lemmas are expected to be of the form
x R y -> y == z -> x R z (in the right table)
x R y -> x == z -> z R y (in the left table)
*)
let transitivity_right_table = ref []
let transitivity_left_table = ref []
(* [step] tries to apply a rewriting lemma; then apply [tac] intended to
complete to proof of the last hypothesis (assumed to state an equality) *)
let step left x tac =
let l =
List.map (fun lem ->
tclTHENLAST
(apply_with_bindings (lem, ImplicitBindings [x]))
tac)
!(if left then transitivity_left_table else transitivity_right_table)
in
tclFIRST l
(* Main function to push lemmas in persistent environment *)
let cache_transitivity_lemma (_,(left,lem)) =
if left then
transitivity_left_table := lem :: !transitivity_left_table
else
transitivity_right_table := lem :: !transitivity_right_table
let subst_transitivity_lemma (_,subst,(b,ref)) = (b,subst_mps subst ref)
let (inTransitivity,_) =
declare_object {(default_object "TRANSITIVITY-STEPS") with
cache_function = cache_transitivity_lemma;
open_function = (fun i o -> if i=1 then cache_transitivity_lemma o);
subst_function = subst_transitivity_lemma;
classify_function = (fun (_,o) -> Substitute o);
export_function = (fun x -> Some x) }
(* Synchronisation with reset *)
let freeze () = !transitivity_left_table, !transitivity_right_table
let unfreeze (l,r) =
transitivity_left_table := l;
transitivity_right_table := r
let init () =
transitivity_left_table := [];
transitivity_right_table := []
let _ =
declare_summary "transitivity-steps"
{ freeze_function = freeze;
unfreeze_function = unfreeze;
init_function = init;
survive_module = false;
survive_section = false }
(* Main entry points *)
let add_transitivity_lemma left lem =
let lem' = Constrintern.interp_constr Evd.empty (Global.env ()) lem in
add_anonymous_leaf (inTransitivity (left,lem'))
(* Vernacular syntax *)
TACTIC EXTEND stepl
| ["stepl" constr(c) "by" tactic(tac) ] -> [ step true c (snd tac) ]
| ["stepl" constr(c) ] -> [ step true c tclIDTAC ]
END
TACTIC EXTEND stepr
| ["stepr" constr(c) "by" tactic(tac) ] -> [ step false c (snd tac) ]
| ["stepr" constr(c) ] -> [ step false c tclIDTAC ]
END
VERNAC COMMAND EXTEND AddStepl
| [ "Declare" "Left" "Step" constr(t) ] ->
[ add_transitivity_lemma true t ]
END
VERNAC COMMAND EXTEND AddStepr
| [ "Declare" "Right" "Step" constr(t) ] ->
[ add_transitivity_lemma false t ]
END
VERNAC COMMAND EXTEND ImplicitTactic
| [ "Declare" "Implicit" "Tactic" tactic(tac) ] ->
[ Tacinterp.declare_implicit_tactic (Tacinterp.interp tac) ]
END
|