1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: decl_proof_instr.ml 11309 2008-08-06 10:30:35Z herbelin $ *)
open Util
open Pp
open Evd
open Refiner
open Proof_type
open Proof_trees
open Tacmach
open Tacinterp
open Decl_expr
open Decl_mode
open Decl_interp
open Rawterm
open Names
open Nameops
open Declarations
open Tactics
open Tacticals
open Term
open Termops
open Reductionops
open Goptions
(* Strictness option *)
let get_its_info gls = get_info gls.it
let get_strictness,set_strictness =
let strictness = ref false in
(fun () -> (!strictness)),(fun b -> strictness:=b)
let _ =
declare_bool_option
{ optsync = true;
optname = "strict mode";
optkey = (SecondaryTable ("Strict","Proofs"));
optread = get_strictness;
optwrite = set_strictness }
let tcl_change_info_gen info_gen =
(fun gls ->
let gl =sig_it gls in
{it=[{gl with evar_extra=info_gen}];sigma=sig_sig gls},
function
[pftree] ->
{pftree with
goal=gl;
ref=Some (Prim Change_evars,[pftree])}
| _ -> anomaly "change_info : Wrong number of subtrees")
let tcl_change_info info gls = tcl_change_info_gen (Some (pm_in info)) gls
let tcl_erase_info gls = tcl_change_info_gen None gls
let special_whd gl=
let infos=Closure.create_clos_infos Closure.betadeltaiota (pf_env gl) in
(fun t -> Closure.whd_val infos (Closure.inject t))
let special_nf gl=
let infos=Closure.create_clos_infos Closure.betaiotazeta (pf_env gl) in
(fun t -> Closure.norm_val infos (Closure.inject t))
let is_good_inductive env ind =
let mib,oib = Inductive.lookup_mind_specif env ind in
oib.mind_nrealargs = 0 && not (Inductiveops.mis_is_recursive (ind,mib,oib))
let check_not_per pts =
if not (Proof_trees.is_complete_proof (proof_of_pftreestate pts)) then
match get_stack pts with
Per (_,_,_,_)::_ ->
error "You are inside a proof per cases/induction.\n\
Please \"suppose\" something or \"end\" it now."
| _ -> ()
let mk_evd metalist gls =
let evd0= create_goal_evar_defs (sig_sig gls) in
let add_one (meta,typ) evd =
meta_declare meta typ evd in
List.fold_right add_one metalist evd0
let is_tmp id = (string_of_id id).[0] = '_'
let tmp_ids gls =
let ctx = pf_hyps gls in
match ctx with
[] -> []
| _::q -> List.filter is_tmp (ids_of_named_context q)
let clean_tmp gls =
let clean_id id0 gls0 =
tclTRY (clear [id0]) gls0 in
let rec clean_all = function
[] -> tclIDTAC
| id :: rest -> tclTHEN (clean_id id) (clean_all rest)
in
clean_all (tmp_ids gls) gls
let assert_postpone id t =
assert_as true (dummy_loc, Genarg.IntroIdentifier id) t
(* start a proof *)
let start_proof_tac gls=
let gl=sig_it gls in
let info={pm_stack=[]} in
{it=[{gl with evar_extra=Some (pm_in info)}];sigma=sig_sig gls},
function
[pftree] ->
{pftree with
goal=gl;
ref=Some (Decl_proof true,[pftree])}
| _ -> anomaly "Dem : Wrong number of subtrees"
let go_to_proof_mode () =
Pfedit.mutate
(fun pts -> nth_unproven 1 (solve_pftreestate start_proof_tac pts))
(* closing gaps *)
let daimon_tac gls =
set_daimon_flag ();
({it=[];sigma=sig_sig gls},
function
[] ->
{open_subgoals=0;
goal=sig_it gls;
ref=Some (Daimon,[])}
| _ -> anomaly "Daimon: Wrong number of subtrees")
let daimon _ pftree =
set_daimon_flag ();
{pftree with
open_subgoals=0;
ref=Some (Daimon,[])}
let daimon_subtree = map_pftreestate (fun _ -> frontier_mapi daimon )
(* marking closed blocks *)
let rec is_focussing_instr = function
Pthus i | Pthen i | Phence i -> is_focussing_instr i
| Pescape | Pper _ | Pclaim _ | Pfocus _
| Psuppose _ | Pcase (_,_,_) -> true
| _ -> false
let mark_rule_as_done = function
Decl_proof true -> Decl_proof false
| Decl_proof false ->
anomaly "already marked as done"
| Nested(Proof_instr (lock_focus,instr),spfl) ->
if lock_focus then
Nested(Proof_instr (false,instr),spfl)
else
anomaly "already marked as done"
| _ -> anomaly "mark_rule_as_done"
let mark_proof_tree_as_done pt =
match pt.ref with
None -> anomaly "mark_proof_tree_as_done"
| Some (r,spfl) ->
{pt with ref= Some (mark_rule_as_done r,spfl)}
let mark_as_done pts =
map_pftreestate
(fun _ -> mark_proof_tree_as_done)
(traverse 0 pts)
(* post-instruction focus management *)
let goto_current_focus pts = up_until_matching_rule is_focussing_command pts
let goto_current_focus_or_top pts =
try
up_until_matching_rule is_focussing_command pts
with Not_found -> top_of_tree pts
(* return *)
let close_tactic_mode pts =
let pts1=
try goto_current_focus pts
with Not_found ->
error "\"return\" cannot be used outside of Declarative Proof Mode." in
let pts2 = daimon_subtree pts1 in
let pts3 = mark_as_done pts2 in
goto_current_focus pts3
let return_from_tactic_mode () = Pfedit.mutate close_tactic_mode
(* end proof/claim *)
let close_block bt pts =
let stack =
if Proof_trees.is_complete_proof (proof_of_pftreestate pts) then
get_top_stack pts
else
get_stack pts in
match bt,stack with
B_claim, Claim::_ | B_focus, Focus_claim::_ | B_proof, [] ->
daimon_subtree (goto_current_focus pts)
| _, Claim::_ ->
error "\"end claim\" expected."
| _, Focus_claim::_ ->
error "\"end focus\" expected."
| _, [] ->
error "\"end proof\" expected."
| _, (Per (et,_,_,_)::_|Suppose_case::Per (et,_,_,_)::_) ->
begin
match et with
ET_Case_analysis -> error "\"end cases\" expected."
| ET_Induction -> error "\"end induction\" expected."
end
| _,_ -> anomaly "Lonely suppose on stack."
(* utility for suppose / suppose it is *)
let close_previous_case pts =
if
Proof_trees.is_complete_proof (proof_of_pftreestate pts)
then
match get_top_stack pts with
Per (et,_,_,_) :: _ -> anomaly "Weird case occured ..."
| Suppose_case :: Per (et,_,_,_) :: _ ->
goto_current_focus (mark_as_done pts)
| _ -> error "Not inside a proof per cases or induction."
else
match get_stack pts with
Per (et,_,_,_) :: _ -> pts
| Suppose_case :: Per (et,_,_,_) :: _ ->
goto_current_focus (mark_as_done (daimon_subtree pts))
| _ -> error "Not inside a proof per cases or induction."
(* Proof instructions *)
(* automation *)
let filter_hyps f gls =
let filter_aux (id,_,_) =
if f id then
tclIDTAC
else
tclTRY (clear [id]) in
tclMAP filter_aux (Environ.named_context_of_val gls.it.evar_hyps) gls
let local_hyp_prefix = id_of_string "___"
let add_justification_hyps keep items gls =
let add_aux c gls=
match kind_of_term c with
Var id ->
keep:=Idset.add id !keep;
tclIDTAC gls
| _ ->
let id=pf_get_new_id local_hyp_prefix gls in
keep:=Idset.add id !keep;
tclTHEN (letin_tac None (Names.Name id) c Tacexpr.nowhere)
(thin_body [id]) gls in
tclMAP add_aux items gls
let prepare_goal items gls =
let tokeep = ref Idset.empty in
let auxres = add_justification_hyps tokeep items gls in
tclTHENLIST
[ (fun _ -> auxres);
filter_hyps (let keep = !tokeep in fun id -> Idset.mem id keep)] gls
let my_automation_tac = ref
(fun gls -> anomaly "No automation registered")
let register_automation_tac tac = my_automation_tac:= tac
let automation_tac gls = !my_automation_tac gls
let justification tac gls=
tclORELSE
(tclSOLVE [tclTHEN tac assumption])
(fun gls ->
if get_strictness () then
error "Insufficient justification."
else
begin
msg_warning (str "Insufficient justification.");
daimon_tac gls
end) gls
let default_justification elems gls=
justification (tclTHEN (prepare_goal elems) automation_tac) gls
(* code for conclusion refining *)
let constant dir s = lazy (Coqlib.gen_constant "Declarative" dir s)
let _and = constant ["Init";"Logic"] "and"
let _and_rect = constant ["Init";"Logic"] "and_rect"
let _prod = constant ["Init";"Datatypes"] "prod"
let _prod_rect = constant ["Init";"Datatypes"] "prod_rect"
let _ex = constant ["Init";"Logic"] "ex"
let _ex_ind = constant ["Init";"Logic"] "ex_ind"
let _sig = constant ["Init";"Specif"] "sig"
let _sig_rect = constant ["Init";"Specif"] "sig_rect"
let _sigT = constant ["Init";"Specif"] "sigT"
let _sigT_rect = constant ["Init";"Specif"] "sigT_rect"
type stackd_elt =
{se_meta:metavariable;
se_type:types;
se_last_meta:metavariable;
se_meta_list:(metavariable*types) list;
se_evd: evar_defs}
let rec replace_in_list m l = function
[] -> raise Not_found
| c::q -> if m=fst c then l@q else c::replace_in_list m l q
let enstack_subsubgoals env se stack gls=
let hd,params = decompose_app (special_whd gls se.se_type) in
match kind_of_term hd with
Ind ind when is_good_inductive env ind ->
let mib,oib=
Inductive.lookup_mind_specif env ind in
let gentypes=
Inductive.arities_of_constructors ind (mib,oib) in
let process i gentyp =
let constructor = mkConstruct(ind,succ i)
(* constructors numbering*) in
let appterm = applist (constructor,params) in
let apptype = Term.prod_applist gentyp params in
let rc,_ = Reduction.dest_prod env apptype in
let rec meta_aux last lenv = function
[] -> (last,lenv,[])
| (nam,_,typ)::q ->
let nlast=succ last in
let (llast,holes,metas) =
meta_aux nlast (mkMeta nlast :: lenv) q in
(llast,holes,(nlast,special_nf gls (substl lenv typ))::metas) in
let (nlast,holes,nmetas) =
meta_aux se.se_last_meta [] (List.rev rc) in
let refiner = applist (appterm,List.rev holes) in
let evd = meta_assign se.se_meta
(refiner,(ConvUpToEta 0,TypeProcessed (* ? *))) se.se_evd in
let ncreated = replace_in_list
se.se_meta nmetas se.se_meta_list in
let evd0 = List.fold_left
(fun evd (m,typ) -> meta_declare m typ evd) evd nmetas in
List.iter (fun (m,typ) ->
Stack.push
{se_meta=m;
se_type=typ;
se_evd=evd0;
se_meta_list=ncreated;
se_last_meta=nlast} stack) (List.rev nmetas)
in
Array.iteri process gentypes
| _ -> ()
let rec nf_list evd =
function
[] -> []
| (m,typ)::others ->
if meta_defined evd m then
nf_list evd others
else
(m,nf_meta evd typ)::nf_list evd others
let find_subsubgoal c ctyp skip submetas gls =
let env= pf_env gls in
let concl = pf_concl gls in
let evd = mk_evd ((0,concl)::submetas) gls in
let stack = Stack.create () in
let max_meta =
List.fold_left (fun a (m,_) -> max a m) 0 submetas in
let _ = Stack.push
{se_meta=0;
se_type=concl;
se_last_meta=max_meta;
se_meta_list=[0,concl];
se_evd=evd} stack in
let rec dfs n =
let se = Stack.pop stack in
try
let unifier =
Unification.w_unify true env Reduction.CUMUL
ctyp se.se_type se.se_evd in
if n <= 0 then
{se with
se_evd=meta_assign se.se_meta
(c,(ConvUpToEta 0,TypeNotProcessed (* ?? *))) unifier;
se_meta_list=replace_in_list
se.se_meta submetas se.se_meta_list}
else
dfs (pred n)
with _ ->
begin
enstack_subsubgoals env se stack gls;
dfs n
end in
let nse= try dfs skip with Stack.Empty -> raise Not_found in
nf_list nse.se_evd nse.se_meta_list,nf_meta nse.se_evd (mkMeta 0)
let concl_refiner metas body gls =
let concl = pf_concl gls in
let evd = sig_sig gls in
let env = pf_env gls in
let sort = family_of_sort (Typing.sort_of env evd concl) in
let rec aux env avoid subst = function
[] -> anomaly "concl_refiner: cannot happen"
| (n,typ)::rest ->
let _A = subst_meta subst typ in
let x = id_of_name_using_hdchar env _A Anonymous in
let _x = fresh_id avoid x gls in
let nenv = Environ.push_named (_x,None,_A) env in
let asort = family_of_sort (Typing.sort_of nenv evd _A) in
let nsubst = (n,mkVar _x)::subst in
if rest = [] then
asort,_A,mkNamedLambda _x _A (subst_meta nsubst body)
else
let bsort,_B,nbody =
aux nenv (_x::avoid) ((n,mkVar _x)::subst) rest in
let body = mkNamedLambda _x _A nbody in
if occur_term (mkVar _x) _B then
begin
let _P = mkNamedLambda _x _A _B in
match bsort,sort with
InProp,InProp ->
let _AxB = mkApp(Lazy.force _ex,[|_A;_P|]) in
InProp,_AxB,
mkApp(Lazy.force _ex_ind,[|_A;_P;concl;body|])
| InProp,_ ->
let _AxB = mkApp(Lazy.force _sig,[|_A;_P|]) in
let _P0 = mkLambda(Anonymous,_AxB,concl) in
InType,_AxB,
mkApp(Lazy.force _sig_rect,[|_A;_P;_P0;body|])
| _,_ ->
let _AxB = mkApp(Lazy.force _sigT,[|_A;_P|]) in
let _P0 = mkLambda(Anonymous,_AxB,concl) in
InType,_AxB,
mkApp(Lazy.force _sigT_rect,[|_A;_P;_P0;body|])
end
else
begin
match asort,bsort with
InProp,InProp ->
let _AxB = mkApp(Lazy.force _and,[|_A;_B|]) in
InProp,_AxB,
mkApp(Lazy.force _and_rect,[|_A;_B;concl;body|])
|_,_ ->
let _AxB = mkApp(Lazy.force _prod,[|_A;_B|]) in
let _P0 = mkLambda(Anonymous,_AxB,concl) in
InType,_AxB,
mkApp(Lazy.force _prod_rect,[|_A;_B;_P0;body|])
end
in
let (_,_,prf) = aux env [] [] metas in
mkApp(prf,[|mkMeta 1|])
let thus_tac c ctyp submetas gls =
let list,proof =
try
find_subsubgoal c ctyp 0 submetas gls
with Not_found ->
error "I could not relate this statement to the thesis." in
if list = [] then
exact_check proof gls
else
let refiner = concl_refiner list proof gls in
Tactics.refine refiner gls
(* general forward step *)
let anon_id_base = id_of_string "__"
let mk_stat_or_thesis info gls = function
This c -> c
| Thesis (For _ ) ->
error "\"thesis for ...\" is not applicable here."
| Thesis Plain -> pf_concl gls
let just_tac _then cut info gls0 =
let items_tac gls =
match cut.cut_by with
None -> tclIDTAC gls
| Some items ->
let items_ =
if _then then
let last_id = get_last (pf_env gls) in
(mkVar last_id)::items
else items
in prepare_goal items_ gls in
let method_tac gls =
match cut.cut_using with
None ->
automation_tac gls
| Some tac ->
(Tacinterp.eval_tactic tac) gls in
justification (tclTHEN items_tac method_tac) gls0
let instr_cut mkstat _thus _then cut gls0 =
let info = get_its_info gls0 in
let stat = cut.cut_stat in
let (c_id,_) = match stat.st_label with
Anonymous ->
pf_get_new_id (id_of_string "_fact") gls0,false
| Name id -> id,true in
let c_stat = mkstat info gls0 stat.st_it in
let thus_tac gls=
if _thus then
thus_tac (mkVar c_id) c_stat [] gls
else tclIDTAC gls in
tclTHENS (assert_postpone c_id c_stat)
[tclTHEN tcl_erase_info (just_tac _then cut info);
thus_tac] gls0
(* iterated equality *)
let _eq = Libnames.constr_of_global (Coqlib.glob_eq)
let decompose_eq id gls =
let typ = pf_get_hyp_typ gls id in
let whd = (special_whd gls typ) in
match kind_of_term whd with
App (f,args)->
if eq_constr f _eq && (Array.length args)=3
then (args.(0),
args.(1),
args.(2))
else error "Previous step is not an equality."
| _ -> error "Previous step is not an equality."
let instr_rew _thus rew_side cut gls0 =
let last_id =
try get_last (pf_env gls0) with _ -> error "No previous equality." in
let typ,lhs,rhs = decompose_eq last_id gls0 in
let items_tac gls =
match cut.cut_by with
None -> tclIDTAC gls
| Some items -> prepare_goal items gls in
let method_tac gls =
match cut.cut_using with
None ->
automation_tac gls
| Some tac ->
(Tacinterp.eval_tactic tac) gls in
let just_tac gls =
justification (tclTHEN items_tac method_tac) gls in
let (c_id,_) = match cut.cut_stat.st_label with
Anonymous ->
pf_get_new_id (id_of_string "_eq") gls0,false
| Name id -> id,true in
let thus_tac new_eq gls=
if _thus then
thus_tac (mkVar c_id) new_eq [] gls
else tclIDTAC gls in
match rew_side with
Lhs ->
let new_eq = mkApp(_eq,[|typ;cut.cut_stat.st_it;rhs|]) in
tclTHENS (assert_postpone c_id new_eq)
[tclTHEN tcl_erase_info
(tclTHENS (transitivity lhs)
[just_tac;exact_check (mkVar last_id)]);
thus_tac new_eq] gls0
| Rhs ->
let new_eq = mkApp(_eq,[|typ;lhs;cut.cut_stat.st_it|]) in
tclTHENS (assert_postpone c_id new_eq)
[tclTHEN tcl_erase_info
(tclTHENS (transitivity rhs)
[exact_check (mkVar last_id);just_tac]);
thus_tac new_eq] gls0
(* tactics for claim/focus *)
let instr_claim _thus st gls0 =
let info = get_its_info gls0 in
let (id,_) = match st.st_label with
Anonymous -> pf_get_new_id (id_of_string "_claim") gls0,false
| Name id -> id,true in
let thus_tac gls=
if _thus then
thus_tac (mkVar id) st.st_it [] gls
else tclIDTAC gls in
let ninfo1 = {pm_stack=
(if _thus then Focus_claim else Claim)::info.pm_stack} in
tclTHENS (assert_postpone id st.st_it)
[tcl_change_info ninfo1;
thus_tac] gls0
(* tactics for assume *)
let push_intro_tac coerce nam gls =
let (hid,_) =
match nam with
Anonymous -> pf_get_new_id (id_of_string "_hyp") gls,false
| Name id -> id,true in
tclTHENLIST
[intro_mustbe_force hid;
coerce hid]
gls
let assume_tac hyps gls =
List.fold_right
(fun (Hvar st | Hprop st) ->
tclTHEN
(push_intro_tac
(fun id ->
convert_hyp (id,None,st.st_it)) st.st_label))
hyps tclIDTAC gls
let assume_hyps_or_theses hyps gls =
List.fold_right
(function
(Hvar {st_label=nam;st_it=c} | Hprop {st_label=nam;st_it=This c}) ->
tclTHEN
(push_intro_tac
(fun id ->
convert_hyp (id,None,c)) nam)
| Hprop {st_label=nam;st_it=Thesis (tk)} ->
tclTHEN
(push_intro_tac
(fun id -> tclIDTAC) nam))
hyps tclIDTAC gls
let assume_st hyps gls =
List.fold_right
(fun st ->
tclTHEN
(push_intro_tac
(fun id -> convert_hyp (id,None,st.st_it)) st.st_label))
hyps tclIDTAC gls
let assume_st_letin hyps gls =
List.fold_right
(fun st ->
tclTHEN
(push_intro_tac
(fun id ->
convert_hyp (id,Some (fst st.st_it),snd st.st_it)) st.st_label))
hyps tclIDTAC gls
(* suffices *)
let rec metas_from n hyps =
match hyps with
_ :: q -> n :: metas_from (succ n) q
| [] -> []
let rec build_product args body =
match args with
(Hprop st| Hvar st )::rest ->
let pprod= lift 1 (build_product rest body) in
let lbody =
match st.st_label with
Anonymous -> pprod
| Name id -> subst_term (mkVar id) pprod in
mkProd (st.st_label, st.st_it, lbody)
| [] -> body
let rec build_applist prod = function
[] -> [],prod
| n::q ->
let (_,typ,_) = destProd prod in
let ctx,head = build_applist (Term.prod_applist prod [mkMeta n]) q in
(n,typ)::ctx,head
let instr_suffices _then cut gls0 =
let info = get_its_info gls0 in
let c_id = pf_get_new_id (id_of_string "_cofact") gls0 in
let ctx,hd = cut.cut_stat in
let c_stat = build_product ctx (mk_stat_or_thesis info gls0 hd) in
let metas = metas_from 1 ctx in
let c_ctx,c_head = build_applist c_stat metas in
let c_term = applist (mkVar c_id,List.map mkMeta metas) in
let thus_tac gls=
thus_tac c_term c_head c_ctx gls in
tclTHENS (assert_postpone c_id c_stat)
[tclTHENLIST
[ assume_tac ctx;
tcl_erase_info;
just_tac _then cut info];
thus_tac] gls0
(* tactics for consider/given *)
let conjunction_arity id gls =
let typ = pf_get_hyp_typ gls id in
let hd,params = decompose_app (special_whd gls typ) in
let env =pf_env gls in
match kind_of_term hd with
Ind ind when is_good_inductive env ind ->
let mib,oib=
Inductive.lookup_mind_specif env ind in
let gentypes=
Inductive.arities_of_constructors ind (mib,oib) in
let _ = if Array.length gentypes <> 1 then raise Not_found in
let apptype = Term.prod_applist gentypes.(0) params in
let rc,_ = Reduction.dest_prod env apptype in
List.length rc
| _ -> raise Not_found
let rec intron_then n ids ltac gls =
if n<=0 then
ltac ids gls
else
let id = pf_get_new_id (id_of_string "_tmp") gls in
tclTHEN
(intro_mustbe_force id)
(intron_then (pred n) (id::ids) ltac) gls
let rec consider_match may_intro introduced available expected gls =
match available,expected with
[],[] ->
tclIDTAC gls
| _,[] -> error "Last statements do not match a complete hypothesis."
(* should tell which ones *)
| [],hyps ->
if may_intro then
begin
let id = pf_get_new_id (id_of_string "_tmp") gls in
tclIFTHENELSE
(intro_mustbe_force id)
(consider_match true [] [id] hyps)
(fun _ ->
error "Not enough sub-hypotheses to match statements.")
gls
end
else
error "Not enough sub-hypotheses to match statements."
(* should tell which ones *)
| id::rest_ids,(Hvar st | Hprop st)::rest ->
tclIFTHENELSE (convert_hyp (id,None,st.st_it))
begin
match st.st_label with
Anonymous ->
consider_match may_intro ((id,false)::introduced) rest_ids rest
| Name hid ->
tclTHENLIST
[rename_hyp [id,hid];
consider_match may_intro ((hid,true)::introduced) rest_ids rest]
end
begin
(fun gls ->
let nhyps =
try conjunction_arity id gls with
Not_found -> error "Matching hypothesis not found." in
tclTHENLIST
[general_case_analysis false (mkVar id,NoBindings);
intron_then nhyps []
(fun l -> consider_match may_intro introduced
(List.rev_append l rest_ids) expected)] gls)
end
gls
let consider_tac c hyps gls =
match kind_of_term (strip_outer_cast c) with
Var id ->
consider_match false [] [id] hyps gls
| _ ->
let id = pf_get_new_id (id_of_string "_tmp") gls in
tclTHEN
(forward None (dummy_loc, Genarg.IntroIdentifier id) c)
(consider_match false [] [id] hyps) gls
let given_tac hyps gls =
consider_match true [] [] hyps gls
(* tactics for take *)
let rec take_tac wits gls =
match wits with
[] -> tclIDTAC gls
| wit::rest ->
let typ = pf_type_of gls wit in
tclTHEN (thus_tac wit typ []) (take_tac rest) gls
(* tactics for define *)
let rec build_function args body =
match args with
st::rest ->
let pfun= lift 1 (build_function rest body) in
let id = match st.st_label with
Anonymous -> assert false
| Name id -> id in
mkLambda (Name id, st.st_it, subst_term (mkVar id) pfun)
| [] -> body
let define_tac id args body gls =
let t = build_function args body in
letin_tac None (Name id) t Tacexpr.nowhere gls
(* tactics for reconsider *)
let cast_tac id_or_thesis typ gls =
match id_or_thesis with
This id ->
let (_,body,_) = pf_get_hyp gls id in
convert_hyp (id,body,typ) gls
| Thesis (For _ ) ->
error "\"thesis for ...\" is not applicable here."
| Thesis Plain ->
convert_concl typ DEFAULTcast gls
(* per cases *)
let is_rec_pos (main_ind,wft) =
match main_ind with
None -> false
| Some index ->
match fst (Rtree.dest_node wft) with
Mrec i when i = index -> true
| _ -> false
let rec constr_trees (main_ind,wft) ind =
match Rtree.dest_node wft with
Norec,_ ->
let itree =
(snd (Global.lookup_inductive ind)).mind_recargs in
constr_trees (None,itree) ind
| _,constrs -> main_ind,constrs
let constr_args rp constr =
let main_ind,constrs = constr_trees rp (fst constr) in
let ctree = constrs.(pred (snd constr)) in
array_map_to_list (fun t -> main_ind,t)
(snd (Rtree.dest_node ctree))
let ind_args rp ind =
let main_ind,constrs = constr_trees rp ind in
let args ctree =
Array.map (fun t -> main_ind,t) (snd (Rtree.dest_node ctree)) in
Array.map args constrs
let init_tree ids ind rp nexti =
let indargs = ind_args rp ind in
let do_i i arp = (Array.map is_rec_pos arp),nexti i arp in
Split_patt (ids,ind,Array.mapi do_i indargs)
let map_tree_rp rp id_fun mapi = function
Split_patt (ids,ind,branches) ->
let indargs = ind_args rp ind in
let do_i i (recargs,bri) = recargs,mapi i indargs.(i) bri in
Split_patt (id_fun ids,ind,Array.mapi do_i branches)
| _ -> failwith "map_tree_rp: not a splitting node"
let map_tree id_fun mapi = function
Split_patt (ids,ind,branches) ->
let do_i i (recargs,bri) = recargs,mapi i bri in
Split_patt (id_fun ids,ind,Array.mapi do_i branches)
| _ -> failwith "map_tree: not a splitting node"
let start_tree env ind rp =
init_tree Idset.empty ind rp (fun _ _ -> None)
let build_per_info etype casee gls =
let concl=pf_concl gls in
let env=pf_env gls in
let ctyp=pf_type_of gls casee in
let is_dep = dependent casee concl in
let hd,args = decompose_app (special_whd gls ctyp) in
let ind =
try
destInd hd
with _ ->
error "Case analysis must be done on an inductive object." in
let mind,oind = Global.lookup_inductive ind in
let nparams,index =
match etype with
ET_Induction -> mind.mind_nparams_rec,Some (snd ind)
| _ -> mind.mind_nparams,None in
let params,real_args = list_chop nparams args in
let abstract_obj c body =
let typ=pf_type_of gls c in
lambda_create env (typ,subst_term c body) in
let pred= List.fold_right abstract_obj
real_args (lambda_create env (ctyp,subst_term casee concl)) in
is_dep,
{per_casee=casee;
per_ctype=ctyp;
per_ind=ind;
per_pred=pred;
per_args=real_args;
per_params=params;
per_nparams=nparams;
per_wf=index,oind.mind_recargs}
let per_tac etype casee gls=
let env=pf_env gls in
let info = get_its_info gls in
match casee with
Real c ->
let is_dep,per_info = build_per_info etype c gls in
let ek =
if is_dep then
EK_dep (start_tree env per_info.per_ind per_info.per_wf)
else EK_unknown in
tcl_change_info
{pm_stack=
Per(etype,per_info,ek,[])::info.pm_stack} gls
| Virtual cut ->
assert (cut.cut_stat.st_label=Anonymous);
let id = pf_get_new_id (id_of_string "anonymous_matched") gls in
let c = mkVar id in
let modified_cut =
{cut with cut_stat={cut.cut_stat with st_label=Name id}} in
tclTHEN
(instr_cut (fun _ _ c -> c) false false modified_cut)
(fun gls0 ->
let is_dep,per_info = build_per_info etype c gls0 in
assert (not is_dep);
tcl_change_info
{pm_stack=
Per(etype,per_info,EK_unknown,[])::info.pm_stack} gls0)
gls
(* suppose *)
let register_nodep_subcase id= function
Per(et,pi,ek,clauses)::s ->
begin
match ek with
EK_unknown -> clauses,Per(et,pi,EK_nodep,id::clauses)::s
| EK_nodep -> clauses,Per(et,pi,EK_nodep,id::clauses)::s
| EK_dep _ -> error "Do not mix \"suppose\" with \"suppose it is\"."
end
| _ -> anomaly "wrong stack state"
let suppose_tac hyps gls0 =
let info = get_its_info gls0 in
let thesis = pf_concl gls0 in
let id = pf_get_new_id (id_of_string "subcase_") gls0 in
let clause = build_product hyps thesis in
let ninfo1 = {pm_stack=Suppose_case::info.pm_stack} in
let old_clauses,stack = register_nodep_subcase id info.pm_stack in
let ninfo2 = {pm_stack=stack} in
tclTHENS (assert_postpone id clause)
[tclTHENLIST [tcl_change_info ninfo1;
assume_tac hyps;
clear old_clauses];
tcl_change_info ninfo2] gls0
(* suppose it is ... *)
(* pattern matching compiling *)
let rec skip_args rest ids n =
if n <= 0 then
Close_patt rest
else
Skip_patt (ids,skip_args rest ids (pred n))
let rec tree_of_pats ((id,_) as cpl) pats =
match pats with
[] -> End_patt cpl
| args::stack ->
match args with
[] -> Close_patt (tree_of_pats cpl stack)
| (patt,rp) :: rest_args ->
match patt with
PatVar (_,v) ->
Skip_patt (Idset.singleton id,
tree_of_pats cpl (rest_args::stack))
| PatCstr (_,(ind,cnum),args,nam) ->
let nexti i ati =
if i = pred cnum then
let nargs =
list_map_i (fun j a -> (a,ati.(j))) 0 args in
Some (Idset.singleton id,
tree_of_pats cpl (nargs::rest_args::stack))
else None
in init_tree Idset.empty ind rp nexti
let rec add_branch ((id,_) as cpl) pats tree=
match pats with
[] ->
begin
match tree with
End_patt cpl0 -> End_patt cpl0
(* this ensures precedence for overlapping patterns *)
| _ -> anomaly "tree is expected to end here"
end
| args::stack ->
match args with
[] ->
begin
match tree with
Close_patt t ->
Close_patt (add_branch cpl stack t)
| _ -> anomaly "we should pop here"
end
| (patt,rp) :: rest_args ->
match patt with
PatVar (_,v) ->
begin
match tree with
Skip_patt (ids,t) ->
Skip_patt (Idset.add id ids,
add_branch cpl (rest_args::stack) t)
| Split_patt (_,_,_) ->
map_tree (Idset.add id)
(fun i bri ->
append_branch cpl 1 (rest_args::stack) bri)
tree
| _ -> anomaly "No pop/stop expected here"
end
| PatCstr (_,(ind,cnum),args,nam) ->
match tree with
Skip_patt (ids,t) ->
let nexti i ati =
if i = pred cnum then
let nargs =
list_map_i (fun j a -> (a,ati.(j))) 0 args in
Some (Idset.add id ids,
add_branch cpl (nargs::rest_args::stack)
(skip_args t ids (Array.length ati)))
else
Some (ids,
skip_args t ids (Array.length ati))
in init_tree ids ind rp nexti
| Split_patt (_,ind0,_) ->
if (ind <> ind0) then error
(* this can happen with coercions *)
"Case pattern belongs to wrong inductive type.";
let mapi i ati bri =
if i = pred cnum then
let nargs =
list_map_i (fun j a -> (a,ati.(j))) 0 args in
append_branch cpl 0
(nargs::rest_args::stack) bri
else bri in
map_tree_rp rp (fun ids -> ids) mapi tree
| _ -> anomaly "No pop/stop expected here"
and append_branch ((id,_) as cpl) depth pats = function
Some (ids,tree) ->
Some (Idset.add id ids,append_tree cpl depth pats tree)
| None ->
Some (Idset.singleton id,tree_of_pats cpl pats)
and append_tree ((id,_) as cpl) depth pats tree =
if depth<=0 then add_branch cpl pats tree
else match tree with
Close_patt t ->
Close_patt (append_tree cpl (pred depth) pats t)
| Skip_patt (ids,t) ->
Skip_patt (Idset.add id ids,append_tree cpl depth pats t)
| End_patt _ -> anomaly "Premature end of branch"
| Split_patt (_,_,_) ->
map_tree (Idset.add id)
(fun i bri -> append_branch cpl (succ depth) pats bri) tree
(* suppose it is *)
let rec st_assoc id = function
[] -> raise Not_found
| st::_ when st.st_label = id -> st.st_it
| _ :: rest -> st_assoc id rest
let thesis_for obj typ per_info env=
let rc,hd1=decompose_prod typ in
let cind,all_args=decompose_app typ in
let ind = destInd cind in
let _ = if ind <> per_info.per_ind then
errorlabstrm "thesis_for"
((Printer.pr_constr_env env obj) ++ spc () ++
str"cannot give an induction hypothesis (wrong inductive type).") in
let params,args = list_chop per_info.per_nparams all_args in
let _ = if not (List.for_all2 eq_constr params per_info.per_params) then
errorlabstrm "thesis_for"
((Printer.pr_constr_env env obj) ++ spc () ++
str "cannot give an induction hypothesis (wrong parameters).") in
let hd2 = (applist ((lift (List.length rc) per_info.per_pred),args@[obj])) in
compose_prod rc (whd_beta hd2)
let rec build_product_dep pat_info per_info args body gls =
match args with
(Hprop {st_label=nam;st_it=This c}
| Hvar {st_label=nam;st_it=c})::rest ->
let pprod=
lift 1 (build_product_dep pat_info per_info rest body gls) in
let lbody =
match nam with
Anonymous -> body
| Name id -> subst_var id pprod in
mkProd (nam,c,lbody)
| Hprop ({st_it=Thesis tk} as st)::rest ->
let pprod=
lift 1 (build_product_dep pat_info per_info rest body gls) in
let lbody =
match st.st_label with
Anonymous -> body
| Name id -> subst_var id pprod in
let ptyp =
match tk with
For id ->
let obj = mkVar id in
let typ =
try st_assoc (Name id) pat_info.pat_vars
with Not_found ->
snd (st_assoc (Name id) pat_info.pat_aliases) in
thesis_for obj typ per_info (pf_env gls)
| Plain -> pf_concl gls in
mkProd (st.st_label,ptyp,lbody)
| [] -> body
let build_dep_clause params pat_info per_info hyps gls =
let concl=
thesis_for pat_info.pat_constr pat_info.pat_typ per_info (pf_env gls) in
let open_clause =
build_product_dep pat_info per_info hyps concl gls in
let prod_one st body =
match st.st_label with
Anonymous -> mkProd(Anonymous,st.st_it,lift 1 body)
| Name id -> mkNamedProd id st.st_it (lift 1 body) in
let let_one_in st body =
match st.st_label with
Anonymous -> mkLetIn(Anonymous,fst st.st_it,snd st.st_it,lift 1 body)
| Name id ->
mkNamedLetIn id (fst st.st_it) (snd st.st_it) (lift 1 body) in
let aliased_clause =
List.fold_right let_one_in pat_info.pat_aliases open_clause in
List.fold_right prod_one (params@pat_info.pat_vars) aliased_clause
let rec register_dep_subcase id env per_info pat = function
EK_nodep -> error "Only \"suppose it is\" can be used here."
| EK_unknown ->
register_dep_subcase id env per_info pat
(EK_dep (start_tree env per_info.per_ind per_info.per_wf))
| EK_dep tree -> EK_dep (add_branch id [[pat,per_info.per_wf]] tree)
let case_tac params pat_info hyps gls0 =
let info = get_its_info gls0 in
let id = pf_get_new_id (id_of_string "subcase_") gls0 in
let et,per_info,ek,old_clauses,rest =
match info.pm_stack with
Per (et,pi,ek,old_clauses)::rest -> (et,pi,ek,old_clauses,rest)
| _ -> anomaly "wrong place for cases" in
let clause = build_dep_clause params pat_info per_info hyps gls0 in
let ninfo1 = {pm_stack=Suppose_case::info.pm_stack} in
let nek =
register_dep_subcase (id,List.length hyps) (pf_env gls0) per_info
pat_info.pat_pat ek in
let ninfo2 = {pm_stack=Per(et,per_info,nek,id::old_clauses)::rest} in
tclTHENS (assert_postpone id clause)
[tclTHENLIST
[tcl_change_info ninfo1;
assume_st (params@pat_info.pat_vars);
assume_st_letin pat_info.pat_aliases;
assume_hyps_or_theses hyps;
clear old_clauses];
tcl_change_info ninfo2] gls0
(* end cases *)
type instance_stack =
(constr option*(constr list) list) list
let initial_instance_stack ids =
List.map (fun id -> id,[None,[]]) ids
let push_one_arg arg = function
[] -> anomaly "impossible"
| (head,args) :: ctx ->
((head,(arg::args)) :: ctx)
let push_arg arg stacks =
List.map (fun (id,stack) -> (id,push_one_arg arg stack)) stacks
let push_one_head c ids (id,stack) =
let head = if Idset.mem id ids then Some c else None in
id,(head,[]) :: stack
let push_head c ids stacks =
List.map (push_one_head c ids) stacks
let pop_one (id,stack) =
let nstack=
match stack with
[] -> anomaly "impossible"
| [c] as l -> l
| (Some head,args)::(head0,args0)::ctx ->
let arg = applist (head,(List.rev args)) in
(head0,(arg::args0))::ctx
| (None,args)::(head0,args0)::ctx ->
(head0,(args@args0))::ctx
in id,nstack
let pop_stacks stacks =
List.map pop_one stacks
let patvar_base = id_of_string "__"
let hrec_for fix_id per_info gls obj_id =
let obj=mkVar obj_id in
let typ=pf_get_hyp_typ gls obj_id in
let rc,hd1=decompose_prod typ in
let cind,all_args=decompose_app typ in
let ind = destInd cind in assert (ind=per_info.per_ind);
let params,args= list_chop per_info.per_nparams all_args in
assert begin
try List.for_all2 eq_constr params per_info.per_params with
Invalid_argument _ -> false end;
let hd2 = applist (mkVar fix_id,args@[obj]) in
compose_lam rc (whd_beta hd2)
let rec execute_cases fix_name per_info tacnext args objs nhrec tree gls =
match tree, objs with
Close_patt t,_ ->
let args0 = pop_stacks args in
execute_cases fix_name per_info tacnext args0 objs nhrec t gls
| Skip_patt (_,t),skipped::next_objs ->
let args0 = push_arg skipped args in
execute_cases fix_name per_info tacnext args0 next_objs nhrec t gls
| End_patt (id,nhyps),[] ->
begin
match List.assoc id args with
[None,br_args] ->
let metas =
list_tabulate (fun n -> mkMeta (succ n)) nhyps in
tclTHEN
(tclDO nhrec introf)
(tacnext
(applist (mkVar id,List.rev_append br_args metas))) gls
| _ -> anomaly "wrong stack size"
end
| Split_patt (ids,ind,br), casee::next_objs ->
let (mind,oind) as spec = Global.lookup_inductive ind in
let nparams = mind.mind_nparams in
let concl=pf_concl gls in
let env=pf_env gls in
let ctyp=pf_type_of gls casee in
let hd,all_args = decompose_app (special_whd gls ctyp) in
let _ = assert (destInd hd = ind) in (* just in case *)
let params,real_args = list_chop nparams all_args in
let abstract_obj c body =
let typ=pf_type_of gls c in
lambda_create env (typ,subst_term c body) in
let elim_pred = List.fold_right abstract_obj
real_args (lambda_create env (ctyp,subst_term casee concl)) in
let case_info = Inductiveops.make_case_info env ind RegularStyle in
let gen_arities = Inductive.arities_of_constructors ind spec in
let f_ids typ =
let sign =
fst (Sign.decompose_prod_assum (Term.prod_applist typ params)) in
find_intro_names sign gls in
let constr_args_ids = Array.map f_ids gen_arities in
let case_term =
mkCase(case_info,elim_pred,casee,
Array.mapi (fun i _ -> mkMeta (succ i)) constr_args_ids) in
let branch_tac i (recargs,bro) gls0 =
let args_ids = constr_args_ids.(i) in
let rec aux n = function
[] ->
assert (n=Array.length recargs);
next_objs,[],nhrec
| id :: q ->
let objs,recs,nrec = aux (succ n) q in
if recargs.(n)
then (mkVar id::objs),(id::recs),succ nrec
else (mkVar id::objs),recs,nrec in
let objs,recs,nhrec = aux 0 args_ids in
tclTHENLIST
[tclMAP intro_mustbe_force args_ids;
begin
fun gls1 ->
let hrecs =
List.map
(fun id ->
hrec_for (out_name fix_name) per_info gls1 id)
recs in
generalize hrecs gls1
end;
match bro with
None ->
msg_warning (str "missing case");
tacnext (mkMeta 1)
| Some (sub_ids,tree) ->
let br_args =
List.filter
(fun (id,_) -> Idset.mem id sub_ids) args in
let construct =
applist (mkConstruct(ind,succ i),params) in
let p_args =
push_head construct ids br_args in
execute_cases fix_name per_info tacnext
p_args objs nhrec tree] gls0 in
tclTHENSV
(refine case_term)
(Array.mapi branch_tac br) gls
| Split_patt (_, _, _) , [] ->
anomaly "execute_cases : Nothing to split"
| Skip_patt _ , [] ->
anomaly "execute_cases : Nothing to skip"
| End_patt (_,_) , _ :: _ ->
anomaly "execute_cases : End of branch with garbage left"
(* end focus/claim *)
let end_tac et2 gls =
let info = get_its_info gls in
let et1,pi,ek,clauses =
match info.pm_stack with
Suppose_case::_ ->
anomaly "This case should already be trapped"
| Claim::_ ->
error "\"end claim\" expected."
| Focus_claim::_ ->
error "\"end focus\" expected."
| Per(et',pi,ek,clauses)::_ -> (et',pi,ek,clauses)
| [] ->
anomaly "This case should already be trapped" in
let et =
if et1 <> et2 then
match et1 with
ET_Case_analysis ->
error "\"end cases\" expected."
| ET_Induction ->
error "\"end induction\" expected."
else et1 in
tclTHEN
tcl_erase_info
begin
match et,ek with
_,EK_unknown ->
tclSOLVE [simplest_elim pi.per_casee]
| ET_Case_analysis,EK_nodep ->
tclTHEN
(general_case_analysis false (pi.per_casee,NoBindings))
(default_justification (List.map mkVar clauses))
| ET_Induction,EK_nodep ->
tclTHENLIST
[generalize (pi.per_args@[pi.per_casee]);
simple_induct (AnonHyp (succ (List.length pi.per_args)));
default_justification (List.map mkVar clauses)]
| ET_Case_analysis,EK_dep tree ->
execute_cases Anonymous pi
(fun c -> tclTHENLIST
[refine c;
clear clauses;
justification assumption])
(initial_instance_stack clauses) [pi.per_casee] 0 tree
| ET_Induction,EK_dep tree ->
let nargs = (List.length pi.per_args) in
tclTHEN (generalize (pi.per_args@[pi.per_casee]))
begin
fun gls0 ->
let fix_id =
pf_get_new_id (id_of_string "_fix") gls0 in
let c_id =
pf_get_new_id (id_of_string "_main_arg") gls0 in
tclTHENLIST
[fix (Some fix_id) (succ nargs);
tclDO nargs introf;
intro_mustbe_force c_id;
execute_cases (Name fix_id) pi
(fun c ->
tclTHENLIST
[clear [fix_id];
refine c;
clear clauses;
justification assumption])
(initial_instance_stack clauses)
[mkVar c_id] 0 tree] gls0
end
end gls
(* escape *)
let rec abstract_metas n avoid head = function
[] -> 1,head,[]
| (meta,typ)::rest ->
let id = next_ident_away (id_of_string "_sbgl") avoid in
let p,term,args = abstract_metas (succ n) (id::avoid) head rest in
succ p,mkLambda(Name id,typ,subst_meta [meta,mkRel p] term),
(mkMeta n)::args
let escape_tac gls = tcl_erase_info gls
(* General instruction engine *)
let rec do_proof_instr_gen _thus _then instr =
match instr with
Pthus i ->
assert (not _thus);
do_proof_instr_gen true _then i
| Pthen i ->
assert (not _then);
do_proof_instr_gen _thus true i
| Phence i ->
assert (not (_then || _thus));
do_proof_instr_gen true true i
| Pcut c ->
instr_cut mk_stat_or_thesis _thus _then c
| Psuffices c ->
instr_suffices _then c
| Prew (s,c) ->
assert (not _then);
instr_rew _thus s c
| Pconsider (c,hyps) -> consider_tac c hyps
| Pgiven hyps -> given_tac hyps
| Passume hyps -> assume_tac hyps
| Plet hyps -> assume_tac hyps
| Pclaim st -> instr_claim false st
| Pfocus st -> instr_claim true st
| Ptake witl -> take_tac witl
| Pdefine (id,args,body) -> define_tac id args body
| Pcast (id,typ) -> cast_tac id typ
| Pper (et,cs) -> per_tac et cs
| Psuppose hyps -> suppose_tac hyps
| Pcase (params,pat_info,hyps) -> case_tac params pat_info hyps
| Pend (B_elim et) -> end_tac et
| Pend _ -> anomaly "Not applicable"
| Pescape -> escape_tac
let eval_instr {instr=instr} =
do_proof_instr_gen false false instr
let rec preprocess pts instr =
match instr with
Phence i |Pthus i | Pthen i -> preprocess pts i
| Psuffices _ | Pcut _ | Passume _ | Plet _ | Pclaim _ | Pfocus _
| Pconsider (_,_) | Pcast (_,_) | Pgiven _ | Ptake _
| Pdefine (_,_,_) | Pper _ | Prew _ ->
check_not_per pts;
true,pts
| Pescape ->
check_not_per pts;
true,pts
| Pcase _ | Psuppose _ | Pend (B_elim _) ->
true,close_previous_case pts
| Pend bt ->
false,close_block bt pts
let rec postprocess pts instr =
match instr with
Phence i | Pthus i | Pthen i -> postprocess pts i
| Pcut _ | Psuffices _ | Passume _ | Plet _ | Pconsider (_,_) | Pcast (_,_)
| Pgiven _ | Ptake _ | Pdefine (_,_,_) | Prew (_,_) -> pts
| Pclaim _ | Pfocus _ | Psuppose _ | Pcase _ | Pper _
| Pescape -> nth_unproven 1 pts
| Pend (B_elim ET_Induction) ->
begin
let pf = proof_of_pftreestate pts in
let (pfterm,_) = extract_open_pftreestate pts in
let env = Evd.evar_env (goal_of_proof pf) in
try
Inductiveops.control_only_guard env pfterm;
goto_current_focus_or_top (mark_as_done pts)
with
Type_errors.TypeError(env,
Type_errors.IllFormedRecBody(_,_,_,_,_)) ->
anomaly "\"end induction\" generated an ill-formed fixpoint"
end
| Pend _ ->
goto_current_focus_or_top (mark_as_done pts)
let do_instr raw_instr pts =
let has_tactic,pts1 = preprocess pts raw_instr.instr in
let pts2 =
if has_tactic then
let gl = nth_goal_of_pftreestate 1 pts1 in
let env= pf_env gl in
let sigma= project gl in
let ist = {ltacvars = ([],[]); ltacrecvars = [];
gsigma = sigma; genv = env} in
let glob_instr = intern_proof_instr ist raw_instr in
let instr =
interp_proof_instr (get_its_info gl) sigma env glob_instr in
let lock_focus = is_focussing_instr instr.instr in
let marker= Proof_instr (lock_focus,instr) in
solve_nth_pftreestate 1
(abstract_operation marker (tclTHEN (eval_instr instr) clean_tmp)) pts1
else pts1 in
postprocess pts2 raw_instr.instr
let proof_instr raw_instr =
Pfedit.mutate (do_instr raw_instr)
(*
(* STUFF FOR ITERATED RELATIONS *)
let decompose_bin_app t=
let hd,args = destApp
let identify_transitivity_lemma c =
let varx,tx,c1 = destProd c in
let vary,ty,c2 = destProd (pop c1) in
let varz,tz,c3 = destProd (pop c2) in
let _,p1,c4 = destProd (pop c3) in
let _,lp2,lp3 = destProd (pop c4) in
let p2=pop lp2 in
let p3=pop lp3 in
*)
|