1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: equality.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
open Pp
open Util
open Names
open Nameops
open Univ
open Term
open Termops
open Namegen
open Inductive
open Inductiveops
open Environ
open Libnames
open Reductionops
open Typeops
open Typing
open Retyping
open Tacmach
open Proof_type
open Logic
open Evar_refiner
open Pattern
open Matching
open Hipattern
open Tacexpr
open Tacticals
open Tactics
open Tacred
open Rawterm
open Coqlib
open Vernacexpr
open Declarations
open Indrec
open Printer
open Clenv
open Clenvtac
open Evd
open Ind_tables
open Eqschemes
(* Options *)
let discriminate_introduction = ref true
let discr_do_intro () =
!discriminate_introduction && Flags.version_strictly_greater Flags.V8_2
open Goptions
let _ =
declare_bool_option
{ optsync = true;
optname = "automatic introduction of hypotheses by discriminate";
optkey = ["Discriminate";"Introduction"];
optread = (fun () -> !discriminate_introduction);
optwrite = (:=) discriminate_introduction }
(* Rewriting tactics *)
type dep_proof_flag = bool (* true = support rewriting dependent proofs *)
type orientation = bool
type conditions =
| Naive (* Only try the first occurence of the lemma (default) *)
| FirstSolved (* Use the first match whose side-conditions are solved *)
| AllMatches (* Rewrite all matches whose side-conditions are solved *)
(* Warning : rewriting from left to right only works
if there exists in the context a theorem named <eqname>_<suffsort>_r
with type (A:<sort>)(x:A)(P:A->Prop)(P x)->(y:A)(eqname A y x)->(P y).
If another equality myeq is introduced, then corresponding theorems
myeq_ind_r, myeq_rec_r and myeq_rect_r have to be proven. See below.
-- Eduardo (19/8/97)
*)
let rewrite_unif_flags = {
Unification.modulo_conv_on_closed_terms = None;
Unification.use_metas_eagerly = true;
Unification.modulo_delta = empty_transparent_state;
Unification.resolve_evars = true;
Unification.use_evars_pattern_unification = true;
}
let side_tac tac sidetac =
match sidetac with
| None -> tac
| Some sidetac -> tclTHENSFIRSTn tac [|tclIDTAC|] sidetac
let instantiate_lemma_all env sigma gl c ty l l2r concl =
let eqclause = Clenv.make_clenv_binding { gl with sigma = sigma } (c,ty) l in
let (equiv, args) = decompose_app (Clenv.clenv_type eqclause) in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z ->
let l,res = split_last_two (y::z) in x::l, res
| _ -> error "The term provided is not an applied relation." in
let others,(c1,c2) = split_last_two args in
let try_occ (evd', c') =
let cl' = {eqclause with evd = evd'} in
let mvs = clenv_dependent false cl' in
clenv_pose_metas_as_evars cl' mvs
in
let occs =
Unification.w_unify_to_subterm_all ~flags:rewrite_unif_flags env
((if l2r then c1 else c2),concl) eqclause.evd
in List.map try_occ occs
let instantiate_lemma env sigma gl c ty l l2r concl =
let gl = { gl with sigma = sigma } in
let ct = pf_type_of gl c in
let t = try snd (pf_reduce_to_quantified_ind gl ct) with UserError _ -> ct in
let eqclause = Clenv.make_clenv_binding gl (c,t) l in
[eqclause]
let rewrite_elim with_evars c e ?(allow_K=true) =
general_elim_clause_gen (elimination_clause_scheme with_evars allow_K) c e
let rewrite_elim_in with_evars id c e =
general_elim_clause_gen (elimination_in_clause_scheme with_evars id) c e
(* Ad hoc asymmetric general_elim_clause *)
let general_elim_clause with_evars cls rew elim =
try
(match cls with
| None ->
(* was tclWEAK_PROGRESS which only fails for tactics generating one
subgoal and did not fail for useless conditional rewritings generating
an extra condition *)
tclNOTSAMEGOAL (rewrite_elim with_evars rew elim ~allow_K:false)
| Some id -> rewrite_elim_in with_evars id rew elim)
with Pretype_errors.PretypeError (env,
(Pretype_errors.NoOccurrenceFound (c', _))) ->
raise (Pretype_errors.PretypeError
(env, (Pretype_errors.NoOccurrenceFound (c', cls))))
let general_elim_clause with_evars tac cls sigma c t l l2r elim gl =
let all, firstonly, tac =
match tac with
| None -> false, false, None
| Some (tac, Naive) -> false, false, Some tac
| Some (tac, FirstSolved) -> true, true, Some (tclCOMPLETE tac)
| Some (tac, AllMatches) -> true, false, Some (tclCOMPLETE tac)
in
let cs =
(if not all then instantiate_lemma else instantiate_lemma_all)
(pf_env gl) sigma gl c t l l2r
(match cls with None -> pf_concl gl | Some id -> pf_get_hyp_typ gl id)
in
let try_clause c =
side_tac (tclTHEN (Refiner.tclEVARS c.evd) (general_elim_clause with_evars cls c elim)) tac
in
if firstonly then
tclFIRST (List.map try_clause cs) gl
else tclMAP try_clause cs gl
(* The next function decides in particular whether to try a regular
rewrite or a generalized rewrite.
Approach is to break everything, if [eq] appears in head position
then regular rewrite else try general rewrite.
If occurrences are set, use general rewrite.
*)
let general_rewrite_clause = ref (fun _ -> assert false)
let register_general_rewrite_clause = (:=) general_rewrite_clause
let is_applied_rewrite_relation = ref (fun _ _ _ _ -> None)
let register_is_applied_rewrite_relation = (:=) is_applied_rewrite_relation
(* find_elim determines which elimination principle is necessary to
eliminate lbeq on sort_of_gl. *)
let find_elim hdcncl lft2rgt dep cls args gl =
let inccl = (cls = None) in
if (hdcncl = constr_of_reference (Coqlib.glob_eq) ||
hdcncl = constr_of_reference (Coqlib.glob_jmeq) &&
pf_conv_x gl (List.nth args 0) (List.nth args 2)) && not dep
|| Flags.version_less_or_equal Flags.V8_2
then
match kind_of_term hdcncl with
| Ind ind_sp ->
let pr1 =
lookup_eliminator ind_sp (elimination_sort_of_clause cls gl)
in
if lft2rgt = Some (cls=None)
then
let c1 = destConst pr1 in
let mp,dp,l = repr_con (constant_of_kn (canonical_con c1)) in
let l' = label_of_id (add_suffix (id_of_label l) "_r") in
let c1' = Global.constant_of_delta (make_con mp dp l') in
begin
try
let _ = Global.lookup_constant c1' in
mkConst c1'
with Not_found ->
let rwr_thm = string_of_label l' in
error ("Cannot find rewrite principle "^rwr_thm^".")
end
else pr1
| _ ->
(* cannot occur since we checked that we are in presence of
Logic.eq or Jmeq just before *)
assert false
else
let scheme_name = match dep, lft2rgt, inccl with
(* Non dependent case with symmetric equality *)
| false, Some true, true | false, Some false, false -> rew_l2r_scheme_kind
| false, Some false, true | false, Some true, false -> rew_r2l_scheme_kind
(* Dependent case with symmetric equality *)
| true, Some true, true -> rew_l2r_dep_scheme_kind
| true, Some true, false -> rew_l2r_forward_dep_scheme_kind
| true, Some false, true -> rew_r2l_dep_scheme_kind
| true, Some false, false -> rew_r2l_forward_dep_scheme_kind
(* Non dependent case with non-symmetric rewriting lemma *)
| false, None, true -> rew_r2l_scheme_kind
| false, None, false -> rew_asym_scheme_kind
(* Dependent case with non-symmetric rewriting lemma *)
| true, None, true -> rew_r2l_dep_scheme_kind
| true, None, false -> rew_r2l_forward_dep_scheme_kind
in
match kind_of_term hdcncl with
| Ind ind -> mkConst (find_scheme scheme_name ind)
| _ -> assert false
let type_of_clause gl = function
| None -> pf_concl gl
| Some id -> pf_get_hyp_typ gl id
let leibniz_rewrite_ebindings_clause cls lft2rgt tac sigma c t l with_evars dep_proof_ok gl hdcncl =
let isatomic = isProd (whd_zeta hdcncl) in
let dep_fun = if isatomic then dependent else dependent_no_evar in
let dep = dep_proof_ok && dep_fun c (type_of_clause gl cls) in
let elim = find_elim hdcncl lft2rgt dep cls (snd (decompose_app t)) gl in
general_elim_clause with_evars tac cls sigma c t l
(match lft2rgt with None -> false | Some b -> b)
{elimindex = None; elimbody = (elim,NoBindings)} gl
let adjust_rewriting_direction args lft2rgt =
if List.length args = 1 then begin
(* equality to a constant, like in eq_true *)
(* more natural to see -> as the rewriting to the constant *)
if not lft2rgt then
error "Rewriting non-symmetric equality not allowed from right-to-left.";
None
end
else
(* other equality *)
Some lft2rgt
let rewrite_side_tac tac sidetac = side_tac tac (Option.map fst sidetac)
(* Main function for dispatching which kind of rewriting it is about *)
let general_rewrite_ebindings_clause cls lft2rgt occs dep_proof_ok ?tac
((c,l) : constr with_bindings) with_evars gl =
if occs <> all_occurrences then (
rewrite_side_tac (!general_rewrite_clause cls lft2rgt occs (c,l) ~new_goals:[]) tac gl)
else
let env = pf_env gl in
let sigma = project gl in
let ctype = get_type_of env sigma c in
let rels, t = decompose_prod_assum (whd_betaiotazeta sigma ctype) in
match match_with_equality_type t with
| Some (hdcncl,args) -> (* Fast path: direct leibniz-like rewrite *)
let lft2rgt = adjust_rewriting_direction args lft2rgt in
leibniz_rewrite_ebindings_clause cls lft2rgt tac sigma c (it_mkProd_or_LetIn t rels)
l with_evars dep_proof_ok gl hdcncl
| None ->
try
rewrite_side_tac (!general_rewrite_clause cls
lft2rgt occs (c,l) ~new_goals:[]) tac gl
with e -> (* Try to see if there's an equality hidden *)
let env' = push_rel_context rels env in
let rels',t' = splay_prod_assum env' sigma t in (* Search for underlying eq *)
match match_with_equality_type t' with
| Some (hdcncl,args) ->
let lft2rgt = adjust_rewriting_direction args lft2rgt in
leibniz_rewrite_ebindings_clause cls lft2rgt tac sigma c
(it_mkProd_or_LetIn t' (rels' @ rels)) l with_evars dep_proof_ok gl hdcncl
| None -> raise e
(* error "The provided term does not end with an equality or a declared rewrite relation." *)
let general_rewrite_ebindings =
general_rewrite_ebindings_clause None
let general_rewrite_bindings l2r occs dep_proof_ok ?tac (c,bl) =
general_rewrite_ebindings_clause None l2r occs dep_proof_ok ?tac (c,bl)
let general_rewrite l2r occs dep_proof_ok ?tac c =
general_rewrite_bindings l2r occs dep_proof_ok ?tac (c,NoBindings) false
let general_rewrite_ebindings_in l2r occs dep_proof_ok ?tac id =
general_rewrite_ebindings_clause (Some id) l2r occs dep_proof_ok ?tac
let general_rewrite_bindings_in l2r occs dep_proof_ok ?tac id (c,bl) =
general_rewrite_ebindings_clause (Some id) l2r occs dep_proof_ok ?tac (c,bl)
let general_rewrite_in l2r occs dep_proof_ok ?tac id c =
general_rewrite_ebindings_clause (Some id) l2r occs dep_proof_ok ?tac (c,NoBindings)
let general_multi_rewrite l2r with_evars ?tac c cl =
let occs_of = on_snd (List.fold_left
(fun acc ->
function ArgArg x -> x :: acc | ArgVar _ -> acc)
[])
in
match cl.onhyps with
| Some l ->
(* If a precise list of locations is given, success is mandatory for
each of these locations. *)
let rec do_hyps = function
| [] -> tclIDTAC
| ((occs,id),_) :: l ->
tclTHENFIRST
(general_rewrite_ebindings_in l2r (occs_of occs) true ?tac id c with_evars)
(do_hyps l)
in
if cl.concl_occs = no_occurrences_expr then do_hyps l else
tclTHENFIRST
(general_rewrite_ebindings l2r (occs_of cl.concl_occs) true ?tac c with_evars)
(do_hyps l)
| None ->
(* Otherwise, if we are told to rewrite in all hypothesis via the
syntax "* |-", we fail iff all the different rewrites fail *)
let rec do_hyps_atleastonce = function
| [] -> (fun gl -> error "Nothing to rewrite.")
| id :: l ->
tclIFTHENTRYELSEMUST
(general_rewrite_ebindings_in l2r all_occurrences true ?tac id c with_evars)
(do_hyps_atleastonce l)
in
let do_hyps gl =
(* If the term to rewrite uses an hypothesis H, don't rewrite in H *)
let ids =
let ids_in_c = Environ.global_vars_set (Global.env()) (fst c) in
Idset.fold (fun id l -> list_remove id l) ids_in_c (pf_ids_of_hyps gl)
in do_hyps_atleastonce ids gl
in
if cl.concl_occs = no_occurrences_expr then do_hyps else
tclIFTHENTRYELSEMUST
(general_rewrite_ebindings l2r (occs_of cl.concl_occs) true ?tac c with_evars)
do_hyps
type delayed_open_constr_with_bindings =
env -> evar_map -> evar_map * constr with_bindings
let general_multi_multi_rewrite with_evars l cl tac =
let do1 l2r f gl =
let sigma,c = f (pf_env gl) (project gl) in
Refiner.tclWITHHOLES with_evars
(general_multi_rewrite l2r with_evars ?tac c) sigma cl gl in
let rec doN l2r c = function
| Precisely n when n <= 0 -> tclIDTAC
| Precisely 1 -> do1 l2r c
| Precisely n -> tclTHENFIRST (do1 l2r c) (doN l2r c (Precisely (n-1)))
| RepeatStar -> tclREPEAT_MAIN (do1 l2r c)
| RepeatPlus -> tclTHENFIRST (do1 l2r c) (doN l2r c RepeatStar)
| UpTo n when n<=0 -> tclIDTAC
| UpTo n -> tclTHENFIRST (tclTRY (do1 l2r c)) (doN l2r c (UpTo (n-1)))
in
let rec loop = function
| [] -> tclIDTAC
| (l2r,m,c)::l -> tclTHENFIRST (doN l2r c m) (loop l)
in loop l
let rewriteLR = general_rewrite true all_occurrences true
let rewriteRL = general_rewrite false all_occurrences true
(* Replacing tactics *)
(* eq,sym_eq : equality on Type and its symmetry theorem
c2 c1 : c1 is to be replaced by c2
unsafe : If true, do not check that c1 and c2 are convertible
tac : Used to prove the equality c1 = c2
gl : goal *)
let multi_replace clause c2 c1 unsafe try_prove_eq_opt gl =
let try_prove_eq =
match try_prove_eq_opt with
| None -> tclIDTAC
| Some tac -> tclCOMPLETE tac
in
let t1 = pf_apply get_type_of gl c1
and t2 = pf_apply get_type_of gl c2 in
if unsafe or (pf_conv_x gl t1 t2) then
let e = build_coq_eq () in
let sym = build_coq_eq_sym () in
let eq = applist (e, [t1;c1;c2]) in
tclTHENS (assert_as false None eq)
[onLastHypId (fun id ->
tclTHEN
(tclTRY (general_multi_rewrite false false (mkVar id,NoBindings) clause))
(clear [id]));
tclFIRST
[assumption;
tclTHEN (apply sym) assumption;
try_prove_eq
]
] gl
else
error "Terms do not have convertible types."
let replace c2 c1 gl = multi_replace onConcl c2 c1 false None gl
let replace_in id c2 c1 gl = multi_replace (onHyp id) c2 c1 false None gl
let replace_by c2 c1 tac gl = multi_replace onConcl c2 c1 false (Some tac) gl
let replace_in_by id c2 c1 tac gl = multi_replace (onHyp id) c2 c1 false (Some tac) gl
let replace_in_clause_maybe_by c2 c1 cl tac_opt gl =
multi_replace cl c2 c1 false tac_opt gl
(* End of Eduardo's code. The rest of this file could be improved
using the functions match_with_equation, etc that I defined
in Pattern.ml.
-- Eduardo (19/8/97)
*)
(* Tactics for equality reasoning with the "eq" relation. This code
will work with any equivalence relation which is substitutive *)
(* [find_positions t1 t2]
will find the positions in the two terms which are suitable for
discrimination, or for injection. Obviously, if there is a
position which is suitable for discrimination, then we want to
exploit it, and not bother with injection. So when we find a
position which is suitable for discrimination, we will just raise
an exception with that position.
So the algorithm goes like this:
if [t1] and [t2] start with the same constructor, then we can
continue to try to find positions in the arguments of [t1] and
[t2].
if [t1] and [t2] do not start with the same constructor, then we
have found a discrimination position
if one [t1] or [t2] do not start with a constructor and the two
terms are not already convertible, then we have found an injection
position.
A discriminating position consists of a constructor-path and a pair
of operators. The constructor-path tells us how to get down to the
place where the two operators, which must differ, can be found.
An injecting position has two terms instead of the two operators,
since these terms are different, but not manifestly so.
A constructor-path is a list of pairs of (operator * int), where
the int (based at 0) tells us which argument of the operator we
descended into.
*)
exception DiscrFound of
(constructor * int) list * constructor * constructor
let find_positions env sigma t1 t2 =
let rec findrec sorts posn t1 t2 =
let hd1,args1 = whd_betadeltaiota_stack env sigma t1 in
let hd2,args2 = whd_betadeltaiota_stack env sigma t2 in
match (kind_of_term hd1, kind_of_term hd2) with
| Construct sp1, Construct sp2
when List.length args1 = mis_constructor_nargs_env env sp1
->
let sorts = list_intersect sorts (allowed_sorts env (fst sp1)) in
(* both sides are fully applied constructors, so either we descend,
or we can discriminate here. *)
if is_conv env sigma hd1 hd2 then
let nrealargs = constructor_nrealargs env sp1 in
let rargs1 = list_lastn nrealargs args1 in
let rargs2 = list_lastn nrealargs args2 in
List.flatten
(list_map2_i (fun i -> findrec sorts ((sp1,i)::posn))
0 rargs1 rargs2)
else if List.mem InType sorts then (* see build_discriminator *)
raise (DiscrFound (List.rev posn,sp1,sp2))
else []
| _ ->
let t1_0 = applist (hd1,args1)
and t2_0 = applist (hd2,args2) in
if is_conv env sigma t1_0 t2_0 then
[]
else
let ty1_0 = get_type_of env sigma t1_0 in
let s = get_sort_family_of env sigma ty1_0 in
if List.mem s sorts then [(List.rev posn,t1_0,t2_0)] else [] in
try
(* Rem: to allow injection on proofs objects, just add InProp *)
Inr (findrec [InSet;InType] [] t1 t2)
with DiscrFound (path,c1,c2) ->
Inl (path,c1,c2)
let discriminable env sigma t1 t2 =
match find_positions env sigma t1 t2 with
| Inl _ -> true
| _ -> false
let injectable env sigma t1 t2 =
match find_positions env sigma t1 t2 with
| Inl _ | Inr [] -> false
| Inr _ -> true
(* Once we have found a position, we need to project down to it. If
we are discriminating, then we need to produce False on one of the
branches of the discriminator, and True on the other one. So the
result type of the case-expressions is always Prop.
If we are injecting, then we need to discover the result-type.
This can be difficult, since the type of the two terms at the
injection-position can be different, and we need to find a
dependent sigma-type which generalizes them both.
We can get an approximation to the right type to choose by:
(0) Before beginning, we reserve a patvar for the default
value of the match, to be used in all the bogus branches.
(1) perform the case-splits, down to the site of the injection. At
each step, we have a term which is the "head" of the next
case-split. At the point when we actually reach the end of our
path, the "head" is the term to return. We compute its type, and
then, backwards, make a sigma-type with every free debruijn
reference in that type. We can be finer, and first do a S(TRONG)NF
on the type, so that we get the fewest number of references
possible.
(2) This gives us a closed type for the head, which we use for the
types of all the case-splits.
(3) Now, we can compute the type of one of T1, T2, and then unify
it with the type of the last component of the result-type, and this
will give us the bindings for the other arguments of the tuple.
*)
(* The algorithm, then is to perform successive case-splits. We have
the result-type of the case-split, and also the type of that
result-type. We have a "direction" we want to follow, i.e. a
constructor-number, and in all other "directions", we want to juse
use the default-value.
After doing the case-split, we call the afterfun, with the updated
environment, to produce the term for the desired "direction".
The assumption is made here that the result-type is not manifestly
functional, so we can just use the length of the branch-type to
know how many lambda's to stick in.
*)
(* [descend_then sigma env head dirn]
returns the number of products introduced, and the environment
which is active, in the body of the case-branch given by [dirn],
along with a continuation, which expects to be fed:
(1) the value of the body of the branch given by [dirn]
(2) the default-value
(3) the type of the default-value, which must also be the type of
the body of the [dirn] branch
the continuation then constructs the case-split.
*)
let descend_then sigma env head dirn =
let IndType (indf,_) =
try find_rectype env sigma (get_type_of env sigma head)
with Not_found ->
error "Cannot project on an inductive type derived from a dependency." in
let ind,_ = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let cstr = get_constructors env indf in
let dirn_nlams = cstr.(dirn-1).cs_nargs in
let dirn_env = push_rel_context cstr.(dirn-1).cs_args env in
(dirn_nlams,
dirn_env,
(fun dirnval (dfltval,resty) ->
let deparsign = make_arity_signature env true indf in
let p =
it_mkLambda_or_LetIn (lift (mip.mind_nrealargs+1) resty) deparsign in
let build_branch i =
let result = if i = dirn then dirnval else dfltval in
it_mkLambda_or_LetIn_name env result cstr.(i-1).cs_args in
let brl =
List.map build_branch
(interval 1 (Array.length mip.mind_consnames)) in
let ci = make_case_info env ind RegularStyle in
mkCase (ci, p, head, Array.of_list brl)))
(* Now we need to construct the discriminator, given a discriminable
position. This boils down to:
(1) If the position is directly beneath us, then we need to do a
case-split, with result-type Prop, and stick True and False into
the branches, as is convenient.
(2) If the position is not directly beneath us, then we need to
call descend_then, to descend one step, and then recursively
construct the discriminator.
*)
(* [construct_discriminator env dirn headval]
constructs a case-split on [headval], with the [dirn]-th branch
giving [True], and all the rest giving False. *)
let construct_discriminator sigma env dirn c sort =
let IndType(indf,_) =
try find_rectype env sigma (get_type_of env sigma c)
with Not_found ->
(* one can find Rel(k) in case of dependent constructors
like T := c : (A:Set)A->T and a discrimination
on (c bool true) = (c bool false)
CP : changed assert false in a more informative error
*)
errorlabstrm "Equality.construct_discriminator"
(str "Cannot discriminate on inductive constructors with
dependent types.") in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let (true_0,false_0,sort_0) = build_coq_True(),build_coq_False(),Prop Null in
let deparsign = make_arity_signature env true indf in
let p = it_mkLambda_or_LetIn (mkSort sort_0) deparsign in
let cstrs = get_constructors env indf in
let build_branch i =
let endpt = if i = dirn then true_0 else false_0 in
it_mkLambda_or_LetIn endpt cstrs.(i-1).cs_args in
let brl =
List.map build_branch(interval 1 (Array.length mip.mind_consnames)) in
let ci = make_case_info env ind RegularStyle in
mkCase (ci, p, c, Array.of_list brl)
let rec build_discriminator sigma env dirn c sort = function
| [] -> construct_discriminator sigma env dirn c sort
| ((sp,cnum),argnum)::l ->
let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
let newc = mkRel(cnum_nlams-argnum) in
let subval = build_discriminator sigma cnum_env dirn newc sort l in
kont subval (build_coq_False (),mkSort (Prop Null))
(* Note: discrimination could be more clever: if some elimination is
not allowed because of a large impredicative constructor in the
path (see allowed_sorts in find_positions), the positions could
still be discrimated by projecting first instead of putting the
discrimination combinator inside the projecting combinator. Example
of relevant situation:
Inductive t:Set := c : forall A:Set, A -> nat -> t.
Goal ~ c _ 0 0 = c _ 0 1. intro. discriminate H.
*)
let gen_absurdity id gl =
if is_empty_type (pf_get_hyp_typ gl id)
then
simplest_elim (mkVar id) gl
else
errorlabstrm "Equality.gen_absurdity"
(str "Not the negation of an equality.")
(* Precondition: eq is leibniz equality
returns ((eq_elim t t1 P i t2), absurd_term)
where P=[e:t]discriminator
absurd_term=False
*)
let ind_scheme_of_eq lbeq =
let ind = destInd lbeq.eq in
let (mib,mip) = Global.lookup_inductive ind in
let kind = inductive_sort_family mip in
(* use ind rather than case by compatibility *)
let kind =
if kind = InProp then Elimschemes.ind_scheme_kind_from_prop
else Elimschemes.ind_scheme_kind_from_type in
mkConst (find_scheme kind ind)
let discrimination_pf e (t,t1,t2) discriminator lbeq =
let i = build_coq_I () in
let absurd_term = build_coq_False () in
let eq_elim = ind_scheme_of_eq lbeq in
(applist (eq_elim, [t;t1;mkNamedLambda e t discriminator;i;t2]), absurd_term)
exception NotDiscriminable
let eq_baseid = id_of_string "e"
let apply_on_clause (f,t) clause =
let sigma = clause.evd in
let f_clause = mk_clenv_from_env clause.env sigma None (f,t) in
let argmv =
(match kind_of_term (last_arg f_clause.templval.Evd.rebus) with
| Meta mv -> mv
| _ -> errorlabstrm "" (str "Ill-formed clause applicator.")) in
clenv_fchain argmv f_clause clause
let discr_positions env sigma (lbeq,eqn,(t,t1,t2)) eq_clause cpath dirn sort =
let e = next_ident_away eq_baseid (ids_of_context env) in
let e_env = push_named (e,None,t) env in
let discriminator =
build_discriminator sigma e_env dirn (mkVar e) sort cpath in
let (pf, absurd_term) = discrimination_pf e (t,t1,t2) discriminator lbeq in
let pf_ty = mkArrow eqn absurd_term in
let absurd_clause = apply_on_clause (pf,pf_ty) eq_clause in
let pf = clenv_value_cast_meta absurd_clause in
tclTHENS (cut_intro absurd_term)
[onLastHypId gen_absurdity; refine pf]
let discrEq (lbeq,_,(t,t1,t2) as u) eq_clause gls =
let sigma = eq_clause.evd in
let env = pf_env gls in
match find_positions env sigma t1 t2 with
| Inr _ ->
errorlabstrm "discr" (str"Not a discriminable equality.")
| Inl (cpath, (_,dirn), _) ->
let sort = pf_apply get_type_of gls (pf_concl gls) in
discr_positions env sigma u eq_clause cpath dirn sort gls
let onEquality with_evars tac (c,lbindc) gls =
let t = pf_type_of gls c in
let t' = try snd (pf_reduce_to_quantified_ind gls t) with UserError _ -> t in
let eq_clause = make_clenv_binding gls (c,t') lbindc in
let eq_clause' = clenv_pose_dependent_evars with_evars eq_clause in
let eqn = clenv_type eq_clause' in
let eq,eq_args = find_this_eq_data_decompose gls eqn in
tclTHEN
(Refiner.tclEVARS eq_clause'.evd)
(tac (eq,eqn,eq_args) eq_clause') gls
let onNegatedEquality with_evars tac gls =
let ccl = pf_concl gls in
match kind_of_term (hnf_constr (pf_env gls) (project gls) ccl) with
| Prod (_,t,u) when is_empty_type u ->
tclTHEN introf
(onLastHypId (fun id ->
onEquality with_evars tac (mkVar id,NoBindings))) gls
| _ ->
errorlabstrm "" (str "Not a negated primitive equality.")
let discrSimpleClause with_evars = function
| None -> onNegatedEquality with_evars discrEq
| Some id -> onEquality with_evars discrEq (mkVar id,NoBindings)
let discr with_evars = onEquality with_evars discrEq
let discrClause with_evars = onClause (discrSimpleClause with_evars)
let discrEverywhere with_evars =
(*
tclORELSE
*)
(if discr_do_intro () then
(tclTHEN
(tclREPEAT introf)
(Tacticals.tryAllHyps
(fun id -> tclCOMPLETE (discr with_evars (mkVar id,NoBindings)))))
else (* <= 8.2 compat *)
Tacticals.tryAllHypsAndConcl (discrSimpleClause with_evars))
(* (fun gls ->
errorlabstrm "DiscrEverywhere" (str"No discriminable equalities."))
*)
let discr_tac with_evars = function
| None -> discrEverywhere with_evars
| Some c -> onInductionArg (discr with_evars) c
let discrConcl gls = discrClause false onConcl gls
let discrHyp id gls = discrClause false (onHyp id) gls
(* returns the sigma type (sigS, sigT) with the respective
constructor depending on the sort *)
(* J.F.: correction du bug #1167 en accord avec Hugo. *)
let find_sigma_data s = build_sigma_type ()
(* [make_tuple env sigma (rterm,rty) lind] assumes [lind] is the lesser
index bound in [rty]
Then we build the term
[(existT A P (mkRel lind) rterm)] of type [(sigS A P)]
where [A] is the type of [mkRel lind] and [P] is [\na:A.rty{1/lind}]
*)
let make_tuple env sigma (rterm,rty) lind =
assert (dependent (mkRel lind) rty);
let {intro = exist_term; typ = sig_term} =
find_sigma_data (get_sort_of env sigma rty) in
let a = type_of env sigma (mkRel lind) in
let (na,_,_) = lookup_rel lind env in
(* We move [lind] to [1] and lift other rels > [lind] by 1 *)
let rty = lift (1-lind) (liftn lind (lind+1) rty) in
(* Now [lind] is [mkRel 1] and we abstract on (na:a) *)
let p = mkLambda (na, a, rty) in
(applist(exist_term,[a;p;(mkRel lind);rterm]),
applist(sig_term,[a;p]))
(* check that the free-references of the type of [c] are contained in
the free-references of the normal-form of that type. Strictly
computing the exact set of free rels would require full
normalization but this is not reasonable (e.g. in presence of
records that contains proofs). We restrict ourself to a "simpl"
normalization *)
let minimal_free_rels env sigma (c,cty) =
let cty_rels = free_rels cty in
let cty' = simpl env sigma cty in
let rels' = free_rels cty' in
if Intset.subset cty_rels rels' then
(cty,cty_rels)
else
(cty',rels')
(* Like the above, but recurse over all the rels found until there are
no more rels to be found *)
let minimal_free_rels_rec env sigma =
let rec minimalrec_free_rels_rec prev_rels (c,cty) =
let (cty,direct_rels) = minimal_free_rels env sigma (c,cty) in
let combined_rels = Intset.union prev_rels direct_rels in
let folder rels i = snd (minimalrec_free_rels_rec rels (c, type_of env sigma (mkRel i)))
in (cty, List.fold_left folder combined_rels (Intset.elements (Intset.diff direct_rels prev_rels)))
in minimalrec_free_rels_rec Intset.empty
(* [sig_clausal_form siglen ty]
Will explode [siglen] [sigS,sigT ]'s on [ty] (depending on the
type of ty), and return:
(1) a pattern, with meta-variables in it for various arguments,
which, when the metavariables are replaced with appropriate
terms, will have type [ty]
(2) an integer, which is the last argument - the one which we just
returned.
(3) a pattern, for the type of that last meta
(4) a typing for each patvar
WARNING: No checking is done to make sure that the
sigS(or sigT)'s are actually there.
- Only homogeneous pairs are built i.e. pairs where all the
dependencies are of the same sort
[sig_clausal_form] proceed as follows: the default tuple is
constructed by taking the tuple-type, exploding the first [tuplen]
[sigS]'s, and replacing at each step the binder in the
right-hand-type by a fresh metavariable. In addition, on the way
back out, we will construct the pattern for the tuple which uses
these meta-vars.
This gives us a pattern, which we use to match against the type of
[dflt]; if that fails, then against the S(TRONG)NF of that type. If
both fail, then we just cannot construct our tuple. If one of
those succeed, then we can construct our value easily - we just use
the tuple-pattern.
*)
let sig_clausal_form env sigma sort_of_ty siglen ty dflt =
let { intro = exist_term } = find_sigma_data sort_of_ty in
let evdref = ref (Evd.create_goal_evar_defs sigma) in
let rec sigrec_clausal_form siglen p_i =
if siglen = 0 then
(* is the default value typable with the expected type *)
let dflt_typ = type_of env sigma dflt in
if Evarconv.e_cumul env evdref dflt_typ p_i then
(* the_conv_x had a side-effect on evdref *)
dflt
else
error "Cannot solve a unification problem."
else
let (a,p_i_minus_1) = match whd_beta_stack !evdref p_i with
| (_sigS,[a;p]) -> (a,p)
| _ -> anomaly "sig_clausal_form: should be a sigma type" in
let ev = Evarutil.e_new_evar evdref env a in
let rty = beta_applist(p_i_minus_1,[ev]) in
let tuple_tail = sigrec_clausal_form (siglen-1) rty in
match
Evd.existential_opt_value !evdref
(destEvar ev)
with
| Some w ->
let w_type = type_of env sigma w in
if Evarconv.e_cumul env evdref w_type a then
applist(exist_term,[w_type;p_i_minus_1;w;tuple_tail])
else
error "Cannot solve a unification problem."
| None -> anomaly "Not enough components to build the dependent tuple"
in
let scf = sigrec_clausal_form siglen ty in
Evarutil.nf_evar !evdref scf
(* The problem is to build a destructor (a generalization of the
predecessor) which, when applied to a term made of constructors
(say [Ci(e1,Cj(e2,Ck(...,term,...),...),...)]), returns a given
subterm of the term (say [term]).
Let [typ] be the type of [term]. If [term] has no dependencies in
the [e1], [e2], etc, then all is simple. If not, then we need to
encapsulated the dependencies into a dependent tuple in such a way
that the destructor has not a dependent type and rewriting can then
be applied. The destructor has the form
[e]Cases e of
| ...
| Ci (x1,x2,...) =>
Cases x2 of
| ...
| Cj (y1,y2,...) =>
Cases y2 of
| ...
| Ck (...,z,...) => z
| ... end
| ... end
| ... end
and the dependencies is expressed by the fact that [z] has a type
dependent in the x1, y1, ...
Assume [z] is typed as follows: env |- z:zty
If [zty] has no dependencies, this is simple. Otherwise, assume
[zty] has free (de Bruijn) variables in,...i1 then the role of
[make_iterated_tuple sigma env (term,typ) (z,zty)] is to build the
tuple
[existT [xn]Pn Rel(in) .. (existT [x2]P2 Rel(i2) (existT [x1]P1 Rel(i1) z))]
where P1 is zty[i1/x1], P2 is {x1 | P1[i2/x2]} etc.
To do this, we find the free (relative) references of the strong NF
of [z]'s type, gather them together in left-to-right order
(i.e. highest-numbered is farthest-left), and construct a big
iterated pair out of it. This only works when the references are
all themselves to members of [Set]s, because we use [sigS] to
construct the tuple.
Suppose now that our constructed tuple is of length [tuplen]. We
need also to construct a default value for the other branches of
the destructor. As default value, we take a tuple of the form
[existT [xn]Pn ?n (... existT [x2]P2 ?2 (existT [x1]P1 ?1 term))]
but for this we have to solve the following unification problem:
typ = zty[i1/?1;...;in/?n]
This is done by [sig_clausal_form].
*)
let make_iterated_tuple env sigma dflt (z,zty) =
let (zty,rels) = minimal_free_rels_rec env sigma (z,zty) in
let sort_of_zty = get_sort_of env sigma zty in
let sorted_rels = Sort.list (<) (Intset.elements rels) in
let (tuple,tuplety) =
List.fold_left (make_tuple env sigma) (z,zty) sorted_rels
in
assert (closed0 tuplety);
let n = List.length sorted_rels in
let dfltval = sig_clausal_form env sigma sort_of_zty n tuplety dflt in
(tuple,tuplety,dfltval)
let rec build_injrec sigma env dflt c = function
| [] -> make_iterated_tuple env sigma dflt (c,type_of env sigma c)
| ((sp,cnum),argnum)::l ->
try
let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
let newc = mkRel(cnum_nlams-argnum) in
let (subval,tuplety,dfltval) = build_injrec sigma cnum_env dflt newc l in
(kont subval (dfltval,tuplety),
tuplety,dfltval)
with
UserError _ -> failwith "caught"
let build_injector sigma env dflt c cpath =
let (injcode,resty,_) = build_injrec sigma env dflt c cpath in
(injcode,resty)
(*
let try_delta_expand env sigma t =
let whdt = whd_betadeltaiota env sigma t in
let rec hd_rec c =
match kind_of_term c with
| Construct _ -> whdt
| App (f,_) -> hd_rec f
| Cast (c,_,_) -> hd_rec c
| _ -> t
in
hd_rec whdt
*)
(* Given t1=t2 Inj calculates the whd normal forms of t1 and t2 and it
expands then only when the whdnf has a constructor of an inductive type
in hd position, otherwise delta expansion is not done *)
let simplify_args env sigma t =
(* Quick hack to reduce in arguments of eq only *)
match decompose_app t with
| eq, [t;c1;c2] -> applist (eq,[t;simpl env sigma c1;simpl env sigma c2])
| eq, [t1;c1;t2;c2] -> applist (eq,[t1;simpl env sigma c1;t2;simpl env sigma c2])
| _ -> t
let inject_at_positions env sigma (eq,_,(t,t1,t2)) eq_clause posns tac =
let e = next_ident_away eq_baseid (ids_of_context env) in
let e_env = push_named (e,None,t) env in
let injectors =
map_succeed
(fun (cpath,t1',t2') ->
(* arbitrarily take t1' as the injector default value *)
let (injbody,resty) = build_injector sigma e_env t1' (mkVar e) cpath in
let injfun = mkNamedLambda e t injbody in
let pf = applist(eq.congr,[t;resty;injfun;t1;t2]) in
let pf_typ = get_type_of env sigma pf in
let inj_clause = apply_on_clause (pf,pf_typ) eq_clause in
let pf = clenv_value_cast_meta inj_clause in
let ty = simplify_args env sigma (clenv_type inj_clause) in
(pf,ty))
posns in
if injectors = [] then
errorlabstrm "Equality.inj" (str "Failed to decompose the equality.");
tclTHEN
(tclMAP
(fun (pf,ty) -> tclTHENS (cut ty) [tclIDTAC; refine pf])
injectors)
(tac (List.length injectors))
exception Not_dep_pair
let eq_dec_scheme_kind_name = ref (fun _ -> failwith "eq_dec_scheme undefined")
let set_eq_dec_scheme_kind k = eq_dec_scheme_kind_name := (fun _ -> k)
let injEq ipats (eq,_,(t,t1,t2) as u) eq_clause =
let sigma = eq_clause.evd in
let env = eq_clause.env in
match find_positions env sigma t1 t2 with
| Inl _ ->
errorlabstrm "Inj"
(str"Not a projectable equality but a discriminable one.")
| Inr [] ->
errorlabstrm "Equality.inj"
(str"Nothing to do, it is an equality between convertible terms.")
| Inr posns ->
(* Est-ce utile à partir du moment où les arguments projetés subissent "nf" ?
let t1 = try_delta_expand env sigma t1 in
let t2 = try_delta_expand env sigma t2 in
*)
try (
(* fetch the informations of the pair *)
let ceq = constr_of_global Coqlib.glob_eq in
let sigTconstr () = (Coqlib.build_sigma_type()).Coqlib.typ in
let eqTypeDest = fst (destApp t) in
let _,ar1 = destApp t1 and
_,ar2 = destApp t2 in
let ind = destInd ar1.(0) in
let inj2 = Coqlib.coq_constant "inj_pair2_eq_dec is missing"
["Logic";"Eqdep_dec"] "inj_pair2_eq_dec" in
(* check whether the equality deals with dep pairs or not *)
(* if yes, check if the user has declared the dec principle *)
(* and compare the fst arguments of the dep pair *)
let new_eq_args = [|type_of env sigma (ar1.(3));ar1.(3);ar2.(3)|] in
if ( (eqTypeDest = sigTconstr()) &&
(Ind_tables.check_scheme (!eq_dec_scheme_kind_name()) ind=true) &&
(is_conv env sigma (ar1.(2)) (ar2.(2)) = true))
then (
(* Require Import Eqdec_dec copied from vernac_require in vernacentries.ml*)
let qidl = qualid_of_reference
(Ident (dummy_loc,id_of_string "Eqdep_dec")) in
Library.require_library [qidl] (Some false);
(* cut with the good equality and prove the requested goal *)
tclTHENS (cut (mkApp (ceq,new_eq_args)) )
[tclIDTAC; tclTHEN (apply (
mkApp(inj2,
[|ar1.(0);mkConst (find_scheme (!eq_dec_scheme_kind_name()) ind);
ar1.(1);ar1.(2);ar1.(3);ar2.(3)|])
)) (Auto.trivial [] [])
]
(* not a dep eq or no decidable type found *)
) else (raise Not_dep_pair)
) with _ ->
inject_at_positions env sigma u eq_clause posns
(fun _ -> intros_pattern no_move ipats)
let inj ipats with_evars = onEquality with_evars (injEq ipats)
let injClause ipats with_evars = function
| None -> onNegatedEquality with_evars (injEq ipats)
| Some c -> onInductionArg (inj ipats with_evars) c
let injConcl gls = injClause [] false None gls
let injHyp id gls = injClause [] false (Some (ElimOnIdent (dummy_loc,id))) gls
let decompEqThen ntac (lbeq,_,(t,t1,t2) as u) clause gls =
let sort = pf_apply get_type_of gls (pf_concl gls) in
let sigma = clause.evd in
let env = pf_env gls in
match find_positions env sigma t1 t2 with
| Inl (cpath, (_,dirn), _) ->
discr_positions env sigma u clause cpath dirn sort gls
| Inr [] -> (* Change: do not fail, simplify clear this trivial hyp *)
ntac 0 gls
| Inr posns ->
inject_at_positions env sigma u clause (List.rev posns) ntac gls
let dEqThen with_evars ntac = function
| None -> onNegatedEquality with_evars (decompEqThen ntac)
| Some c -> onInductionArg (onEquality with_evars (decompEqThen ntac)) c
let dEq with_evars = dEqThen with_evars (fun x -> tclIDTAC)
let swap_equality_args = function
| MonomorphicLeibnizEq (e1,e2) -> [e2;e1]
| PolymorphicLeibnizEq (t,e1,e2) -> [t;e2;e1]
| HeterogenousEq (t1,e1,t2,e2) -> [t2;e2;t1;e1]
let swap_equands gls eqn =
let (lbeq,eq_args) = find_eq_data eqn in
applist(lbeq.eq,swap_equality_args eq_args)
let swapEquandsInConcl gls =
let (lbeq,eq_args) = find_eq_data (pf_concl gls) in
let sym_equal = lbeq.sym in
refine
(applist(sym_equal,(swap_equality_args eq_args@[Evarutil.mk_new_meta()])))
gls
(* Refine from [|- P e2] to [|- P e1] and [|- e1=e2:>t] (body is P (Rel 1)) *)
let bareRevSubstInConcl lbeq body (t,e1,e2) gls =
(* find substitution scheme *)
let eq_elim = find_elim lbeq.eq (Some false) false None [e1;e2] gls in
(* build substitution predicate *)
let p = lambda_create (pf_env gls) (t,body) in
(* apply substitution scheme *)
refine (applist(eq_elim,[t;e1;p;Evarutil.mk_new_meta();
e2;Evarutil.mk_new_meta()])) gls
(* [subst_tuple_term dep_pair B]
Given that dep_pair looks like:
(existT e1 (existT e2 ... (existT en en+1) ... ))
of type {x1:T1 & {x2:T2(x1) & ... {xn:Tn(x1..xn-1) & en+1 } } }
and B might contain instances of the ei, we will return the term:
([x1:ty1]...[xn+1:tyn+1]B
(projT1 (mkRel 1))
(projT1 (projT2 (mkRel 1)))
...
(projT1 (projT2^n (mkRel 1)))
(projT2 (projT2^n (mkRel 1)))
That is, we will abstract out the terms e1...en+1 of types
t1 (=_beta T1), ..., tn+1 (=_beta Tn+1(e1..en)) as usual, but
will then produce a term in which the abstraction is on a single
term - the debruijn index [mkRel 1], which will be of the same type
as dep_pair (note that the abstracted body may not be typable!).
ALGORITHM for abstraction:
We have a list of terms, [e1]...[en+1], which we want to abstract
out of [B]. For each term [ei], going backwards from [n+1], we
just do a [subst_term], and then do a lambda-abstraction to the
type of the [ei].
*)
let decomp_tuple_term env c t =
let rec decomprec inner_code ex exty =
try
let {proj1=p1; proj2=p2},(a,p,car,cdr) = find_sigma_data_decompose ex in
let car_code = applist (p1,[a;p;inner_code])
and cdr_code = applist (p2,[a;p;inner_code]) in
let cdrtyp = beta_applist (p,[car]) in
((car,a),car_code)::(decomprec cdr_code cdr cdrtyp)
with PatternMatchingFailure ->
[((ex,exty),inner_code)]
in
List.split (decomprec (mkRel 1) c t)
let subst_tuple_term env sigma dep_pair1 dep_pair2 b =
let typ = get_type_of env sigma dep_pair1 in
(* We rewrite dep_pair1 ... *)
let e1_list,proj_list = decomp_tuple_term env dep_pair1 typ in
let abst_B =
List.fold_right
(fun (e,t) body -> lambda_create env (t,subst_term e body)) e1_list b in
(* ... and use dep_pair2 to compute the expected goal *)
let e2_list,_ = decomp_tuple_term env dep_pair2 typ in
let pred_body = beta_applist(abst_B,proj_list) in
let expected_goal = beta_applist (abst_B,List.map fst e2_list) in
(* Simulate now the normalisation treatment made by Logic.mk_refgoals *)
let expected_goal = nf_betaiota sigma expected_goal in
pred_body,expected_goal
(* Like "replace" but decompose dependent equalities *)
exception NothingToRewrite
let cutSubstInConcl_RL eqn gls =
let (lbeq,(t,e1,e2 as eq)) = find_eq_data_decompose gls eqn in
let body,expected_goal = pf_apply subst_tuple_term gls e2 e1 (pf_concl gls) in
if not (dependent (mkRel 1) body) then raise NothingToRewrite;
tclTHENFIRST
(bareRevSubstInConcl lbeq body eq)
(convert_concl expected_goal DEFAULTcast) gls
(* |- (P e1)
BY CutSubstInConcl_LR (eq T e1 e2)
|- (P e2)
|- (eq T e1 e2)
*)
let cutSubstInConcl_LR eqn gls =
(tclTHENS (cutSubstInConcl_RL (swap_equands gls eqn))
([tclIDTAC;
swapEquandsInConcl])) gls
let cutSubstInConcl l2r =if l2r then cutSubstInConcl_LR else cutSubstInConcl_RL
let cutSubstInHyp_LR eqn id gls =
let (lbeq,(t,e1,e2 as eq)) = find_eq_data_decompose gls eqn in
let idtyp = pf_get_hyp_typ gls id in
let body,expected_goal = pf_apply subst_tuple_term gls e1 e2 idtyp in
if not (dependent (mkRel 1) body) then raise NothingToRewrite;
cut_replacing id expected_goal
(tclTHENFIRST
(bareRevSubstInConcl lbeq body eq)
(refine_no_check (mkVar id))) gls
let cutSubstInHyp_RL eqn id gls =
(tclTHENS (cutSubstInHyp_LR (swap_equands gls eqn) id)
([tclIDTAC;
swapEquandsInConcl])) gls
let cutSubstInHyp l2r = if l2r then cutSubstInHyp_LR else cutSubstInHyp_RL
let try_rewrite tac gls =
try
tac gls
with
| PatternMatchingFailure ->
errorlabstrm "try_rewrite" (str "Not a primitive equality here.")
| e when catchable_exception e ->
errorlabstrm "try_rewrite"
(strbrk "Cannot find a well-typed generalization of the goal that makes the proof progress.")
| NothingToRewrite ->
errorlabstrm "try_rewrite"
(strbrk "Nothing to rewrite.")
let cutSubstClause l2r eqn cls gls =
match cls with
| None -> cutSubstInConcl l2r eqn gls
| Some id -> cutSubstInHyp l2r eqn id gls
let cutRewriteClause l2r eqn cls = try_rewrite (cutSubstClause l2r eqn cls)
let cutRewriteInHyp l2r eqn id = cutRewriteClause l2r eqn (Some id)
let cutRewriteInConcl l2r eqn = cutRewriteClause l2r eqn None
let substClause l2r c cls gls =
let eq = pf_apply get_type_of gls c in
tclTHENS (cutSubstClause l2r eq cls)
[tclIDTAC; exact_no_check c] gls
let rewriteClause l2r c cls = try_rewrite (substClause l2r c cls)
let rewriteInHyp l2r c id = rewriteClause l2r c (Some id)
let rewriteInConcl l2r c = rewriteClause l2r c None
(* Naming scheme for rewrite and cutrewrite tactics
give equality give proof of equality
/ cutSubstClause substClause
raw | cutSubstInHyp substInHyp
\ cutSubstInConcl substInConcl
/ cutRewriteClause rewriteClause
user| cutRewriteInHyp rewriteInHyp
\ cutRewriteInConcl rewriteInConcl
raw = raise typing error or PatternMatchingFailure
user = raise user error specific to rewrite
*)
(**********************************************************************)
(* Substitutions tactics (JCF) *)
let unfold_body x gl =
let hyps = pf_hyps gl in
let xval =
match Sign.lookup_named x hyps with
(_,Some xval,_) -> xval
| _ -> errorlabstrm "unfold_body"
(pr_id x ++ str" is not a defined hypothesis.") in
let aft = afterHyp x gl in
let hl = List.fold_right (fun (y,yval,_) cl -> (y,InHyp) :: cl) aft [] in
let xvar = mkVar x in
let rfun _ _ c = replace_term xvar xval c in
tclTHENLIST
[tclMAP (fun h -> reduct_in_hyp rfun h) hl;
reduct_in_concl (rfun,DEFAULTcast)] gl
let restrict_to_eq_and_identity eq = (* compatibility *)
if eq <> constr_of_global glob_eq && eq <> constr_of_global glob_identity then
raise PatternMatchingFailure
exception FoundHyp of (identifier * constr * bool)
(* tests whether hyp [c] is [x = t] or [t = x], [x] not occuring in [t] *)
let is_eq_x gl x (id,_,c) =
try
let (_,lhs,rhs) = snd (find_eq_data_decompose gl c) in
if (x = lhs) && not (occur_term x rhs) then raise (FoundHyp (id,rhs,true));
if (x = rhs) && not (occur_term x lhs) then raise (FoundHyp (id,lhs,false))
with PatternMatchingFailure ->
()
let subst_one dep_proof_ok x gl =
let hyps = pf_hyps gl in
let (_,xval,_) = pf_get_hyp gl x in
(* If x has a body, simply replace x with body and clear x *)
if xval <> None then tclTHEN (unfold_body x) (clear [x]) gl else
(* x is a variable: *)
let varx = mkVar x in
(* Find a non-recursive definition for x *)
let (hyp,rhs,dir) =
try
let test hyp _ = is_eq_x gl varx hyp in
Sign.fold_named_context test ~init:() hyps;
errorlabstrm "Subst"
(str "Cannot find any non-recursive equality over " ++ pr_id x ++
str".")
with FoundHyp res -> res
in
(* The set of hypotheses using x *)
let depdecls =
let test (id,_,c as dcl) =
if id <> hyp && occur_var_in_decl (pf_env gl) x dcl then dcl
else failwith "caught" in
List.rev (map_succeed test hyps) in
let dephyps = List.map (fun (id,_,_) -> id) depdecls in
(* Decides if x appears in conclusion *)
let depconcl = occur_var (pf_env gl) x (pf_concl gl) in
(* The set of non-defined hypothesis: they must be abstracted,
rewritten and reintroduced *)
let abshyps =
map_succeed
(fun (id,v,_) -> if v=None then mkVar id else failwith "caught")
depdecls in
(* a tactic that either introduce an abstracted and rewritten hyp,
or introduce a definition where x was replaced *)
let introtac = function
(id,None,_) -> intro_using id
| (id,Some hval,htyp) ->
letin_tac None (Name id)
(replace_term varx rhs hval)
(Some (replace_term varx rhs htyp)) nowhere
in
let need_rewrite = dephyps <> [] || depconcl in
tclTHENLIST
((if need_rewrite then
[generalize abshyps;
general_rewrite dir all_occurrences dep_proof_ok (mkVar hyp);
thin dephyps;
tclMAP introtac depdecls]
else
[thin dephyps;
tclMAP introtac depdecls]) @
[tclTRY (clear [x;hyp])]) gl
let subst_gen dep_proof_ok ids =
tclTHEN tclNORMEVAR (tclMAP (subst_one dep_proof_ok) ids)
let subst = subst_gen true
type subst_tactic_flags = {
only_leibniz : bool;
rewrite_dependent_proof : bool
}
let default_subst_tactic_flags () =
if Flags.version_strictly_greater Flags.V8_2 then
{ only_leibniz = false; rewrite_dependent_proof = true }
else
{ only_leibniz = true; rewrite_dependent_proof = false }
let subst_all ?(flags=default_subst_tactic_flags ()) gl =
let test (_,c) =
try
let lbeq,(_,x,y) = find_eq_data_decompose gl c in
if flags.only_leibniz then restrict_to_eq_and_identity lbeq.eq;
(* J.F.: added to prevent failure on goal containing x=x as an hyp *)
if eq_constr x y then failwith "caught";
match kind_of_term x with Var x -> x | _ ->
match kind_of_term y with Var y -> y | _ -> failwith "caught"
with PatternMatchingFailure -> failwith "caught"
in
let ids = map_succeed test (pf_hyps_types gl) in
let ids = list_uniquize ids in
subst_gen flags.rewrite_dependent_proof ids gl
(* Rewrite the first assumption for which the condition faildir does not fail
and gives the direction of the rewrite *)
let cond_eq_term_left c t gl =
try
let (_,x,_) = snd (find_eq_data_decompose gl t) in
if pf_conv_x gl c x then true else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let cond_eq_term_right c t gl =
try
let (_,_,x) = snd (find_eq_data_decompose gl t) in
if pf_conv_x gl c x then false else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let cond_eq_term c t gl =
try
let (_,x,y) = snd (find_eq_data_decompose gl t) in
if pf_conv_x gl c x then true
else if pf_conv_x gl c y then false
else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let rewrite_multi_assumption_cond cond_eq_term cl gl =
let rec arec = function
| [] -> error "No such assumption."
| (id,_,t) ::rest ->
begin
try
let dir = cond_eq_term t gl in
general_multi_rewrite dir false (mkVar id,NoBindings) cl gl
with | Failure _ | UserError _ -> arec rest
end
in
arec (pf_hyps gl)
let replace_multi_term dir_opt c =
let cond_eq_fun =
match dir_opt with
| None -> cond_eq_term c
| Some true -> cond_eq_term_left c
| Some false -> cond_eq_term_right c
in
rewrite_multi_assumption_cond cond_eq_fun
let _ = Tactics.register_general_multi_rewrite
(fun b evars t cls -> general_multi_rewrite b evars t cls)
|