1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(************************************************************************)
(* EqDecide *)
(* A tactic for deciding propositional equality on inductive types *)
(* by Eduardo Gimenez *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: eqdecide.ml4 11309 2008-08-06 10:30:35Z herbelin $ *)
open Util
open Names
open Nameops
open Term
open Declarations
open Tactics
open Tacticals
open Hiddentac
open Equality
open Auto
open Pattern
open Matching
open Hipattern
open Proof_trees
open Proof_type
open Tacmach
open Coqlib
(* This file containts the implementation of the tactics ``Decide
Equality'' and ``Compare''. They can be used to decide the
propositional equality of two objects that belongs to a small
inductive datatype --i.e., an inductive set such that all the
arguments of its constructors are non-functional sets.
The procedure for proving (x,y:R){x=y}+{~x=y} can be scketched as
follows:
1. Eliminate x and then y.
2. Try discrimination to solve those goals where x and y has
been introduced by different constructors.
3. If x and y have been introduced by the same constructor,
then analyse one by one the corresponding pairs of arguments.
If they are equal, rewrite one into the other. If they are
not, derive a contradiction from the injectiveness of the
constructor.
4. Once all the arguments have been rewritten, solve the remaining half
of the disjunction by reflexivity.
Eduardo Gimenez (30/3/98).
*)
let clear_last = (tclLAST_HYP (fun c -> (clear [destVar c])))
let choose_eq eqonleft =
if eqonleft then h_simplest_left else h_simplest_right
let choose_noteq eqonleft =
if eqonleft then h_simplest_right else h_simplest_left
let mkBranches c1 c2 =
tclTHENSEQ
[generalize [c2];
h_simplest_elim c1;
intros;
tclLAST_HYP h_simplest_case;
clear_last;
intros]
let solveNoteqBranch side =
tclTHEN (choose_noteq side)
(tclTHEN (intro_force true)
(onLastHyp (fun id -> Extratactics.h_discrHyp id)))
let h_solveNoteqBranch side =
Refiner.abstract_extended_tactic "solveNoteqBranch" []
(solveNoteqBranch side)
(* Constructs the type {c1=c2}+{~c1=c2} *)
let mkDecideEqGoal eqonleft op rectype c1 c2 g =
let equality = mkApp(build_coq_eq(), [|rectype; c1; c2|]) in
let disequality = mkApp(build_coq_not (), [|equality|]) in
if eqonleft then mkApp(op, [|equality; disequality |])
else mkApp(op, [|disequality; equality |])
(* Constructs the type (x1,x2:R){x1=x2}+{~x1=x2} *)
let mkGenDecideEqGoal rectype g =
let hypnames = pf_ids_of_hyps g in
let xname = next_ident_away (id_of_string "x") hypnames
and yname = next_ident_away (id_of_string "y") hypnames in
(mkNamedProd xname rectype
(mkNamedProd yname rectype
(mkDecideEqGoal true (build_coq_sumbool ())
rectype (mkVar xname) (mkVar yname) g)))
let eqCase tac =
(tclTHEN intro
(tclTHEN (tclLAST_HYP Equality.rewriteLR)
(tclTHEN clear_last
tac)))
let diseqCase eqonleft =
let diseq = id_of_string "diseq" in
let absurd = id_of_string "absurd" in
(tclTHEN (intro_using diseq)
(tclTHEN (choose_noteq eqonleft)
(tclTHEN red_in_concl
(tclTHEN (intro_using absurd)
(tclTHEN (h_simplest_apply (mkVar diseq))
(tclTHEN (Extratactics.h_injHyp absurd)
(full_trivial [])))))))
let solveArg eqonleft op a1 a2 tac g =
let rectype = pf_type_of g a1 in
let decide = mkDecideEqGoal eqonleft op rectype a1 a2 g in
let subtacs =
if eqonleft then [eqCase tac;diseqCase eqonleft;default_auto]
else [diseqCase eqonleft;eqCase tac;default_auto] in
(tclTHENS (h_elim_type decide) subtacs) g
let solveEqBranch rectype g =
try
let (eqonleft,op,lhs,rhs,_) = match_eqdec (pf_concl g) in
let (mib,mip) = Global.lookup_inductive rectype in
let nparams = mib.mind_nparams in
let getargs l = list_skipn nparams (snd (decompose_app l)) in
let rargs = getargs rhs
and largs = getargs lhs in
List.fold_right2
(solveArg eqonleft op) largs rargs
(tclTHEN (choose_eq eqonleft) h_reflexivity) g
with PatternMatchingFailure -> error "Unexpected conclusion!"
(* The tactic Decide Equality *)
let hd_app c = match kind_of_term c with
| App (h,_) -> h
| _ -> c
let decideGralEquality g =
try
let eqonleft,_,c1,c2,typ = match_eqdec (pf_concl g) in
let headtyp = hd_app (pf_compute g typ) in
let rectype =
match kind_of_term headtyp with
| Ind mi -> mi
| _ -> error"This decision procedure only works for inductive objects."
in
(tclTHEN
(mkBranches c1 c2)
(tclORELSE (h_solveNoteqBranch eqonleft) (solveEqBranch rectype)))
g
with PatternMatchingFailure ->
error "The goal must be of the form {x<>y}+{x=y} or {x=y}+{x<>y}."
let decideEqualityGoal = tclTHEN intros decideGralEquality
let decideEquality c1 c2 g =
let rectype = (pf_type_of g c1) in
let decide = mkGenDecideEqGoal rectype g in
(tclTHENS (cut decide) [default_auto;decideEqualityGoal]) g
(* The tactic Compare *)
let compare c1 c2 g =
let rectype = pf_type_of g c1 in
let decide = mkDecideEqGoal true (build_coq_sumbool ()) rectype c1 c2 g in
(tclTHENS (cut decide)
[(tclTHEN intro
(tclTHEN (tclLAST_HYP simplest_case)
clear_last));
decideEquality c1 c2]) g
(* User syntax *)
TACTIC EXTEND decide_equality
[ "decide" "equality" constr(c1) constr(c2) ] -> [ decideEquality c1 c2 ]
| [ "decide" "equality" ] -> [ decideEqualityGoal ]
END
TACTIC EXTEND compare
| [ "compare" constr(c1) constr(c2) ] -> [ compare c1 c2 ]
END
|