1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: equality.ml,v 1.120.2.4 2004/11/21 22:24:09 herbelin Exp $ *)
open Pp
open Util
open Names
open Nameops
open Univ
open Term
open Termops
open Inductive
open Inductiveops
open Environ
open Libnames
open Reductionops
open Instantiate
open Typeops
open Typing
open Retyping
open Tacmach
open Proof_type
open Logic
open Evar_refiner
open Pattern
open Matching
open Hipattern
open Tacexpr
open Tacticals
open Tactics
open Tacred
open Rawterm
open Coqlib
open Vernacexpr
open Setoid_replace
open Declarations
(* Rewriting tactics *)
(* Warning : rewriting from left to right only works
if there exists in the context a theorem named <eqname>_<suffsort>_r
with type (A:<sort>)(x:A)(P:A->Prop)(P x)->(y:A)(eqname A y x)->(P y).
If another equality myeq is introduced, then corresponding theorems
myeq_ind_r, myeq_rec_r and myeq_rect_r have to be proven. See below.
-- Eduardo (19/8/97
*)
let general_rewrite_bindings lft2rgt (c,l) gl =
let ctype = pf_type_of gl c in
let env = pf_env gl in
let sigma = project gl in
let _,t = splay_prod env sigma ctype in
match match_with_equation t with
| None ->
if l = NoBindings
then general_s_rewrite lft2rgt c gl
else error "The term provided does not end with an equation"
| Some (hdcncl,_) ->
let hdcncls = string_of_inductive hdcncl in
let suffix = Indrec.elimination_suffix (elimination_sort_of_goal gl)in
let elim =
if lft2rgt then
pf_global gl (id_of_string (hdcncls^suffix^"_r"))
else
pf_global gl (id_of_string (hdcncls^suffix))
in
tclNOTSAMEGOAL (general_elim (c,l) (elim,NoBindings) ~allow_K:false) gl
(* was tclWEAK_PROGRESS which only fails for tactics generating one subgoal
and did not fail for useless conditional rewritings generating an
extra condition *)
(* Conditional rewriting, the success of a rewriting is related
to the resolution of the conditions by a given tactic *)
let conditional_rewrite lft2rgt tac (c,bl) =
tclTHENSFIRSTn (general_rewrite_bindings lft2rgt (c,bl))
[|tclIDTAC|] (tclCOMPLETE tac)
let general_rewrite lft2rgt c = general_rewrite_bindings lft2rgt (c,NoBindings)
let rewriteLR_bindings = general_rewrite_bindings true
let rewriteRL_bindings = general_rewrite_bindings false
let rewriteLR = general_rewrite true
let rewriteRL = general_rewrite false
(* The Rewrite in tactic *)
let general_rewrite_in lft2rgt id (c,l) gl =
let ctype = pf_type_of gl c in
let env = pf_env gl in
let sigma = project gl in
let _,t = splay_prod env sigma ctype in
match match_with_equation t with
| None -> (* Do not deal with setoids yet *)
error "The term provided does not end with an equation"
| Some (hdcncl,_) ->
let hdcncls = string_of_inductive hdcncl in
let suffix =
Indrec.elimination_suffix (elimination_sort_of_hyp id gl) in
let rwr_thm =
if lft2rgt then hdcncls^suffix else hdcncls^suffix^"_r" in
let elim =
try pf_global gl (id_of_string rwr_thm)
with Not_found ->
error ("Cannot find rewrite principle "^rwr_thm) in
general_elim_in id (c,l) (elim,NoBindings) gl
let rewriteLRin = general_rewrite_in true
let rewriteRLin = general_rewrite_in false
let conditional_rewrite_in lft2rgt id tac (c,bl) =
tclTHENSFIRSTn (general_rewrite_in lft2rgt id (c,bl))
[|tclIDTAC|] (tclCOMPLETE tac)
let rewriteRL_clause = function
| None -> rewriteRL_bindings
| Some id -> rewriteRLin id
(* Replacing tactics *)
(* eqt,sym_eqt : equality on Type and its symmetry theorem
c2 c1 : c1 is to be replaced by c2
unsafe : If true, do not check that c1 and c2 are convertible
gl : goal *)
let abstract_replace clause c2 c1 unsafe gl =
let t1 = pf_type_of gl c1
and t2 = pf_type_of gl c2 in
if unsafe or (pf_conv_x gl t1 t2) then
let e = (build_coq_eqT_data ()).eq in
let sym = (build_coq_eqT_data ()).sym in
let eq = applist (e, [t1;c1;c2]) in
tclTHENS (assert_tac false Anonymous eq)
[onLastHyp (fun id ->
tclTHEN
(tclTRY (rewriteRL_clause clause (mkVar id,NoBindings)))
(clear [id]));
tclORELSE assumption
(tclTRY (tclTHEN (apply sym) assumption))] gl
else
error "terms does not have convertible types"
let replace c2 c1 gl = abstract_replace None c2 c1 false gl
let replace_in id c2 c1 gl = abstract_replace (Some id) c2 c1 false gl
(* End of Eduardo's code. The rest of this file could be improved
using the functions match_with_equation, etc that I defined
in Pattern.ml.
-- Eduardo (19/8/97)
*)
(* Tactics for equality reasoning with the "eq" or "eqT"
relation This code will work with any equivalence relation which
is substitutive *)
(* Patterns *)
let build_coq_eq eq = eq.eq
let build_ind eq = eq.ind
let build_rect eq =
match eq.rect with
| None -> assert false
| Some c -> c
(*********** List of constructions depending of the initial state *)
let find_eq_pattern aritysort sort =
(* "eq" now accept arguments in Type and elimination to Type *)
Coqlib.build_coq_eq ()
(* [find_positions t1 t2]
will find the positions in the two terms which are suitable for
discrimination, or for injection. Obviously, if there is a
position which is suitable for discrimination, then we want to
exploit it, and not bother with injection. So when we find a
position which is suitable for discrimination, we will just raise
an exception with that position.
So the algorithm goes like this:
if [t1] and [t2] start with the same constructor, then we can
continue to try to find positions in the arguments of [t1] and
[t2].
if [t1] and [t2] do not start with the same constructor, then we
have found a discrimination position
if one [t1] or [t2] do not start with a constructor and the two
terms are not already convertible, then we have found an injection
position.
A discriminating position consists of a constructor-path and a pair
of operators. The constructor-path tells us how to get down to the
place where the two operators, which must differ, can be found.
An injecting position has two terms instead of the two operators,
since these terms are different, but not manifestly so.
A constructor-path is a list of pairs of (operator * int), where
the int (based at 0) tells us which argument of the operator we
descended into.
*)
exception DiscrFound of
(constructor * int) list * constructor * constructor
let find_positions env sigma t1 t2 =
let rec findrec posn t1 t2 =
let hd1,args1 = whd_betadeltaiota_stack env sigma t1 in
let hd2,args2 = whd_betadeltaiota_stack env sigma t2 in
match (kind_of_term hd1, kind_of_term hd2) with
| Construct sp1, Construct sp2
when List.length args1 = mis_constructor_nargs_env env sp1
->
(* both sides are fully applied constructors, so either we descend,
or we can discriminate here. *)
if sp1 = sp2 then
List.flatten
(list_map2_i
(fun i arg1 arg2 ->
findrec ((sp1,i)::posn) arg1 arg2)
0 args1 args2)
else
raise (DiscrFound(List.rev posn,sp1,sp2))
| _ ->
let t1_0 = applist (hd1,args1)
and t2_0 = applist (hd2,args2) in
if is_conv env sigma t1_0 t2_0 then
[]
else
let ty1_0 = get_type_of env sigma t1_0 in
match get_sort_family_of env sigma ty1_0 with
| InSet | InType -> [(List.rev posn,t1_0,t2_0)]
| InProp -> []
in
(try
Inr(findrec [] t1 t2)
with DiscrFound (path,c1,c2) ->
Inl (path,c1,c2))
let discriminable env sigma t1 t2 =
match find_positions env sigma t1 t2 with
| Inl _ -> true
| _ -> false
(* Once we have found a position, we need to project down to it. If
we are discriminating, then we need to produce False on one of the
branches of the discriminator, and True on the other one. So the
result type of the case-expressions is always Prop.
If we are injecting, then we need to discover the result-type.
This can be difficult, since the type of the two terms at the
injection-position can be different, and we need to find a
dependent sigma-type which generalizes them both.
We can get an approximation to the right type to choose by:
(0) Before beginning, we reserve a patvar for the default
value of the match, to be used in all the bogus branches.
(1) perform the case-splits, down to the site of the injection. At
each step, we have a term which is the "head" of the next
case-split. At the point when we actually reach the end of our
path, the "head" is the term to return. We compute its type, and
then, backwards, make a sigma-type with every free debruijn
reference in that type. We can be finer, and first do a S(TRONG)NF
on the type, so that we get the fewest number of references
possible.
(2) This gives us a closed type for the head, which we use for the
types of all the case-splits.
(3) Now, we can compute the type of one of T1, T2, and then unify
it with the type of the last component of the result-type, and this
will give us the bindings for the other arguments of the tuple.
*)
(* The algorithm, then is to perform successive case-splits. We have
the result-type of the case-split, and also the type of that
result-type. We have a "direction" we want to follow, i.e. a
constructor-number, and in all other "directions", we want to juse
use the default-value.
After doing the case-split, we call the afterfun, with the updated
environment, to produce the term for the desired "direction".
The assumption is made here that the result-type is not manifestly
functional, so we can just use the length of the branch-type to
know how many lambda's to stick in.
*)
(* [descend_then sigma env head dirn]
returns the number of products introduced, and the environment
which is active, in the body of the case-branch given by [dirn],
along with a continuation, which expects to be fed:
(1) the value of the body of the branch given by [dirn]
(2) the default-value
(3) the type of the default-value, which must also be the type of
the body of the [dirn] branch
the continuation then constructs the case-split.
*)
let descend_then sigma env head dirn =
let IndType (indf,_) as indt =
try find_rectype env sigma (get_type_of env sigma head)
with Not_found -> assert false in
let ind,_ = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let cstr = get_constructors env indf in
let dirn_nlams = cstr.(dirn-1).cs_nargs in
let dirn_env = push_rel_context cstr.(dirn-1).cs_args env in
(dirn_nlams,
dirn_env,
(fun dirnval (dfltval,resty) ->
let arsign,_ = get_arity env indf in
let depind = build_dependent_inductive env indf in
let deparsign = (Anonymous,None,depind)::arsign in
let p =
it_mkLambda_or_LetIn (lift (mip.mind_nrealargs+1) resty) deparsign in
let build_branch i =
let result = if i = dirn then dirnval else dfltval in
it_mkLambda_or_LetIn_name env result cstr.(i-1).cs_args in
let brl =
List.map build_branch
(interval 1 (Array.length mip.mind_consnames)) in
let ci = make_default_case_info env RegularStyle ind in
mkCase (ci, p, head, Array.of_list brl)))
(* Now we need to construct the discriminator, given a discriminable
position. This boils down to:
(1) If the position is directly beneath us, then we need to do a
case-split, with result-type Prop, and stick True and False into
the branches, as is convenient.
(2) If the position is not directly beneath us, then we need to
call descend_then, to descend one step, and then recursively
construct the discriminator.
*)
(* [construct_discriminator env dirn headval]
constructs a case-split on [headval], with the [dirn]-th branch
giving [True], and all the rest giving False. *)
let construct_discriminator sigma env dirn c sort =
let (IndType(indf,_) as indt) =
try find_rectype env sigma (type_of env sigma c)
with Not_found ->
(* one can find Rel(k) in case of dependent constructors
like T := c : (A:Set)A->T and a discrimination
on (c bool true) = (c bool false)
CP : changed assert false in a more informative error
*)
errorlabstrm "Equality.construct_discriminator"
(str "Cannot discriminate on inductive constructors with
dependent types") in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let arsign,arsort = get_arity env indf in
let (true_0,false_0,sort_0) = build_coq_True(),build_coq_False(),Prop Null in
let depind = build_dependent_inductive env indf in
let deparsign = (Anonymous,None,depind)::arsign in
let p = it_mkLambda_or_LetIn (mkSort sort_0) deparsign in
let cstrs = get_constructors env indf in
let build_branch i =
let endpt = if i = dirn then true_0 else false_0 in
it_mkLambda_or_LetIn endpt cstrs.(i-1).cs_args in
let brl =
List.map build_branch(interval 1 (Array.length mip.mind_consnames)) in
let ci = make_default_case_info env RegularStyle ind in
mkCase (ci, p, c, Array.of_list brl)
let rec build_discriminator sigma env dirn c sort = function
| [] -> construct_discriminator sigma env dirn c sort
| ((sp,cnum),argnum)::l ->
let cty = type_of env sigma c in
let IndType (indf,_) =
try find_rectype env sigma cty with Not_found -> assert false in
let (ind,_) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let _,arsort = get_arity env indf in
let nparams = mip.mind_nparams in
let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
let newc = mkRel(cnum_nlams-(argnum-nparams)) in
let subval = build_discriminator sigma cnum_env dirn newc sort l in
kont subval (build_coq_False (),mkSort (Prop Null))
let gen_absurdity id gl =
if is_empty_type (clause_type (onHyp id) gl)
then
simplest_elim (mkVar id) gl
else
errorlabstrm "Equality.gen_absurdity"
(str "Not the negation of an equality")
(* Precondition: eq is leibniz equality
returns ((eq_elim t t1 P i t2), absurd_term)
where P=[e:t]discriminator
absurd_term=False
*)
let discrimination_pf e (t,t1,t2) discriminator lbeq gls =
let i = build_coq_I () in
let absurd_term = build_coq_False () in
let eq_elim = build_ind lbeq in
(applist (eq_elim, [t;t1;mkNamedLambda e t discriminator;i;t2]), absurd_term)
exception NotDiscriminable
let discrEq (lbeq,(t,t1,t2)) id gls =
let sort = pf_type_of gls (pf_concl gls) in
let sigma = project gls in
let env = pf_env gls in
(match find_positions env sigma t1 t2 with
| Inr _ ->
errorlabstrm "discr" (str" Not a discriminable equality")
| Inl (cpath, (_,dirn), _) ->
let e = pf_get_new_id (id_of_string "ee") gls in
let e_env = push_named (e,None,t) env in
let discriminator =
build_discriminator sigma e_env dirn (mkVar e) sort cpath in
let (indt,_) = find_mrectype env sigma t in
let (pf, absurd_term) =
discrimination_pf e (t,t1,t2) discriminator lbeq gls
in
tclCOMPLETE((tclTHENS (cut_intro absurd_term)
([onLastHyp gen_absurdity;
refine (mkApp (pf, [| mkVar id |]))]))) gls)
let not_found_message id =
(str "The variable" ++ spc () ++ str (string_of_id id) ++ spc () ++
str" was not found in the current environment")
let onEquality tac id gls =
let eqn = pf_whd_betadeltaiota gls (pf_get_hyp_typ gls id) in
let eq =
try find_eq_data_decompose eqn
with PatternMatchingFailure ->
errorlabstrm "" (pr_id id ++ str": not a primitive equality")
in tac eq id gls
let check_equality tac id gls =
let eqn = pf_whd_betadeltaiota gls (pf_get_hyp_typ gls id) in
let eq =
try find_eq_data_decompose eqn
with PatternMatchingFailure ->
errorlabstrm "" (str "The goal should negate an equality")
in tac eq id gls
let onNegatedEquality tac gls =
if is_matching_not (pf_concl gls) then
(tclTHEN (tclTHEN hnf_in_concl intro) (onLastHyp(check_equality tac))) gls
else if is_matching_imp_False (pf_concl gls)then
(tclTHEN intro (onLastHyp (check_equality tac))) gls
else
errorlabstrm "extract_negated_equality_then"
(str"The goal should negate an equality")
let discrSimpleClause = function
| None -> onNegatedEquality discrEq
| Some (id,_,_) -> onEquality discrEq id
let discr = onEquality discrEq
let discrClause = onClauses discrSimpleClause
let discrEverywhere =
tclORELSE
(Tacticals.tryAllClauses discrSimpleClause)
(fun gls ->
errorlabstrm "DiscrEverywhere" (str" No discriminable equalities"))
let discr_tac = function
| None -> discrEverywhere
| Some id -> try_intros_until discr id
let discrConcl gls = discrClause onConcl gls
let discrHyp id gls = discrClause (onHyp id) gls
(* returns the sigma type (sigS, sigT) with the respective
constructor depending on the sort *)
let find_sigma_data s =
match s with
| Prop Pos -> build_sigma_set () (* Set *)
| Type _ -> build_sigma_type () (* Type *)
| Prop Null -> error "find_sigma_data"
(* [make_tuple env sigma (rterm,rty) lind] assumes [lind] is the lesser
index bound in [rty]
Then we build the term
[(existS A P (mkRel lind) rterm)] of type [(sigS A P)]
where [A] is the type of [mkRel lind] and [P] is [\na:A.rty{1/lind}]
*)
let make_tuple env sigma (rterm,rty) lind =
assert (dependent (mkRel lind) rty);
let {intro = exist_term; typ = sig_term} =
find_sigma_data (get_sort_of env sigma rty) in
let a = type_of env sigma (mkRel lind) in
let (na,_,_) = lookup_rel lind env in
(* We move [lind] to [1] and lift other rels > [lind] by 1 *)
let rty = lift (1-lind) (liftn lind (lind+1) rty) in
(* Now [lind] is [mkRel 1] and we abstract on (na:a) *)
let p = mkLambda (na, a, rty) in
(applist(exist_term,[a;p;(mkRel lind);rterm]),
applist(sig_term,[a;p]))
(* check that the free-references of the type of [c] are contained in
the free-references of the normal-form of that type. If the normal
form of the type contains fewer references, we want to return that
instead. *)
let minimal_free_rels env sigma (c,cty) =
let cty_rels = free_rels cty in
let nf_cty = nf_betadeltaiota env sigma cty in
let nf_rels = free_rels nf_cty in
if Intset.subset cty_rels nf_rels then
(cty,cty_rels)
else
(nf_cty,nf_rels)
(* [sig_clausal_form siglen ty]
Will explode [siglen] [sigS,sigT ]'s on [ty] (depending on the
type of ty), and return:
(1) a pattern, with meta-variables in it for various arguments,
which, when the metavariables are replaced with appropriate
terms, will have type [ty]
(2) an integer, which is the last argument - the one which we just
returned.
(3) a pattern, for the type of that last meta
(4) a typing for each patvar
WARNING: No checking is done to make sure that the
sigS(or sigT)'s are actually there.
- Only homogenious pairs are built i.e. pairs where all the
dependencies are of the same sort
[sig_clausal_form] proceed as follows: the default tuple is
constructed by taking the tuple-type, exploding the first [tuplen]
[sigS]'s, and replacing at each step the binder in the
right-hand-type by a fresh metavariable. In addition, on the way
back out, we will construct the pattern for the tuple which uses
these meta-vars.
This gives us a pattern, which we use to match against the type of
[dflt]; if that fails, then against the S(TRONG)NF of that type. If
both fail, then we just cannot construct our tuple. If one of
those succeed, then we can construct our value easily - we just use
the tuple-pattern.
*)
let sig_clausal_form env sigma sort_of_ty siglen ty (dFLT,dFLTty) =
let { intro = exist_term } = find_sigma_data sort_of_ty in
let isevars = Evarutil.create_evar_defs sigma in
let rec sigrec_clausal_form siglen p_i =
if siglen = 0 then
if Evarconv.the_conv_x_leq env isevars dFLTty p_i then
(* the_conv_x had a side-effect on isevars *)
dFLT
else
error "Cannot solve an unification problem"
else
let (a,p_i_minus_1) = match whd_beta_stack p_i with
| (_sigS,[a;p]) -> (a,p)
| _ -> anomaly "sig_clausal_form: should be a sigma type" in
let ev = Evarutil.new_isevar isevars env (dummy_loc,InternalHole)
(Evarutil.new_Type ()) in
let rty = beta_applist(p_i_minus_1,[ev]) in
let tuple_tail = sigrec_clausal_form (siglen-1) rty in
match
Instantiate.existential_opt_value (Evarutil.evars_of isevars)
(destEvar ev)
with
| Some w -> applist(exist_term,[a;p_i_minus_1;w;tuple_tail])
| None -> anomaly "Not enough components to build the dependent tuple"
in
let scf = sigrec_clausal_form siglen ty in
Evarutil.nf_evar (Evarutil.evars_of isevars) scf
(* The problem is to build a destructor (a generalization of the
predecessor) which, when applied to a term made of constructors
(say [Ci(e1,Cj(e2,Ck(...,term,...),...),...)]), returns a given
subterm of the term (say [term]).
Let [typ] be the type of [term]. If [term] has no dependencies in
the [e1], [e2], etc, then all is simple. If not, then we need to
encapsulated the dependencies into a dependent tuple in such a way
that the destructor has not a dependent type and rewriting can then
be applied. The destructor has the form
[e]Cases e of
| ...
| Ci (x1,x2,...) =>
Cases x2 of
| ...
| Cj (y1,y2,...) =>
Cases y2 of
| ...
| Ck (...,z,...) => z
| ... end
| ... end
| ... end
and the dependencies is expressed by the fact that [z] has a type
dependent in the x1, y1, ...
Assume [z] is typed as follows: env |- z:zty
If [zty] has no dependencies, this is simple. Otherwise, assume
[zty] has free (de Bruijn) variables in,...i1 then the role of
[make_iterated_tuple sigma env (term,typ) (z,zty)] is to build the
tuple
[existS [xn]Pn Rel(in) .. (existS [x2]P2 Rel(i2) (existS [x1]P1 Rel(i1) z))]
where P1 is zty[i1/x1], P2 is {x1 | P1[i2/x2]} etc.
To do this, we find the free (relative) references of the strong NF
of [z]'s type, gather them together in left-to-right order
(i.e. highest-numbered is farthest-left), and construct a big
iterated pair out of it. This only works when the references are
all themselves to members of [Set]s, because we use [sigS] to
construct the tuple.
Suppose now that our constructed tuple is of length [tuplen]. We
need also to construct a default value for the other branches of
the destructor. As default value, we take a tuple of the form
[existS [xn]Pn ?n (... existS [x2]P2 ?2 (existS [x1]P1 ?1 term))]
but for this we have to solve the following unification problem:
typ = zty[i1/?1;...;in/?n]
This is done by [sig_clausal_form].
*)
let make_iterated_tuple env sigma dflt (z,zty) =
let (zty,rels) = minimal_free_rels env sigma (z,zty) in
let sort_of_zty = get_sort_of env sigma zty in
let sorted_rels = Sort.list (<) (Intset.elements rels) in
let (tuple,tuplety) =
List.fold_left (make_tuple env sigma) (z,zty) sorted_rels
in
assert (closed0 tuplety);
let n = List.length sorted_rels in
let dfltval = sig_clausal_form env sigma sort_of_zty n tuplety dflt in
(tuple,tuplety,dfltval)
let rec build_injrec sigma env (t1,t2) c = function
| [] ->
make_iterated_tuple env sigma (t1,type_of env sigma t1)
(c,type_of env sigma c)
| ((sp,cnum),argnum)::l ->
let cty = type_of env sigma c in
let (ity,_) = find_mrectype env sigma cty in
let (mib,mip) = lookup_mind_specif env ity in
let nparams = mip.mind_nparams in
let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
let newc = mkRel(cnum_nlams-(argnum-nparams)) in
let (subval,tuplety,dfltval) =
build_injrec sigma cnum_env (t1,t2) newc l
in
(kont subval (dfltval,tuplety),
tuplety,dfltval)
let build_injector sigma env (t1,t2) c cpath =
let (injcode,resty,_) = build_injrec sigma env (t1,t2) c cpath in
(injcode,resty)
let try_delta_expand env sigma t =
let whdt = whd_betadeltaiota env sigma t in
let rec hd_rec c =
match kind_of_term c with
| Construct _ -> whdt
| App (f,_) -> hd_rec f
| Cast (c,_) -> hd_rec c
| _ -> t
in
hd_rec whdt
(* Given t1=t2 Inj calculates the whd normal forms of t1 and t2 and it
expands then only when the whdnf has a constructor of an inductive type
in hd position, otherwise delta expansion is not done *)
let injEq (eq,(t,t1,t2)) id gls =
let sigma = project gls in
let env = pf_env gls in
match find_positions env sigma t1 t2 with
| Inl _ ->
errorlabstrm "Inj"
(str (string_of_id id) ++
str" is not a projectable equality but a discriminable one")
| Inr [] ->
errorlabstrm "Equality.inj"
(str"Nothing to do, it is an equality between convertible terms")
| Inr posns ->
let e = pf_get_new_id (id_of_string "e") gls in
let e_env = push_named (e,None,t) env in
let injectors =
map_succeed
(fun (cpath,t1_0,t2_0) ->
try
let (injbody,resty) =
build_injector sigma e_env (t1_0,t2_0) (mkVar e) cpath in
let injfun = mkNamedLambda e t injbody in
let _ = type_of env sigma injfun in (injfun,resty)
with e when catchable_exception e ->
(* may fail because ill-typed or because of a Prop argument *)
(* error "find_sigma_data" *)
failwith "caught")
posns
in
if injectors = [] then
errorlabstrm "Equality.inj"
(str "Failed to decompose the equality");
tclMAP
(fun (injfun,resty) ->
let pf = applist(eq.congr,
[t;resty;injfun;
try_delta_expand env sigma t1;
try_delta_expand env sigma t2;
mkVar id])
in
let ty =
try pf_nf gls (pf_type_of gls pf)
with
| UserError("refiner__fail",_) ->
errorlabstrm "InjClause"
(str (string_of_id id) ++ str" Not a projectable equality")
in ((tclTHENS (cut ty) ([tclIDTAC;refine pf]))))
injectors
gls
let inj = onEquality injEq
let injClause = function
| None -> onNegatedEquality injEq
| Some id -> try_intros_until inj id
let injConcl gls = injClause None gls
let injHyp id gls = injClause (Some id) gls
let decompEqThen ntac (lbeq,(t,t1,t2)) id gls =
let sort = pf_type_of gls (pf_concl gls) in
let sigma = project gls in
let env = pf_env gls in
(match find_positions env sigma t1 t2 with
| Inl (cpath, (_,dirn), _) ->
let e = pf_get_new_id (id_of_string "e") gls in
let e_env = push_named (e,None,t) env in
let discriminator =
build_discriminator sigma e_env dirn (mkVar e) sort cpath in
let (pf, absurd_term) =
discrimination_pf e (t,t1,t2) discriminator lbeq gls in
tclCOMPLETE
((tclTHENS (cut_intro absurd_term)
([onLastHyp gen_absurdity;
refine (mkApp (pf, [| mkVar id |]))]))) gls
| Inr [] -> (* Change: do not fail, simplify clear this trivial hyp *)
ntac 0 gls
| Inr posns ->
(let e = pf_get_new_id (id_of_string "e") gls in
let e_env = push_named (e,None,t) env in
let injectors =
map_succeed
(fun (cpath,t1_0,t2_0) ->
let (injbody,resty) =
build_injector sigma e_env (t1_0,t2_0) (mkVar e) cpath in
let injfun = mkNamedLambda e t injbody in
try
let _ = type_of env sigma injfun in (injfun,resty)
with e when catchable_exception e -> failwith "caught")
posns
in
if injectors = [] then
errorlabstrm "Equality.decompEqThen"
(str "Discriminate failed to decompose the equality");
(tclTHEN
(tclMAP (fun (injfun,resty) ->
let pf = applist(lbeq.congr,
[t;resty;injfun;t1;t2;
mkVar id]) in
let ty = pf_nf gls (pf_type_of gls pf) in
((tclTHENS (cut ty)
([tclIDTAC;refine pf]))))
(List.rev injectors))
(ntac (List.length injectors)))
gls))
let dEqThen ntac = function
| None -> onNegatedEquality (decompEqThen ntac)
| Some id -> try_intros_until (onEquality (decompEqThen ntac)) id
let dEq = dEqThen (fun x -> tclIDTAC)
let rewrite_msg = function
| None -> str "passed term is not a primitive equality"
| Some id -> pr_id id ++ str "does not satisfy preconditions "
let swap_equands gls eqn =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
applist(lbeq.eq,[t;e2;e1])
let swapEquandsInConcl gls =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose (pf_concl gls) in
let sym_equal = lbeq.sym in
refine (applist(sym_equal,[t;e2;e1;mkMeta (Clenv.new_meta())])) gls
let swapEquandsInHyp id gls =
((tclTHENS (cut_replacing id (swap_equands gls (pf_get_hyp_typ gls id)))
([tclIDTAC;
(tclTHEN (swapEquandsInConcl) (exact_no_check (mkVar id)))]))) gls
(* find_elim determines which elimination principle is necessary to
eliminate lbeq on sort_of_gl. It yields the boolean true wether
it is a dependent elimination principle (as idT.rect) and false
otherwise *)
let find_elim sort_of_gl lbeq =
match kind_of_term sort_of_gl with
| Sort(Prop Null) (* Prop *) -> (lbeq.ind, false)
| Sort(Prop Pos) (* Set *) ->
(match lbeq.rrec with
| Some eq_rec -> (eq_rec, false)
| None -> errorlabstrm "find_elim"
(str "this type of elimination is not allowed"))
| _ (* Type *) ->
(match lbeq.rect with
| Some eq_rect -> (eq_rect, true)
| None -> errorlabstrm "find_elim"
(str "this type of elimination is not allowed"))
(* builds a predicate [e:t][H:(lbeq t e t1)](body e)
to be used as an argument for equality dependent elimination principle:
Preconditon: dependent body (mkRel 1) *)
let build_dependent_rewrite_predicate (t,t1,t2) body lbeq gls =
let e = pf_get_new_id (id_of_string "e") gls in
let h = pf_get_new_id (id_of_string "HH") gls in
let eq_term = lbeq.eq in
(mkNamedLambda e t
(mkNamedLambda h (applist (eq_term, [t;t1;(mkRel 1)]))
(lift 1 body)))
(* builds a predicate [e:t](body e) ???
to be used as an argument for equality non-dependent elimination principle:
Preconditon: dependent body (mkRel 1) *)
let build_non_dependent_rewrite_predicate (t,t1,t2) body gls =
lambda_create (pf_env gls) (t,body)
let bareRevSubstInConcl lbeq body (t,e1,e2) gls =
let (eq_elim,dep) =
try
find_elim (pf_type_of gls (pf_concl gls)) lbeq
with e when catchable_exception e ->
errorlabstrm "RevSubstIncConcl"
(str "this type of substitution is not allowed")
in
let p =
if dep then
(build_dependent_rewrite_predicate (t,e1,e2) body lbeq gls)
else
(build_non_dependent_rewrite_predicate (t,e1,e2) body gls)
in
refine (applist(eq_elim,[t;e1;p;mkMeta(Clenv.new_meta());
e2;mkMeta(Clenv.new_meta())])) gls
(* [subst_tuple_term dep_pair B]
Given that dep_pair looks like:
(existS e1 (existS e2 ... (existS en en+1) ... ))
and B might contain instances of the ei, we will return the term:
([x1:ty(e1)]...[xn:ty(en)]B
(projS1 (mkRel 1))
(projS1 (projS2 (mkRel 1)))
... etc ...)
That is, we will abstract out the terms e1...en+1 as usual, but
will then produce a term in which the abstraction is on a single
term - the debruijn index [mkRel 1], which will be of the same type
as dep_pair.
ALGORITHM for abstraction:
We have a list of terms, [e1]...[en+1], which we want to abstract
out of [B]. For each term [ei], going backwards from [n+1], we
just do a [subst_term], and then do a lambda-abstraction to the
type of the [ei].
*)
let decomp_tuple_term env c t =
let rec decomprec inner_code ex exty =
try
let {proj1 = p1; proj2 = p2 },(a,p,car,cdr) =
find_sigma_data_decompose ex in
let car_code = applist (p1,[a;p;inner_code])
and cdr_code = applist (p2,[a;p;inner_code]) in
let cdrtyp = beta_applist (p,[car]) in
((car,a),car_code)::(decomprec cdr_code cdr cdrtyp)
with PatternMatchingFailure ->
[((ex,exty),inner_code)]
in
List.split (decomprec (mkRel 1) c t)
let subst_tuple_term env sigma dep_pair b =
let typ = get_type_of env sigma dep_pair in
let e_list,proj_list = decomp_tuple_term env dep_pair typ in
let abst_B =
List.fold_right
(fun (e,t) body -> lambda_create env (t,subst_term e body)) e_list b in
let app_B = applist(abst_B,proj_list) in app_B
(* |- (P e2)
BY RevSubstInConcl (eq T e1 e2)
|- (P e1)
|- (eq T e1 e2)
*)
(* Redondant avec Replace ! *)
let substInConcl_RL eqn gls =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
let body = subst_tuple_term (pf_env gls) (project gls) e2 (pf_concl gls) in
assert (dependent (mkRel 1) body);
bareRevSubstInConcl lbeq body (t,e1,e2) gls
(* |- (P e1)
BY SubstInConcl (eq T e1 e2)
|- (P e2)
|- (eq T e1 e2)
*)
let substInConcl_LR eqn gls =
(tclTHENS (substInConcl_RL (swap_equands gls eqn))
([tclIDTAC;
swapEquandsInConcl])) gls
let substInConcl l2r = if l2r then substInConcl_LR else substInConcl_RL
let substInHyp_LR eqn id gls =
let (lbeq,(t,e1,e2)) = find_eq_data_decompose eqn in
let body = subst_term e1 (pf_get_hyp_typ gls id) in
if not (dependent (mkRel 1) body) then errorlabstrm "SubstInHyp" (mt ());
(tclTHENS (cut_replacing id (subst1 e2 body))
([tclIDTAC;
(tclTHENS (bareRevSubstInConcl lbeq body (t,e1,e2))
([exact_no_check (mkVar id);tclIDTAC]))])) gls
let substInHyp_RL eqn id gls =
(tclTHENS (substInHyp_LR (swap_equands gls eqn) id)
([tclIDTAC;
swapEquandsInConcl])) gls
let substInHyp l2r = if l2r then substInHyp_LR else substInHyp_RL
let try_rewrite tac gls =
try
tac gls
with
| PatternMatchingFailure ->
errorlabstrm "try_rewrite" (str "Not a primitive equality here")
| e when catchable_exception e ->
errorlabstrm "try_rewrite"
(str "Cannot find a well-typed generalization of the goal that" ++
str " makes the proof progress")
let subst l2r eqn cls gls =
match cls with
| None -> substInConcl l2r eqn gls
| Some id -> substInHyp l2r eqn id gls
(* |- (P a)
* SubstConcl_LR a=b
* |- (P b)
* |- a=b
*)
let substConcl l2r eqn gls = try_rewrite (subst l2r eqn None) gls
let substConcl_LR = substConcl true
(* id:(P a) |- G
* SubstHyp a=b id
* id:(P b) |- G
* id:(P a) |-a=b
*)
let hypSubst l2r id cls gls =
onClauses (function
| None ->
(tclTHENS (substInConcl l2r (pf_get_hyp_typ gls id))
([tclIDTAC; exact_no_check (mkVar id)]))
| Some (hypid,_,_) ->
(tclTHENS (substInHyp l2r (pf_get_hyp_typ gls id) hypid)
([tclIDTAC;exact_no_check (mkVar id)])))
cls gls
let hypSubst_LR = hypSubst true
(* id:a=b |- (P a)
* HypSubst id.
* id:a=b |- (P b)
*)
let substHypInConcl l2r id gls = try_rewrite (hypSubst l2r id onConcl) gls
let substHypInConcl_LR = substHypInConcl true
(* id:a=b H:(P a) |- G
SubstHypInHyp id H.
id:a=b H:(P b) |- G
*)
(* |- (P b)
SubstConcl_RL a=b
|- (P a)
|- a=b
*)
let substConcl_RL = substConcl false
(* id:(P b) |-G
SubstHyp_RL a=b id
id:(P a) |- G
|- a=b
*)
let substHyp l2r eqn id gls = try_rewrite (subst l2r eqn (Some id)) gls
let substHyp_RL = substHyp false
let hypSubst_RL = hypSubst false
(* id:a=b |- (P b)
* HypSubst id.
* id:a=b |- (P a)
*)
let substHypInConcl_RL = substHypInConcl false
(* id:a=b H:(P b) |- G
SubstHypInHyp id H.
id:a=b H:(P a) |- G
*)
(* Substitutions tactics (JCF) *)
let unfold_body x gl =
let hyps = pf_hyps gl in
let xval =
match Sign.lookup_named x hyps with
(_,Some xval,_) -> xval
| _ -> errorlabstrm "unfold_body"
(pr_id x ++ str" is not a defined hypothesis") in
let aft = afterHyp x gl in
let hl = List.fold_right
(fun (y,yval,_) cl -> (y,[],(InHyp,ref None)) :: cl) aft [] in
let xvar = mkVar x in
let rfun _ _ c = replace_term xvar xval c in
tclTHENLIST
[tclMAP (fun h -> reduct_in_hyp rfun h) hl;
reduct_in_concl rfun] gl
exception FoundHyp of (identifier * constr * bool)
(* tests whether hyp [c] is [x = t] or [t = x], [x] not occuring in [t] *)
let is_eq_x x (id,_,c) =
try
let (_,lhs,rhs) = snd (find_eq_data_decompose c) in
if (x = lhs) && not (occur_term x rhs) then raise (FoundHyp (id,rhs,true));
if (x = rhs) && not (occur_term x lhs) then raise (FoundHyp (id,lhs,false))
with PatternMatchingFailure ->
()
let subst_one x gl =
let hyps = pf_hyps gl in
let (_,xval,_) = pf_get_hyp gl x in
(* If x has a body, simply replace x with body and clear x *)
if xval <> None then tclTHEN (unfold_body x) (clear [x]) gl else
(* x is a variable: *)
let varx = mkVar x in
(* Find a non-recursive definition for x *)
let (hyp,rhs,dir) =
try
let test hyp _ = is_eq_x varx hyp in
Sign.fold_named_context test ~init:() hyps;
errorlabstrm "Subst"
(str "cannot find any non-recursive equality over " ++ pr_id x)
with FoundHyp res -> res
in
(* The set of hypotheses using x *)
let depdecls =
let test (id,_,c as dcl) =
if id <> hyp && occur_var_in_decl (pf_env gl) x dcl then dcl
else failwith "caught" in
List.rev (map_succeed test hyps) in
let dephyps = List.map (fun (id,_,_) -> id) depdecls in
(* Decides if x appears in conclusion *)
let depconcl = occur_var (pf_env gl) x (pf_concl gl) in
(* The set of non-defined hypothesis: they must be abstracted,
rewritten and reintroduced *)
let abshyps =
map_succeed
(fun (id,v,_) -> if v=None then mkVar id else failwith "caught")
depdecls in
(* a tactic that either introduce an abstracted and rewritten hyp,
or introduce a definition where x was replaced *)
let introtac = function
(id,None,_) -> intro_using id
| (id,Some hval,htyp) ->
forward true (Name id) (mkCast(replace_term varx rhs hval,
replace_term varx rhs htyp)) in
let need_rewrite = dephyps <> [] || depconcl in
tclTHENLIST
((if need_rewrite then
[generalize abshyps;
(if dir then rewriteLR else rewriteRL) (mkVar hyp);
thin dephyps;
tclMAP introtac depdecls]
else
[thin dephyps;
tclMAP introtac depdecls]) @
[tclTRY (clear [x;hyp])]) gl
let subst = tclMAP subst_one
let subst_all gl =
let test (_,c) =
try
let (_,x,y) = snd (find_eq_data_decompose c) in
match kind_of_term x with Var x -> x | _ ->
match kind_of_term y with Var y -> y | _ -> failwith "caught"
with PatternMatchingFailure -> failwith "caught"
in
let ids = map_succeed test (pf_hyps_types gl) in
let ids = list_uniquize ids in
subst ids gl
(* Rewrite the first assumption for which the condition faildir does not fail
and gives the direction of the rewrite *)
let rewrite_assumption_cond faildir gl =
let rec arec = function
| [] -> error "No such assumption"
| (id,_,t)::rest ->
(try let dir = faildir t gl in
general_rewrite dir (mkVar id) gl
with Failure _ | UserError _ -> arec rest)
in arec (pf_hyps gl)
let rewrite_assumption_cond_in faildir hyp gl =
let rec arec = function
| [] -> error "No such assumption"
| (id,_,t)::rest ->
(try let dir = faildir t gl in
general_rewrite_in dir hyp ((mkVar id),NoBindings) gl
with Failure _ | UserError _ -> arec rest)
in arec (pf_hyps gl)
let cond_eq_term_left c t gl =
try
let (_,x,_) = snd (find_eq_data_decompose t) in
if pf_conv_x gl c x then true else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let cond_eq_term_right c t gl =
try
let (_,_,x) = snd (find_eq_data_decompose t) in
if pf_conv_x gl c x then false else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let cond_eq_term c t gl =
try
let (_,x,y) = snd (find_eq_data_decompose t) in
if pf_conv_x gl c x then true
else if pf_conv_x gl c y then false
else failwith "not convertible"
with PatternMatchingFailure -> failwith "not an equality"
let replace_term_left t = rewrite_assumption_cond (cond_eq_term_left t)
let replace_term_right t = rewrite_assumption_cond (cond_eq_term_right t)
let replace_term t = rewrite_assumption_cond (cond_eq_term t)
let replace_term_in_left t = rewrite_assumption_cond_in (cond_eq_term_left t)
let replace_term_in_right t = rewrite_assumption_cond_in (cond_eq_term_right t)
let replace_term_in t = rewrite_assumption_cond_in (cond_eq_term t)
|