1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
|
(* -*- compile-command: "make -C .. bin/coqtop.byte" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: class_tactics.ml4 11823 2009-01-21 15:32:37Z msozeau $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Reduction
open Proof_type
open Proof_trees
open Declarations
open Tacticals
open Tacmach
open Evar_refiner
open Tactics
open Pattern
open Clenv
open Auto
open Rawterm
open Hiddentac
open Typeclasses
open Typeclasses_errors
open Classes
open Topconstr
open Pfedit
open Command
open Libnames
open Evd
let default_eauto_depth = 100
let typeclasses_db = "typeclass_instances"
let _ = Auto.auto_init := (fun () ->
Auto.create_hint_db false typeclasses_db full_transparent_state true)
let check_imported_library d =
let d' = List.map id_of_string d in
let dir = make_dirpath (List.rev d') in
if not (Library.library_is_loaded dir) then
error ("Library "^(list_last d)^" has to be imported first.")
let classes_dirpath =
make_dirpath (List.map id_of_string ["Classes";"Coq"])
let init_setoid () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else check_imported_library ["Coq";"Setoids";"Setoid"]
(** Typeclasses instance search tactic / eauto *)
let intersects s t =
Intset.exists (fun el -> Intset.mem el t) s
open Auto
let e_give_exact flags c gl =
let t1 = (pf_type_of gl c) and t2 = pf_concl gl in
if occur_existential t1 or occur_existential t2 then
tclTHEN (Clenvtac.unify (* ~flags *) t1) (exact_no_check c) gl
else exact_check c gl
(* let t1 = (pf_type_of gl c) in *)
(* tclTHEN (Clenvtac.unify ~flags t1) (exact_check c) gl *)
let assumption flags id = e_give_exact flags (mkVar id)
open Unification
let auto_unif_flags = {
modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly = true;
modulo_delta = var_full_transparent_state;
}
let unify_e_resolve flags (c,clenv) gls =
let clenv' = connect_clenv gls clenv in
let clenv' = clenv_unique_resolver false ~flags clenv' gls
in
Clenvtac.clenv_refine true ~with_classes:false clenv' gls
let unify_resolve flags (c,clenv) gls =
let clenv' = connect_clenv gls clenv in
let clenv' = clenv_unique_resolver false ~flags clenv' gls
in
Clenvtac.clenv_refine false ~with_classes:false clenv' gls
let flags_of_state st =
{auto_unif_flags with
modulo_conv_on_closed_terms = Some st; modulo_delta = st}
let rec e_trivial_fail_db db_list local_db goal =
let tacl =
Eauto.registered_e_assumption ::
(tclTHEN Tactics.intro
(function g'->
let d = pf_last_hyp g' in
let hintl = make_resolve_hyp (pf_env g') (project g') d in
(e_trivial_fail_db db_list
(Hint_db.add_list hintl local_db) g'))) ::
(List.map pi1 (e_trivial_resolve db_list local_db (pf_concl goal)) )
in
tclFIRST (List.map tclCOMPLETE tacl) goal
and e_my_find_search db_list local_db hdc concl =
let hdc = head_of_constr_reference hdc in
let hintl =
list_map_append
(fun db ->
if Hint_db.use_dn db then
let flags = flags_of_state (Hint_db.transparent_state db) in
List.map (fun x -> (flags, x)) (Hint_db.map_auto (hdc,concl) db)
else
let flags = flags_of_state (Hint_db.transparent_state db) in
List.map (fun x -> (flags, x)) (Hint_db.map_all hdc db))
(local_db::db_list)
in
let tac_of_hint =
fun (flags, {pri=b; pat = p; code=t}) ->
let tac =
match t with
| Res_pf (term,cl) -> unify_resolve flags (term,cl)
| ERes_pf (term,cl) -> unify_e_resolve flags (term,cl)
| Give_exact (c) -> e_give_exact flags c
| Res_pf_THEN_trivial_fail (term,cl) ->
tclTHEN (unify_e_resolve flags (term,cl))
(e_trivial_fail_db db_list local_db)
| Unfold_nth c -> unfold_in_concl [all_occurrences,c]
| Extern tacast -> conclPattern concl p tacast
in
(tac,b,pr_autotactic t)
in
List.map tac_of_hint hintl
and e_trivial_resolve db_list local_db gl =
try
e_my_find_search db_list local_db
(fst (head_constr_bound gl)) gl
with Bound | Not_found -> []
let e_possible_resolve db_list local_db gl =
try
e_my_find_search db_list local_db
(fst (head_constr_bound gl)) gl
with Bound | Not_found -> []
let find_first_goal gls =
try first_goal gls with UserError _ -> assert false
type search_state = {
depth : int; (*r depth of search before failing *)
tacres : goal list sigma * validation;
pri : int;
last_tactic : std_ppcmds;
dblist : Auto.hint_db list;
localdb : (bool ref * bool ref option * Auto.hint_db) list }
let filter_hyp t =
match kind_of_term t with
| Evar _ | Meta _ | Sort _ -> false
| _ -> true
let rec catchable = function
| Refiner.FailError _ -> true
| Stdpp.Exc_located (_, e) -> catchable e
| e -> Logic.catchable_exception e
let is_dep gl gls =
let evs = Evarutil.evars_of_term gl.evar_concl in
if evs = Intset.empty then false
else
List.fold_left
(fun b gl ->
if b then b
else
let evs' = Evarutil.evars_of_term gl.evar_concl in
intersects evs evs')
false gls
module SearchProblem = struct
type state = search_state
let debug = ref false
let success s = sig_it (fst s.tacres) = []
let pr_ev evs ev = Printer.pr_constr_env (Evd.evar_env ev) (Evarutil.nf_evar evs ev.Evd.evar_concl)
let pr_goals gls =
let evars = Evarutil.nf_evars (Refiner.project gls) in
prlist (pr_ev evars) (sig_it gls)
let filter_tactics (glls,v) l =
let glls,nv = apply_tac_list Refiner.tclNORMEVAR glls in
let v p = v (nv p) in
let rec aux = function
| [] -> []
| (tac,pri,pptac) :: tacl ->
try
let (lgls,ptl) = apply_tac_list tac glls in
let v' p = v (ptl p) in
((lgls,v'),pri,pptac) :: aux tacl
with e when catchable e -> aux tacl
in aux l
let nb_empty_evars s =
Evd.fold (fun ev evi acc -> if evi.evar_body = Evar_empty then succ acc else acc) s 0
(* Ordering of states is lexicographic on depth (greatest first) then
priority (lowest pri means higher priority), then number of remaining goals. *)
let compare s s' =
let d = s'.depth - s.depth in
let nbgoals s =
List.length (sig_it (fst s.tacres)) +
nb_empty_evars (sig_sig (fst s.tacres))
in
if d <> 0 then d else
let pri = s.pri - s'.pri in
if pri <> 0 then pri
else nbgoals s - nbgoals s'
let branching s =
if s.depth = 0 then
[]
else
let (cut, do_cut, ldb as hdldb) = List.hd s.localdb in
if !cut then
(* let {it=gls; sigma=sigma} = fst s.tacres in *)
(* msg (str"cut:" ++ pr_ev sigma (List.hd gls) ++ str"\n"); *)
[]
else begin
let {it=gl; sigma=sigma} = fst s.tacres in
Option.iter (fun r ->
(* msg (str"do cut:" ++ pr_ev sigma (List.hd gl) ++ str"\n"); *)
r := true) do_cut;
let sigma = Evarutil.nf_evars sigma in
let gl = List.map (Evarutil.nf_evar_info sigma) gl in
let nbgl = List.length gl in
(* let gl' = { it = gl ; sigma = sigma } in *)
(* let tacres' = gl', snd s.tacres in *)
let new_db, localdb =
let tl = List.tl s.localdb in
match tl with
| [] -> hdldb, tl
| (cut', do', ldb') :: rest ->
if not (is_dep (List.hd gl) (List.tl gl)) then
let fresh = ref false in
if do' = None then (
(* msg (str"adding a cut:" ++ pr_ev sigma (List.hd gl) ++ str"\n"); *)
(fresh, None, ldb), (cut', Some fresh, ldb') :: rest
) else (
(* msg (str"keeping the previous cut:" ++ pr_ev sigma (List.hd gl) ++ str"\n"); *)
(cut', None, ldb), tl )
else hdldb, tl
in let localdb = new_db :: localdb in
let intro_tac =
List.map
(fun ((lgls,_) as res,pri,pp) ->
let g' = first_goal lgls in
let hintl =
make_resolve_hyp (pf_env g') (project g') (pf_last_hyp g')
in
let ldb = Hint_db.add_list hintl ldb in
{ s with tacres = res;
last_tactic = pp;
pri = pri;
localdb = (cut, None, ldb) :: List.tl s.localdb })
(filter_tactics s.tacres [Tactics.intro,1,(str "intro")])
in
let possible_resolve ((lgls,_) as res, pri, pp) =
let nbgl' = List.length (sig_it lgls) in
if nbgl' < nbgl then
{ s with
depth = pred s.depth;
tacres = res; last_tactic = pp; pri = pri;
localdb = List.tl localdb }
else
{ s with depth = pred s.depth; tacres = res;
last_tactic = pp; pri = pri;
localdb = list_tabulate (fun _ -> new_db) (nbgl'-nbgl) @ localdb }
in
let rec_tacs =
let l =
filter_tactics s.tacres (e_possible_resolve s.dblist ldb (List.hd gl).evar_concl)
in
List.map possible_resolve l
in
List.sort compare (intro_tac @ rec_tacs)
end
let pp s =
msg (hov 0 (str " depth=" ++ int s.depth ++ spc () ++
s.last_tactic ++ str "\n"))
end
module Search = Explore.Make(SearchProblem)
let make_initial_state n gls dblist localdbs =
{ depth = n;
tacres = gls;
pri = 0;
last_tactic = (mt ());
dblist = dblist;
localdb = localdbs }
let e_depth_search debug s =
let tac = if debug then
(SearchProblem.debug := true; Search.debug_depth_first) else Search.depth_first in
let s = tac s in
s.tacres
let e_breadth_search debug s =
try
let tac =
if debug then Search.debug_breadth_first else Search.breadth_first
in let s = tac s in s.tacres
with Not_found -> error "eauto: breadth first search failed."
(* A special one for getting everything into a dnet. *)
let is_transparent_gr (ids, csts) = function
| VarRef id -> Idpred.mem id ids
| ConstRef cst -> Cpred.mem cst csts
| IndRef _ | ConstructRef _ -> false
let make_resolve_hyp env sigma st flags pri (id, _, cty) =
let ctx, ar = decompose_prod cty in
let keep =
match kind_of_term (fst (decompose_app ar)) with
| Const c -> is_class (ConstRef c)
| Ind i -> is_class (IndRef i)
| _ -> false
in
if keep then let c = mkVar id in
map_succeed
(fun f -> f (c,cty))
[make_exact_entry pri; make_apply_entry env sigma flags pri]
else []
let make_local_hint_db st eapply lems g =
let sign = pf_hyps g in
let hintlist = list_map_append (pf_apply make_resolve_hyp g st (eapply,false,false) None) sign in
let hintlist' = list_map_append (pf_apply make_resolves g (eapply,false,false) None) lems in
Hint_db.add_list hintlist' (Hint_db.add_list hintlist (Hint_db.empty st true))
let e_search_auto debug (in_depth,p) lems st db_list gls =
let sigma = Evd.sig_sig (fst gls) and gls' = Evd.sig_it (fst gls) in
let local_dbs = List.map (fun gl ->
let db = make_local_hint_db st true lems ({it = gl; sigma = sigma}) in
(ref false, None, db)) gls' in
let state = make_initial_state p gls db_list local_dbs in
if in_depth then
e_depth_search debug state
else
e_breadth_search debug state
let full_eauto debug n lems gls =
let dbnames = current_db_names () in
let dbnames = list_subtract dbnames ["v62"] in
let db_list = List.map searchtable_map dbnames in
let db = searchtable_map typeclasses_db in
e_search_auto debug n lems (Hint_db.transparent_state db) db_list gls
let nf_goal (gl, valid) =
{ gl with sigma = Evarutil.nf_evars gl.sigma }, valid
let typeclasses_eauto debug n lems gls =
let db = searchtable_map typeclasses_db in
e_search_auto debug n lems (Hint_db.transparent_state db) [db] gls
exception Found of evar_map
let valid goals p res_sigma l =
let evm =
List.fold_left2
(fun sigma (ev, evi) prf ->
let cstr, obls = Refiner.extract_open_proof !res_sigma prf in
if not (Evd.is_defined sigma ev) then
Evd.define sigma ev cstr
else sigma)
!res_sigma goals l
in raise (Found evm)
let is_dependent ev evm =
Evd.fold (fun ev' evi dep ->
if ev = ev' then dep
else dep || occur_evar ev evi.evar_concl)
evm false
let resolve_all_evars_once debug (mode, depth) env p evd =
let evm = Evd.evars_of evd in
let goals, evm' =
Evd.fold
(fun ev evi (gls, evm') ->
if evi.evar_body = Evar_empty
&& Typeclasses.is_resolvable evi
(* && not (is_dependent ev evm) *)
&& p ev evi then ((ev,evi) :: gls, Evd.add evm' ev (Typeclasses.mark_unresolvable evi)) else
(gls, Evd.add evm' ev evi))
evm ([], Evd.empty)
in
let goals = List.rev goals in
let gls = { it = List.map snd goals; sigma = evm' } in
let res_sigma = ref evm' in
let gls', valid' = typeclasses_eauto debug (mode, depth) [] (gls, valid goals p res_sigma) in
res_sigma := Evarutil.nf_evars (sig_sig gls');
try ignore(valid' []); assert(false)
with Found evm' -> Evarutil.nf_evar_defs (Evd.evars_reset_evd evm' evd)
exception FoundTerm of constr
let resolve_one_typeclass env ?(sigma=Evd.empty) gl =
let gls = { it = [ Evd.make_evar (Environ.named_context_val env) gl ] ; sigma = sigma } in
let valid x = raise (FoundTerm (fst (Refiner.extract_open_proof sigma (List.hd x)))) in
let gls', valid' = typeclasses_eauto false (true, default_eauto_depth) [] (gls, valid) in
try ignore(valid' []); assert false with FoundTerm t ->
let term = Evarutil.nf_evar (sig_sig gls') t in
if occur_existential term then raise Not_found else term
let _ =
Typeclasses.solve_instanciation_problem := (fun x y z -> resolve_one_typeclass x ~sigma:y z)
let has_undefined p oevd evd =
Evd.fold (fun ev evi has -> has ||
(evi.evar_body = Evar_empty && p ev evi &&
(try Typeclasses.is_resolvable (Evd.find oevd ev) with _ -> true)))
(Evd.evars_of evd) false
let rec merge_deps deps = function
| [] -> [deps]
| hd :: tl ->
if intersects deps hd then
merge_deps (Intset.union deps hd) tl
else hd :: merge_deps deps tl
let split_evars evm =
Evd.fold (fun ev evi acc ->
let deps = Intset.union (Intset.singleton ev) (Evarutil.evars_of_term evi.evar_concl) in
merge_deps deps acc)
evm []
let select_evars evs evm =
Evd.fold (fun ev evi acc ->
if Intset.mem ev evs then Evd.add acc ev evi else acc)
evm Evd.empty
let resolve_all_evars debug m env p oevd do_split fail =
let oevm = Evd.evars_of oevd in
let split = if do_split then split_evars (Evd.evars_of (Evd.undefined_evars oevd)) else [Intset.empty] in
let p = if do_split then
fun comp ev evi -> (Intset.mem ev comp || not (Evd.mem oevm ev)) && p ev evi
else fun _ -> p
in
let rec aux n p evd =
if has_undefined p oevm evd then
if n > 0 then
let evd' = resolve_all_evars_once debug m env p evd in
aux (pred n) p evd'
else None
else Some evd
in
let rec docomp evd = function
| [] -> evd
| comp :: comps ->
let res = try aux 3 (p comp) evd with Not_found -> None in
match res with
| None ->
if fail then
(* Unable to satisfy the constraints. *)
let evm = Evd.evars_of evd in
let evm = if do_split then select_evars comp evm else evm in
let _, ev = Evd.fold
(fun ev evi (b,acc) ->
(* focus on one instance if only one was searched for *)
if class_of_constr evi.evar_concl <> None then
if not b (* || do_split *) then
true, Some ev
else b, None
else b, acc) evm (false, None)
in
Typeclasses_errors.unsatisfiable_constraints env (Evd.evars_reset_evd evm evd) ev
else (* Best effort: do nothing *) oevd
| Some evd' -> docomp evd' comps
in docomp oevd split
let resolve_typeclass_evars d p env evd onlyargs split fail =
let pred =
if onlyargs then
(fun ev evi -> Typeclasses.is_implicit_arg (snd (Evd.evar_source ev evd)) &&
Typeclasses.is_class_evar evi)
else (fun ev evi -> Typeclasses.is_class_evar evi)
in resolve_all_evars d p env pred evd split fail
let solve_inst debug mode depth env evd onlyargs split fail =
resolve_typeclass_evars debug (mode, depth) env evd onlyargs split fail
let _ =
Typeclasses.solve_instanciations_problem :=
solve_inst false true default_eauto_depth
VERNAC COMMAND EXTEND Typeclasses_Unfold_Settings
| [ "Typeclasses" "Transparent" reference_list(cl) ] -> [
add_hints false [typeclasses_db] (Vernacexpr.HintsTransparency (cl, true))
]
END
VERNAC COMMAND EXTEND Typeclasses_Rigid_Settings
| [ "Typeclasses" "Opaque" reference_list(cl) ] -> [
add_hints false [typeclasses_db] (Vernacexpr.HintsTransparency (cl, false))
]
END
(** Typeclass-based rewriting. *)
let morphism_class =
lazy (class_info (Nametab.global (Qualid (dummy_loc, qualid_of_string "Coq.Classes.Morphisms.Morphism"))))
let morphism_proxy_class =
lazy (class_info (Nametab.global (Qualid (dummy_loc, qualid_of_string "Coq.Classes.Morphisms.MorphismProxy"))))
let respect_proj = lazy (mkConst (Option.get (snd (List.hd (Lazy.force morphism_class).cl_projs))))
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
let try_find_global_reference dir s =
let sp = Libnames.make_path (make_dir ("Coq"::dir)) (id_of_string s) in
Nametab.absolute_reference sp
let try_find_reference dir s =
constr_of_global (try_find_global_reference dir s)
let gen_constant dir s = Coqlib.gen_constant "Class_setoid" dir s
let coq_proj1 = lazy(gen_constant ["Init"; "Logic"] "proj1")
let coq_proj2 = lazy(gen_constant ["Init"; "Logic"] "proj2")
let coq_eq = lazy(gen_constant ["Init"; "Logic"] "eq")
let iff = lazy (gen_constant ["Init"; "Logic"] "iff")
let coq_all = lazy (gen_constant ["Init"; "Logic"] "all")
let impl = lazy (gen_constant ["Program"; "Basics"] "impl")
let arrow = lazy (gen_constant ["Program"; "Basics"] "arrow")
let coq_id = lazy (gen_constant ["Init"; "Datatypes"] "id")
let reflexive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Reflexive")
let reflexive_proof_global = lazy (try_find_global_reference ["Classes"; "RelationClasses"] "reflexivity")
let reflexive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "reflexivity")
let symmetric_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Symmetric")
let symmetric_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "symmetry")
let symmetric_proof_global = lazy (try_find_global_reference ["Classes"; "RelationClasses"] "symmetry")
let transitive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Transitive")
let transitive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "transitivity")
let transitive_proof_global = lazy (try_find_global_reference ["Classes"; "RelationClasses"] "transitivity")
let coq_inverse = lazy (gen_constant (* ["Classes"; "RelationClasses"] "inverse" *)
["Program"; "Basics"] "flip")
let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; mkProp; rel |])
(* let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; new_Type (); rel |]) *)
let complement = lazy (gen_constant ["Classes"; "RelationClasses"] "complement")
let forall_relation = lazy (gen_constant ["Classes"; "Morphisms"] "forall_relation")
let pointwise_relation = lazy (gen_constant ["Classes"; "Morphisms"] "pointwise_relation")
let respectful_dep = lazy (gen_constant ["Classes"; "Morphisms"] "respectful_dep")
let respectful = lazy (gen_constant ["Classes"; "Morphisms"] "respectful")
let equivalence = lazy (gen_constant ["Classes"; "RelationClasses"] "Equivalence")
let default_relation = lazy (gen_constant ["Classes"; "SetoidTactics"] "DefaultRelation")
let coq_relation = lazy (gen_constant ["Relations";"Relation_Definitions"] "relation")
let mk_relation a = mkApp (Lazy.force coq_relation, [| a |])
(* let mk_relation a = mkProd (Anonymous, a, mkProd (Anonymous, a, new_Type ())) *)
let coq_relationT = lazy (gen_constant ["Classes";"Relations"] "relationT")
let setoid_refl_proj = lazy (gen_constant ["Classes"; "SetoidClass"] "Equivalence_Reflexive")
let setoid_equiv = lazy (gen_constant ["Classes"; "SetoidClass"] "equiv")
let setoid_morphism = lazy (gen_constant ["Classes"; "SetoidClass"] "setoid_morphism")
let setoid_refl_proj = lazy (gen_constant ["Classes"; "SetoidClass"] "Equivalence_Reflexive")
let setoid_relation = lazy (gen_constant ["Classes"; "SetoidTactics"] "SetoidRelation")
let arrow_morphism a b =
if isprop a && isprop b then
Lazy.force impl
else
mkApp(Lazy.force arrow, [|a;b|])
let setoid_refl pars x =
applistc (Lazy.force setoid_refl_proj) (pars @ [x])
let morphism_type = lazy (constr_of_global (Lazy.force morphism_class).cl_impl)
let morphism_proxy_type = lazy (constr_of_global (Lazy.force morphism_proxy_class).cl_impl)
let is_applied_setoid_relation t =
match kind_of_term t with
| App (c, args) when Array.length args >= 2 ->
let head = if isApp c then fst (destApp c) else c in
if eq_constr (Lazy.force coq_eq) head then false
else (try
let evd, evar = Evarutil.new_evar (Evd.create_evar_defs Evd.empty) (Global.env()) (new_Type ()) in
let inst = mkApp (Lazy.force setoid_relation, [| evar; c |]) in
ignore(Typeclasses.resolve_one_typeclass (Global.env()) (Evd.evars_of evd) inst);
true
with _ -> false)
| _ -> false
let _ =
Equality.register_is_applied_setoid_relation is_applied_setoid_relation
exception Found of (constr * constr * (types * types) list * constr * constr array *
(constr * (constr * constr * constr * constr)) option array)
let split_head = function
hd :: tl -> hd, tl
| [] -> assert(false)
let build_signature isevars env m (cstrs : 'a option list) (finalcstr : 'a Lazy.t option) (f : 'a -> constr) =
let new_evar isevars env t =
Evarutil.e_new_evar isevars env
(* ~src:(dummy_loc, ImplicitArg (ConstRef (Lazy.force respectful), (n, Some na))) *) t
in
let mk_relty ty obj =
match obj with
| None ->
let relty = mk_relation ty in
new_evar isevars env relty
| Some x -> f x
in
let rec aux env ty l =
let t = Reductionops.whd_betadeltaiota env (Evd.evars_of !isevars) ty in
match kind_of_term t, l with
| Prod (na, ty, b), obj :: cstrs ->
if dependent (mkRel 1) b then
let (b, arg, evars) = aux (Environ.push_rel (na, None, ty) env) b cstrs in
let ty = Reductionops.nf_betaiota ty in
let pred = mkLambda (na, ty, b) in
let liftarg = mkLambda (na, ty, arg) in
let arg' = mkApp (Lazy.force forall_relation, [| ty ; pred ; liftarg |]) in
mkProd(na, ty, b), arg', (ty, None) :: evars
else
let (b', arg, evars) = aux env (subst1 mkProp b) cstrs in
let ty = Reductionops.nf_betaiota ty in
let relty = mk_relty ty obj in
let newarg = mkApp (Lazy.force respectful, [| ty ; b' ; relty ; arg |]) in
mkProd(na, ty, b), newarg, (ty, Some relty) :: evars
| _, obj :: _ -> anomaly "build_signature: not enough products"
| _, [] ->
(match finalcstr with
None ->
let t = Reductionops.nf_betaiota ty in
let rel = mk_relty t None in
t, rel, [t, Some rel]
| Some codom -> let (t, rel) = Lazy.force codom in
t, rel, [t, Some rel])
in aux env m cstrs
let morphism_proof env evars carrier relation x =
let goal =
mkApp (Lazy.force morphism_proxy_type, [| carrier ; relation; x |])
in Evarutil.e_new_evar evars env goal
let find_class_proof proof_type proof_method env evars carrier relation =
try
let goal = mkApp (Lazy.force proof_type, [| carrier ; relation |]) in
Typeclasses.resolve_one_typeclass env evars goal
with e when Logic.catchable_exception e -> raise Not_found
let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env
exception FoundInt of int
let array_find (arr: 'a array) (pred: int -> 'a -> bool): int =
try
for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (FoundInt i) done;
raise Not_found
with FoundInt i -> i
let resolve_morphism env sigma oldt m ?(fnewt=fun x -> x) args args' cstr evars =
let morph_instance, proj, sigargs, m', args, args' =
let first = try (array_find args' (fun i b -> b <> None)) with Not_found -> raise (Invalid_argument "resolve_morphism") in
let morphargs, morphobjs = array_chop first args in
let morphargs', morphobjs' = array_chop first args' in
let appm = mkApp(m, morphargs) in
let appmtype = Typing.type_of env sigma appm in
let cstrs = List.map (function None -> None | Some (_, (a, r, _, _)) -> Some (a, r)) (Array.to_list morphobjs') in
let appmtype', signature, sigargs = build_signature evars env appmtype cstrs cstr (fun (a, r) -> r) in
let cl_args = [| appmtype' ; signature ; appm |] in
let app = mkApp (Lazy.force morphism_type, cl_args) in
let morph = Evarutil.e_new_evar evars env app in
morph, morph, sigargs, appm, morphobjs, morphobjs'
in
let projargs, respars, typeargs =
array_fold_left2
(fun (acc, sigargs, typeargs') x y ->
let (carrier, relation), sigargs = split_head sigargs in
match relation with
| Some relation ->
(match y with
| None ->
let proof = morphism_proof env evars carrier relation x in
[ proof ; x ; x ] @ acc, sigargs, x :: typeargs'
| Some (p, (_, _, _, t')) ->
[ p ; t'; x ] @ acc, sigargs, t' :: typeargs')
| None ->
if y <> None then error "Cannot rewrite the argument of a dependent function";
x :: acc, sigargs, x :: typeargs')
([], sigargs, []) args args'
in
let proof = applistc proj (List.rev projargs) in
let newt = applistc m' (List.rev typeargs) in
match respars with
[ a, Some r ] -> (proof, (a, r, oldt, fnewt newt))
| _ -> assert(false)
(* Adapted from setoid_replace. *)
type hypinfo = {
cl : clausenv;
prf : constr;
car : constr;
rel : constr;
l2r : bool;
c1 : constr;
c2 : constr;
c : constr option;
abs : (constr * types) option;
}
let evd_convertible env evd x y =
try ignore(Evarconv.the_conv_x env x y evd); true
with _ -> false
let decompose_setoid_eqhyp env sigma c left2right =
let ctype = Typing.type_of env sigma c in
let find_rel ty =
let eqclause = Clenv.mk_clenv_from_env env sigma None (c,ty) in
let (equiv, args) = decompose_app (Clenv.clenv_type eqclause) in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z ->
let l,res = split_last_two (y::z) in x::l, res
| _ -> error "The term provided is not an applied relation." in
let others,(c1,c2) = split_last_two args in
let ty1, ty2 =
Typing.mtype_of env eqclause.evd c1, Typing.mtype_of env eqclause.evd c2
in
if not (evd_convertible env eqclause.evd ty1 ty2) then None
else
Some { cl=eqclause; prf=(Clenv.clenv_value eqclause);
car=ty1; rel=mkApp (equiv, Array.of_list others);
l2r=left2right; c1=c1; c2=c2; c=Some c; abs=None }
in
match find_rel ctype with
| Some c -> c
| None ->
let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *)
match find_rel (it_mkProd_or_LetIn t' ctx) with
| Some c -> c
| None -> error "The term does not end with an applied homogeneous relation."
let rewrite_unif_flags = {
Unification.modulo_conv_on_closed_terms = None;
Unification.use_metas_eagerly = true;
Unification.modulo_delta = empty_transparent_state;
}
let conv_transparent_state = (Idpred.empty, Cpred.full)
let rewrite2_unif_flags = {
Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
Unification.use_metas_eagerly = true;
Unification.modulo_delta = empty_transparent_state;
}
let convertible env evd x y =
Reductionops.is_conv env (Evd.evars_of evd) x y
let allowK = true
let refresh_hypinfo env sigma hypinfo =
if !hypinfo.abs = None then
let {l2r=l2r; c = c;cl=cl} = !hypinfo in
match c with
| Some c ->
(* Refresh the clausenv to not get the same meta twice in the goal. *)
hypinfo := decompose_setoid_eqhyp env (Evd.evars_of cl.evd) c l2r;
| _ -> ()
else ()
let unify_eqn env sigma hypinfo t =
if isEvar t then None
else try
let {cl=cl; prf=prf; car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in
let env', prf, c1, c2, car, rel =
let left = if l2r then c1 else c2 in
match abs with
Some (absprf, absprfty) ->
let env' = clenv_unify allowK ~flags:rewrite2_unif_flags CONV left t cl in
env', prf, c1, c2, car, rel
| None ->
let env' =
try clenv_unify allowK ~flags:rewrite_unif_flags
CONV left t cl
with Pretype_errors.PretypeError _ ->
(* For Ring essentially, only when doing setoid_rewrite *)
clenv_unify allowK ~flags:rewrite2_unif_flags
CONV left t cl
in
let env' =
let mvs = clenv_dependent false env' in
clenv_pose_metas_as_evars env' mvs
in
let evd' = Typeclasses.resolve_typeclasses ~fail:false env'.env env'.evd in
let env' = { env' with evd = evd' } in
let nf c = Evarutil.nf_evar (Evd.evars_of evd') (Clenv.clenv_nf_meta env' c) in
let c1 = nf c1 and c2 = nf c2
and car = nf car and rel = nf rel
and prf = nf (Clenv.clenv_value env') in
let ty1 = Typing.mtype_of env'.env env'.evd c1
and ty2 = Typing.mtype_of env'.env env'.evd c2
in
if convertible env env'.evd ty1 ty2 then (
if occur_meta prf then refresh_hypinfo env sigma hypinfo;
env', prf, c1, c2, car, rel)
else raise Reduction.NotConvertible
in
let res =
if l2r then (prf, (car, rel, c1, c2))
else
try (mkApp (get_symmetric_proof env Evd.empty car rel, [| c1 ; c2 ; prf |]), (car, rel, c2, c1))
with Not_found ->
(prf, (car, inverse car rel, c2, c1))
in Some (env', res)
with e when catchable e -> None
let unfold_impl t =
match kind_of_term t with
| App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) ->
mkProd (Anonymous, a, lift 1 b)
| _ -> assert false
let unfold_id t =
match kind_of_term t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_id) *) -> b
| _ -> assert false
let unfold_all t =
match kind_of_term t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
(match kind_of_term b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let decomp_prod env evm n c =
snd (Reductionops.decomp_n_prod env evm n c)
let rec decomp_pointwise n c =
if n = 0 then c
else
match kind_of_term c with
| App (pointwise, [| a; b; relb |]) -> decomp_pointwise (pred n) relb
| _ -> raise Not_found
let lift_cstr env sigma evars args cstr =
let cstr () =
let start =
match cstr with
| Some codom -> Lazy.force codom
| None -> let car = Evarutil.e_new_evar evars env (new_Type ()) in
let rel = Evarutil.e_new_evar evars env (mk_relation car) in
(car, rel)
in
Array.fold_right
(fun arg (car, rel) ->
let ty = Typing.type_of env sigma arg in
let car' = mkProd (Anonymous, ty, car) in
let rel' = mkApp (Lazy.force pointwise_relation, [| ty; car; rel |]) in
(car', rel'))
args start
in Some (Lazy.lazy_from_fun cstr)
let unlift_cstr env sigma = function
| None -> None
| Some codom ->
let cstr () =
let car, rel = Lazy.force codom in
decomp_prod env sigma 1 car, decomp_pointwise 1 rel
in Some (Lazy.lazy_from_fun cstr)
type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }
let default_flags = { under_lambdas = true; on_morphisms = true; }
let build_new gl env sigma flags loccs hypinfo concl cstr evars =
let (nowhere_except_in,occs) = loccs in
let is_occ occ =
if nowhere_except_in then List.mem occ occs else not (List.mem occ occs) in
let rec aux env t occ cstr =
let unif = unify_eqn env sigma hypinfo t in
let occ = if unif = None then occ else succ occ in
match unif with
| Some (env', (prf, hypinfo as x)) when is_occ occ ->
begin
evars := Evd.evar_merge !evars
(Evd.evars_of (Evd.undefined_evars (Evarutil.nf_evar_defs env'.evd)));
match cstr with
| None -> Some x, occ
| Some _ ->
let (car, r, orig, dest) = hypinfo in
let res =
resolve_morphism env sigma t ~fnewt:unfold_id
(mkApp (Lazy.force coq_id, [| car |]))
[| orig |] [| Some x |] cstr evars
in Some res, occ
end
| _ ->
match kind_of_term t with
| App (m, args) ->
let rewrite_args occ =
let args', occ =
Array.fold_left
(fun (acc, occ) arg -> let res, occ = aux env arg occ None in (res :: acc, occ))
([], occ) args
in
let res =
if List.for_all (fun x -> x = None) args' then None
else
let args' = Array.of_list (List.rev args') in
(Some (resolve_morphism env sigma t m args args' cstr evars))
in res, occ
in
if flags.on_morphisms then
let m', occ = aux env m occ (lift_cstr env sigma evars args cstr) in
match m' with
| None -> rewrite_args occ (* Standard path, try rewrite on arguments *)
| Some (prf, (car, rel, c1, c2)) ->
(* We rewrote the function and get a proof of pointwise rel for the arguments.
We just apply it. *)
let nargs = Array.length args in
let res =
mkApp (prf, args),
(decomp_prod env (Evd.evars_of !evars) nargs car,
decomp_pointwise nargs rel, mkApp(c1, args), mkApp(c2, args))
in Some res, occ
else rewrite_args occ
| Prod (n, x, b) when not (dependent (mkRel 1) b) ->
let x', occ = aux env x occ None in
(* if x' = None && flags.under_lambdas then *)
(* let lam = mkLambda (n, x, b) in *)
(* let lam', occ = aux env lam occ None in *)
(* let res = *)
(* match lam' with *)
(* | None -> None *)
(* | Some (prf, (car, rel, c1, c2)) -> *)
(* Some (resolve_morphism env sigma t *)
(* ~fnewt:unfold_all *)
(* (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *)
(* cstr evars) *)
(* in res, occ *)
(* else *)
let b = subst1 mkProp b in
let b', occ = aux env b occ None in
let res =
if x' = None && b' = None then None
else
Some (resolve_morphism env sigma t
~fnewt:unfold_impl
(arrow_morphism (Typing.type_of env sigma x) (Typing.type_of env sigma b))
[| x ; b |] [| x' ; b' |]
cstr evars)
in res, occ
| Prod (n, ty, b) ->
let lam = mkLambda (n, ty, b) in
let lam', occ = aux env lam occ None in
let res =
match lam' with
| None -> None
| Some (prf, (car, rel, c1, c2)) ->
Some (resolve_morphism env sigma t
~fnewt:unfold_all
(Lazy.force coq_all) [| ty ; lam |] [| None; lam' |]
cstr evars)
in res, occ
| Lambda (n, t, b) when flags.under_lambdas ->
let env' = Environ.push_rel (n, None, t) env in
refresh_hypinfo env' sigma hypinfo;
let b', occ = aux env' b occ (unlift_cstr env sigma cstr) in
let res =
match b' with
| None -> None
| Some (prf, (car, rel, c1, c2)) ->
let prf' = mkLambda (n, t, prf) in
let car' = mkProd (n, t, car) in
let rel' = mkApp (Lazy.force pointwise_relation, [| t; car; rel |]) in
let c1' = mkLambda(n, t, c1) and c2' = mkLambda (n, t, c2) in
Some (prf', (car', rel', c1', c2'))
in res, occ
| _ -> None, occ
in
let eq,nbocc_min_1 = aux env concl 0 cstr in
let rest = List.filter (fun o -> o > nbocc_min_1) occs in
if rest <> [] then error_invalid_occurrence rest;
eq
let cl_rewrite_clause_aux ?(flags=default_flags) hypinfo goal_meta occs clause gl =
let concl, is_hyp =
match clause with
Some ((_, id), _) -> pf_get_hyp_typ gl id, Some id
| None -> pf_concl gl, None
in
let cstr =
let sort = mkProp in
let impl = Lazy.force impl in
match is_hyp with
| None -> (sort, inverse sort impl)
| Some _ -> (sort, impl)
in
let sigma = project gl in
let evars = ref (Evd.create_evar_defs sigma) in
let env = pf_env gl in
let eq = build_new gl env sigma flags occs hypinfo concl (Some (Lazy.lazy_from_val cstr)) evars
in
match eq with
| Some (p, (_, _, oldt, newt)) ->
(try
evars := Typeclasses.resolve_typeclasses env ~split:false ~fail:true !evars;
let p = Evarutil.nf_isevar !evars p in
let newt = Evarutil.nf_isevar !evars newt in
let undef = Evd.undefined_evars !evars in
let abs = Option.map (fun (x, y) -> Evarutil.nf_isevar !evars x,
Evarutil.nf_isevar !evars y) !hypinfo.abs in
let rewtac =
match is_hyp with
| Some id ->
let term =
match abs with
| None -> p
| Some (t, ty) ->
mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |])
in
cut_replacing id newt
(fun x -> Tacmach.refine_no_check (mkApp (term, [| mkVar id |])))
| None ->
(match abs with
| None ->
let name = next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
tclTHENLAST
(Tacmach.internal_cut_no_check false name newt)
(tclTHEN (Tactics.revert [name]) (Tacmach.refine_no_check p))
| Some (t, ty) ->
Tacmach.refine_no_check
(mkApp (mkLambda (Name (id_of_string "newt"), newt,
mkLambda (Name (id_of_string "lemma"), ty,
mkApp (p, [| mkRel 2 |]))),
[| mkMeta goal_meta; t |])))
in
let evartac =
let evd = Evd.evars_of undef in
if not (evd = Evd.empty) then Refiner.tclEVARS (Evd.merge sigma evd)
else tclIDTAC
in tclTHENLIST [evartac; rewtac] gl
with
| Stdpp.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e)))
| TypeClassError (env, (UnsatisfiableConstraints _ as e)) ->
tclFAIL 0 (str" setoid rewrite failed: unable to satisfy the rewriting constraints."
++ fnl () ++ Himsg.explain_typeclass_error env e) gl)
(* | Not_found -> *)
(* tclFAIL 0 (str" setoid rewrite failed: unable to satisfy the rewriting constraints.") gl) *)
| None ->
let {l2r=l2r; c1=x; c2=y} = !hypinfo in
raise (Pretype_errors.PretypeError
(pf_env gl,
Pretype_errors.NoOccurrenceFound ((if l2r then x else y), is_hyp)))
(* tclFAIL 1 (str"setoid rewrite failed") gl *)
let cl_rewrite_clause_aux ?(flags=default_flags) hypinfo goal_meta occs clause gl =
cl_rewrite_clause_aux ~flags hypinfo goal_meta occs clause gl
let cl_rewrite_clause (evm,c) left2right occs clause gl =
init_setoid ();
let meta = Evarutil.new_meta() in
let gl = { gl with sigma = Typeclasses.mark_unresolvables gl.sigma } in
let env = pf_env gl in
let evars = Evd.merge (project gl) evm in
let hypinfo = ref (decompose_setoid_eqhyp env evars c left2right) in
cl_rewrite_clause_aux hypinfo meta occs clause gl
open Genarg
open Extraargs
let occurrences_of = function
| n::_ as nl when n < 0 -> (false,List.map abs nl)
| nl ->
if List.exists (fun n -> n < 0) nl then
error "Illegal negative occurrence number.";
(true,nl)
TACTIC EXTEND class_rewrite
| [ "clrewrite" orient(o) open_constr(c) "in" hyp(id) "at" occurrences(occ) ] -> [ cl_rewrite_clause c o (occurrences_of occ) (Some (([],id), [])) ]
| [ "clrewrite" orient(o) open_constr(c) "at" occurrences(occ) "in" hyp(id) ] -> [ cl_rewrite_clause c o (occurrences_of occ) (Some (([],id), [])) ]
| [ "clrewrite" orient(o) open_constr(c) "in" hyp(id) ] -> [ cl_rewrite_clause c o all_occurrences (Some (([],id), [])) ]
| [ "clrewrite" orient(o) open_constr(c) "at" occurrences(occ) ] -> [ cl_rewrite_clause c o (occurrences_of occ) None ]
| [ "clrewrite" orient(o) open_constr(c) ] -> [ cl_rewrite_clause c o all_occurrences None ]
END
let clsubstitute o c =
let is_tac id = match kind_of_term (snd c) with Var id' when id' = id -> true | _ -> false in
Tacticals.onAllClauses
(fun cl ->
match cl with
| Some ((_,id),_) when is_tac id -> tclIDTAC
| _ -> tclTRY (cl_rewrite_clause c o all_occurrences cl))
TACTIC EXTEND substitute
| [ "substitute" orient(o) open_constr(c) ] -> [ clsubstitute o c ]
END
let pr_debug _prc _prlc _prt b =
if b then Pp.str "debug" else Pp.mt()
ARGUMENT EXTEND debug TYPED AS bool PRINTED BY pr_debug
| [ "debug" ] -> [ true ]
| [ ] -> [ false ]
END
let pr_mode _prc _prlc _prt m =
match m with
Some b ->
if b then Pp.str "depth-first" else Pp.str "breadth-fist"
| None -> Pp.mt()
ARGUMENT EXTEND search_mode TYPED AS bool option PRINTED BY pr_mode
| [ "dfs" ] -> [ Some true ]
| [ "bfs" ] -> [ Some false ]
| [] -> [ None ]
END
let pr_depth _prc _prlc _prt = function
Some i -> Util.pr_int i
| None -> Pp.mt()
ARGUMENT EXTEND depth TYPED AS int option PRINTED BY pr_depth
| [ int_or_var_opt(v) ] -> [ match v with Some (ArgArg i) -> Some i | _ -> None ]
END
VERNAC COMMAND EXTEND Typeclasses_Settings
| [ "Typeclasses" "eauto" ":=" debug(d) search_mode(s) depth(depth) ] -> [
let mode = match s with Some t -> t | None -> true in
let depth = match depth with Some i -> i | None -> default_eauto_depth in
Typeclasses.solve_instanciations_problem :=
solve_inst d mode depth
]
END
TACTIC EXTEND typeclasses_eauto
| [ "typeclasses" "eauto" debug(d) search_mode(s) depth(depth) ] -> [
let mode = match s with Some t -> t | None -> true in
let depth = match depth with Some i -> i | None -> default_eauto_depth in
fun gl ->
let gls = {it = [sig_it gl]; sigma = project gl} in
let vals v = List.hd v in
try typeclasses_eauto d (mode, depth) [] (gls, vals)
with Not_found -> tclFAIL 0 (str" typeclasses eauto failed") gl ]
END
(* fun gl -> *)
(* let env = pf_env gl in *)
(* let sigma = project gl in *)
(* let proj = sig_it gl in *)
(* let evd = Evd.create_evar_defs (Evd.add Evd.empty 1 proj) in *)
(* let mode = match s with Some t -> t | None -> true in *)
(* let depth = match depth with Some i -> i | None -> default_eauto_depth in *)
(* match resolve_typeclass_evars d (mode, depth) env evd false with *)
(* | Some evd' -> *)
(* let goal = Evd.find (Evd.evars_of evd') 1 in *)
(* (match goal.evar_body with *)
(* | Evar_empty -> tclIDTAC gl *)
(* | Evar_defined b -> refine b gl) *)
(* | None -> tclIDTAC gl *)
(* ] *)
let _ =
Classes.refine_ref := Refine.refine
(* Compatibility with old Setoids *)
TACTIC EXTEND setoid_rewrite
[ "setoid_rewrite" orient(o) open_constr(c) ]
-> [ cl_rewrite_clause c o all_occurrences None ]
| [ "setoid_rewrite" orient(o) open_constr(c) "in" hyp(id) ] ->
[ cl_rewrite_clause c o all_occurrences (Some (([],id), []))]
| [ "setoid_rewrite" orient(o) open_constr(c) "at" occurrences(occ) ] ->
[ cl_rewrite_clause c o (occurrences_of occ) None]
| [ "setoid_rewrite" orient(o) open_constr(c) "at" occurrences(occ) "in" hyp(id)] ->
[ cl_rewrite_clause c o (occurrences_of occ) (Some (([],id), []))]
| [ "setoid_rewrite" orient(o) open_constr(c) "in" hyp(id) "at" occurrences(occ)] ->
[ cl_rewrite_clause c o (occurrences_of occ) (Some (([],id), []))]
END
(* let solve_obligation lemma = *)
(* tclTHEN (Tacinterp.interp (Tacexpr.TacAtom (dummy_loc, Tacexpr.TacAnyConstructor None))) *)
(* (eapply_with_bindings (Constrintern.interp_constr Evd.empty (Global.env()) lemma, NoBindings)) *)
let mkappc s l = CAppExpl (dummy_loc,(None,(Libnames.Ident (dummy_loc,id_of_string s))),l)
let declare_an_instance n s args =
((dummy_loc,Name n), Explicit,
CAppExpl (dummy_loc, (None, Qualid (dummy_loc, qualid_of_string s)),
args))
let declare_instance a aeq n s = declare_an_instance n s [a;aeq]
let anew_instance binders instance fields =
new_instance binders instance (CRecord (dummy_loc,None,fields)) ~generalize:false None
let require_library dirpath =
let qualid = (dummy_loc, Libnames.qualid_of_dirpath (Libnames.dirpath_of_string dirpath)) in
Library.require_library [qualid] (Some false)
let declare_instance_refl binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
in anew_instance binders instance
[((dummy_loc,id_of_string "reflexivity"),lemma)]
let declare_instance_sym binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
in anew_instance binders instance
[((dummy_loc,id_of_string "symmetry"),lemma)]
let declare_instance_trans binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
in anew_instance binders instance
[((dummy_loc,id_of_string "transitivity"),lemma)]
let constr_tac = Tacinterp.interp (Tacexpr.TacAtom (dummy_loc, Tacexpr.TacAnyConstructor (false,None)))
let declare_relation ?(binders=[]) a aeq n refl symm trans =
init_setoid ();
let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.SetoidTactics.SetoidRelation"
in ignore(anew_instance binders instance []);
match (refl,symm,trans) with
(None, None, None) -> ()
| (Some lemma1, None, None) ->
ignore (declare_instance_refl binders a aeq n lemma1)
| (None, Some lemma2, None) ->
ignore (declare_instance_sym binders a aeq n lemma2)
| (None, None, Some lemma3) ->
ignore (declare_instance_trans binders a aeq n lemma3)
| (Some lemma1, Some lemma2, None) ->
ignore (declare_instance_refl binders a aeq n lemma1);
ignore (declare_instance_sym binders a aeq n lemma2)
| (Some lemma1, None, Some lemma3) ->
let _lemma_refl = declare_instance_refl binders a aeq n lemma1 in
let _lemma_trans = declare_instance_trans binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "PreOrder_Reflexive"), lemma1);
((dummy_loc,id_of_string "PreOrder_Transitive"),lemma3)])
| (None, Some lemma2, Some lemma3) ->
let _lemma_sym = declare_instance_sym binders a aeq n lemma2 in
let _lemma_trans = declare_instance_trans binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "PER_Symmetric"), lemma2);
((dummy_loc,id_of_string "PER_Transitive"),lemma3)])
| (Some lemma1, Some lemma2, Some lemma3) ->
let _lemma_refl = declare_instance_refl binders a aeq n lemma1 in
let _lemma_sym = declare_instance_sym binders a aeq n lemma2 in
let _lemma_trans = declare_instance_trans binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "Equivalence_Reflexive"), lemma1);
((dummy_loc,id_of_string "Equivalence_Symmetric"), lemma2);
((dummy_loc,id_of_string "Equivalence_Transitive"), lemma3)])
type 'a binders_let_argtype = (local_binder list, 'a) Genarg.abstract_argument_type
let (wit_binders_let : Genarg.tlevel binders_let_argtype),
(globwit_binders_let : Genarg.glevel binders_let_argtype),
(rawwit_binders_let : Genarg.rlevel binders_let_argtype) =
Genarg.create_arg "binders_let"
open Pcoq.Constr
VERNAC COMMAND EXTEND AddRelation
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) (Some lemma2) None ]
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) None None ]
| [ "Add" "Relation" constr(a) constr(aeq) "as" ident(n) ] ->
[ declare_relation a aeq n None None None ]
END
VERNAC COMMAND EXTEND AddRelation2
[ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2)
"as" ident(n) ] ->
[ declare_relation a aeq n None (Some lemma2) None ]
| [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation a aeq n None (Some lemma2) (Some lemma3) ]
END
VERNAC COMMAND EXTEND AddRelation3
[ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) None (Some lemma3) ]
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ]
| [ "Add" "Relation" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation a aeq n None None (Some lemma3) ]
END
VERNAC COMMAND EXTEND AddParametricRelation
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq)
"reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) None ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq)
"reflexivity" "proved" "by" constr(lemma1)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) None None ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None None None ]
END
VERNAC COMMAND EXTEND AddParametricRelation2
[ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None (Some lemma2) None ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None (Some lemma2) (Some lemma3) ]
END
VERNAC COMMAND EXTEND AddParametricRelation3
[ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) None (Some lemma3) ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None None (Some lemma3) ]
END
let mk_qualid s =
Libnames.Qualid (dummy_loc, Libnames.qualid_of_string s)
let cHole = CHole (dummy_loc, None)
open Entries
open Libnames
let respect_projection r ty =
let ctx, inst = Sign.decompose_prod_assum ty in
let mor, args = destApp inst in
let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
let app = mkApp (Lazy.force respect_proj,
Array.append args [| instarg |]) in
it_mkLambda_or_LetIn app ctx
let declare_projection n instance_id r =
let ty = Global.type_of_global r in
let c = constr_of_global r in
let term = respect_projection c ty in
let typ = Typing.type_of (Global.env ()) Evd.empty term in
let ctx, typ = Sign.decompose_prod_assum typ in
let typ =
let n =
let rec aux t =
match kind_of_term t with
App (f, [| a ; a' ; rel; rel' |]) when eq_constr f (Lazy.force respectful) ->
succ (aux rel')
| _ -> 0
in
let init =
match kind_of_term typ with
App (f, args) when eq_constr f (Lazy.force respectful) ->
mkApp (f, fst (array_chop (Array.length args - 2) args))
| _ -> typ
in aux init
in
let ctx,ccl = Reductionops.decomp_n_prod (Global.env()) Evd.empty (3 * n) typ
in it_mkProd_or_LetIn ccl ctx
in
let typ = it_mkProd_or_LetIn typ ctx in
let cst =
{ const_entry_body = term;
const_entry_type = Some typ;
const_entry_opaque = false;
const_entry_boxed = false }
in
ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition))
let build_morphism_signature m =
let env = Global.env () in
let m = Constrintern.interp_constr Evd.empty env m in
let t = Typing.type_of env Evd.empty m in
let isevars = ref (Evd.create_evar_defs Evd.empty) in
let cstrs =
let rec aux t =
match kind_of_term t with
| Prod (na, a, b) ->
None :: aux b
| _ -> []
in aux t
in
let t', sig_, evars = build_signature isevars env t cstrs None snd in
let _ = List.iter
(fun (ty, rel) ->
Option.iter (fun rel ->
let default = mkApp (Lazy.force default_relation, [| ty; rel |]) in
ignore (Evarutil.e_new_evar isevars env default))
rel)
evars
in
let morph =
mkApp (Lazy.force morphism_type, [| t; sig_; m |])
in
let evd =
Typeclasses.resolve_typeclasses ~fail:true ~onlyargs:false env !isevars in
let m = Evarutil.nf_isevar evd morph in
Evarutil.check_evars env Evd.empty evd m; m
let default_morphism sign m =
let env = Global.env () in
let isevars = ref (Evd.create_evar_defs Evd.empty) in
let t = Typing.type_of env Evd.empty m in
let _, sign, evars =
build_signature isevars env t (fst sign) (snd sign) (fun (ty, rel) -> rel)
in
let morph =
mkApp (Lazy.force morphism_type, [| t; sign; m |])
in
let mor = resolve_one_typeclass env morph in
mor, respect_projection mor morph
let add_setoid binders a aeq t n =
init_setoid ();
let _lemma_refl = declare_instance_refl binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
let _lemma_sym = declare_instance_sym binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
let _lemma_trans = declare_instance_trans binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
((dummy_loc,id_of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
((dummy_loc,id_of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])])
let add_morphism_infer m n =
init_setoid ();
let instance_id = add_suffix n "_Morphism" in
let instance = build_morphism_signature m in
if Lib.is_modtype () then
let cst = Declare.declare_internal_constant instance_id
(Entries.ParameterEntry (instance,false), Decl_kinds.IsAssumption Decl_kinds.Logical)
in
add_instance (Typeclasses.new_instance (Lazy.force morphism_class) None false cst);
declare_projection n instance_id (ConstRef cst)
else
let kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Instance in
Flags.silently
(fun () ->
Command.start_proof instance_id kind instance
(fun _ -> function
Libnames.ConstRef cst ->
add_instance (Typeclasses.new_instance
(Lazy.force morphism_class) None false cst);
declare_projection n instance_id (ConstRef cst)
| _ -> assert false);
Pfedit.by (Tacinterp.interp <:tactic< Coq.Classes.SetoidTactics.add_morphism_tactic>>)) ();
Flags.if_verbose (fun x -> msg (Printer.pr_open_subgoals x)) ()
let add_morphism binders m s n =
init_setoid ();
let instance_id = add_suffix n "_Morphism" in
let instance =
((dummy_loc,Name instance_id), Explicit,
CAppExpl (dummy_loc,
(None, Qualid (dummy_loc, Libnames.qualid_of_string "Coq.Classes.Morphisms.Morphism")),
[cHole; s; m]))
in
let tac = Tacinterp.interp <:tactic<add_morphism_tactic>> in
ignore(new_instance binders instance (CRecord (dummy_loc,None,[]))
~generalize:false ~tac ~hook:(fun cst -> declare_projection n instance_id (ConstRef cst)) None)
VERNAC COMMAND EXTEND AddSetoid1
[ "Add" "Setoid" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
[ add_setoid [] a aeq t n ]
| [ "Add" "Parametric" "Setoid" binders_let(binders) ":" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
[ add_setoid binders a aeq t n ]
| [ "Add" "Morphism" constr(m) ":" ident(n) ] ->
[ add_morphism_infer m n ]
| [ "Add" "Morphism" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] ->
[ add_morphism [] m s n ]
| [ "Add" "Parametric" "Morphism" binders_let(binders) ":" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] ->
[ add_morphism binders m s n ]
END
(** Bind to "rewrite" too *)
(** Taken from original setoid_replace, to emulate the old rewrite semantics where
lemmas are first instantiated and then rewrite proceeds. *)
let check_evar_map_of_evars_defs evd =
let metas = Evd.meta_list evd in
let check_freemetas_is_empty rebus =
Evd.Metaset.iter
(fun m ->
if Evd.meta_defined evd m then () else
raise
(Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m])))
in
List.iter
(fun (_,binding) ->
match binding with
Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
check_freemetas_is_empty rebus freemetas
| Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
{Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
check_freemetas_is_empty rebus1 freemetas1 ;
check_freemetas_is_empty rebus2 freemetas2
) metas
let unification_rewrite l2r c1 c2 cl car rel but gl =
let env = pf_env gl in
let (evd',c') =
try
(* ~flags:(false,true) to allow to mark occurrences that must not be
rewritten simply by replacing them with let-defined definitions
in the context *)
Unification.w_unify_to_subterm ~flags:rewrite_unif_flags env ((if l2r then c1 else c2),but) cl.evd
with
Pretype_errors.PretypeError _ ->
(* ~flags:(true,true) to make Ring work (since it really
exploits conversion) *)
Unification.w_unify_to_subterm ~flags:rewrite2_unif_flags
env ((if l2r then c1 else c2),but) cl.evd
in
let evd' = Typeclasses.resolve_typeclasses ~fail:false env evd' in
let cl' = {cl with evd = evd'} in
let cl' =
let mvs = clenv_dependent false cl' in
clenv_pose_metas_as_evars cl' mvs
in
let nf c = Evarutil.nf_evar (Evd.evars_of cl'.evd) (Clenv.clenv_nf_meta cl' c) in
let c1 = nf c1 and c2 = nf c2 and car = nf car and rel = nf rel in
check_evar_map_of_evars_defs cl'.evd;
let prf = nf (Clenv.clenv_value cl') and prfty = nf (Clenv.clenv_type cl') in
let cl' = { cl' with templval = mk_freelisted prf ; templtyp = mk_freelisted prfty } in
{cl=cl'; prf=(mkRel 1); car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=None; abs=Some (prf, prfty)}
let get_hyp gl (evm,c) clause l2r =
let evars = Evd.merge (project gl) evm in
let hi = decompose_setoid_eqhyp (pf_env gl) evars c l2r in
let but = match clause with Some id -> pf_get_hyp_typ gl id | None -> pf_concl gl in
unification_rewrite hi.l2r hi.c1 hi.c2 hi.cl hi.car hi.rel but gl
let general_rewrite_flags = { under_lambdas = false; on_morphisms = false }
let general_s_rewrite cl l2r occs c ~new_goals gl =
let meta = Evarutil.new_meta() in
let hypinfo = ref (get_hyp gl c cl l2r) in
let cl' = Option.map (fun id -> (([],id), [])) cl in
cl_rewrite_clause_aux ~flags:general_rewrite_flags hypinfo meta occs cl' gl
(* if fst c = Evd.empty || fst c == project gl then tac gl *)
(* else *)
(* let evars = Evd.merge (fst c) (project gl) in *)
(* tclTHEN (Refiner.tclEVARS evars) tac gl *)
let general_s_rewrite_clause x =
init_setoid ();
match x with
| None -> general_s_rewrite None
| Some id -> general_s_rewrite (Some id)
let _ = Equality.register_general_setoid_rewrite_clause general_s_rewrite_clause
let is_loaded d =
let d' = List.map id_of_string d in
let dir = make_dirpath (List.rev d') in
Library.library_is_loaded dir
let try_loaded f gl =
if is_loaded ["Coq";"Classes";"RelationClasses"] then f gl
else tclFAIL 0 (str"You need to require Coq.Classes.RelationClasses first") gl
let try_classes t gls =
try t gls
with (Pretype_errors.PretypeError _) as e -> raise e
TACTIC EXTEND try_classes
[ "try_classes" tactic(t) ] -> [ try_classes (snd t) ]
END
open Rawterm
open Environ
open Refiner
let typeclass_app evm gl ?(bindings=NoBindings) c ty =
let nprod = nb_prod (pf_concl gl) in
let n = nb_prod ty - nprod in
if n<0 then error "Apply_tc: theorem has not enough premisses.";
Refiner.tclTHEN (Refiner.tclEVARS evm)
(fun gl ->
let clause = make_clenv_binding_apply gl (Some n) (c,ty) bindings in
let cl' = evar_clenv_unique_resolver true ~flags:default_unify_flags clause gl in
let evd' = Typeclasses.resolve_typeclasses cl'.env ~fail:true cl'.evd in
tclTHEN (Clenvtac.clenv_refine true {cl' with evd = evd'})
tclNORMEVAR gl) gl
open Tacinterp
open Pretyping
let my_ist =
{ lfun = [];
avoid_ids = [];
debug = Tactic_debug.DebugOff;
trace = [] }
let rawconstr_and_expr (evd, c) = c
let rawconstr_and_expr_of_rawconstr_bindings = function
| NoBindings -> NoBindings
| ImplicitBindings l -> ImplicitBindings (List.map rawconstr_and_expr l)
| ExplicitBindings l -> ExplicitBindings (List.map (fun (l,b,c) -> (l,b,rawconstr_and_expr c)) l)
let my_glob_sign sigma env = {
ltacvars = [], [] ;
ltacrecvars = [];
gsigma = sigma ;
genv = env }
let typeclass_app_constrexpr t ?(bindings=NoBindings) gl =
let env = pf_env gl in
let evars = ref (create_evar_defs (project gl)) in
let gs = my_glob_sign (project gl) env in
let t', bl = Tacinterp.intern_constr_with_bindings gs (t,bindings) in
let j = Pretyping.Default.understand_judgment_tcc evars env (fst t') in
let bindings = Tacinterp.interp_bindings my_ist gl bl in
typeclass_app (Evd.evars_of !evars) gl ~bindings:bindings j.uj_val j.uj_type
let typeclass_app_raw t gl =
let env = pf_env gl in
let evars = ref (create_evar_defs (project gl)) in
let j = Pretyping.Default.understand_judgment_tcc evars env t in
typeclass_app (Evd.evars_of !evars) gl j.uj_val j.uj_type
let pr_gen prc _prlc _prtac c = prc c
let pr_ceb _prc _prlc _prtac raw = mt ()
let interp_constr_expr_bindings _ _ t = t
let intern_constr_expr_bindings ist t = t
open Pcoq.Tactic
type constr_expr_bindings = constr_expr with_bindings
ARGUMENT EXTEND constr_expr_bindings
TYPED AS constr_expr_bindings
PRINTED BY pr_ceb
INTERPRETED BY interp_constr_expr_bindings
GLOBALIZED BY intern_constr_expr_bindings
[ constr_with_bindings(c) ] -> [ c ]
END
TACTIC EXTEND apply_typeclasses
[ "typeclass_app" constr_expr_bindings(t) ] -> [ typeclass_app_constrexpr (fst t) ~bindings:(snd t) ]
END
TACTIC EXTEND apply_typeclasses_abbrev
[ "tcapp" raw(t) ] -> [ typeclass_app_raw t ]
END
(* [setoid_]{reflexivity,symmetry,transitivity} tactics *)
let not_declared env ty rel =
tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared " ++
str ty ++ str" relation. Maybe you need to import the Setoid library")
let relation_of_constr env c =
match kind_of_term c with
| App (f, args) when Array.length args >= 2 ->
let relargs, args = array_chop (Array.length args - 2) args in
mkApp (f, relargs), args
| _ -> errorlabstrm "relation_of_constr"
(str "The term " ++ Printer.pr_constr_env env c ++ str" is not an applied relation.")
let setoid_proof gl ty fn fallback =
let env = pf_env gl in
try
let rel, args = relation_of_constr env (pf_concl gl) in
let evm, car = project gl, pf_type_of gl args.(0) in
fn env evm car rel gl
with e ->
match fallback gl with
| Some tac -> tac gl
| None ->
match e with
| Not_found ->
let rel, args = relation_of_constr env (pf_concl gl) in
not_declared env ty rel gl
| _ -> raise e
let setoid_reflexivity gl =
setoid_proof gl "reflexive"
(fun env evm car rel -> apply (get_reflexive_proof env evm car rel))
(reflexivity_red true)
let setoid_symmetry gl =
setoid_proof gl "symmetric"
(fun env evm car rel -> apply (get_symmetric_proof env evm car rel))
(symmetry_red true)
let setoid_transitivity c gl =
setoid_proof gl "transitive"
(fun env evm car rel ->
apply_with_bindings
((get_transitive_proof env evm car rel),
Rawterm.ExplicitBindings [ dummy_loc, Rawterm.NamedHyp (id_of_string "y"), c ]))
(transitivity_red true c)
(*
let setoid_proof gl ty ?(bindings=NoBindings) meth fallback =
try
typeclass_app_constrexpr
(CRef (Qualid (dummy_loc, Nametab.shortest_qualid_of_global Idset.empty
(Lazy.force meth)))) ~bindings gl
with Not_found | Typeclasses_errors.TypeClassError (_, _) |
Stdpp.Exc_located (_, Typeclasses_errors.TypeClassError (_, _)) ->
match fallback gl with
| Some tac -> tac gl
| None ->
let env = pf_env gl in
let rel, args = relation_of_constr env (pf_concl gl) in
not_declared env ty rel gl
let setoid_reflexivity gl =
setoid_proof gl "reflexive" reflexive_proof_global (reflexivity_red true)
let setoid_symmetry gl =
setoid_proof gl "symmetric" symmetric_proof_global (symmetry_red true)
let setoid_transitivity c gl =
let binding_name =
next_ident_away (id_of_string "y") (ids_of_named_context (named_context (pf_env gl)))
in
setoid_proof gl "transitive"
~bindings:(Rawterm.ExplicitBindings [ dummy_loc, Rawterm.NamedHyp binding_name, constrIn c ])
transitive_proof_global (transitivity_red true c)
*)
let setoid_symmetry_in id gl =
let ctype = pf_type_of gl (mkVar id) in
let binders,concl = Sign.decompose_prod_assum ctype in
let (equiv, args) = decompose_app concl in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z -> let l,res = split_last_two (y::z) in x::l, res
| _ -> error "The term provided is not an equivalence."
in
let others,(c1,c2) = split_last_two args in
let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in
let new_hyp' = mkApp (he, [| c2 ; c1 |]) in
let new_hyp = it_mkProd_or_LetIn new_hyp' binders in
tclTHENS (cut new_hyp)
[ intro_replacing id;
tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ] ]
gl
let _ = Tactics.register_setoid_reflexivity setoid_reflexivity
let _ = Tactics.register_setoid_symmetry setoid_symmetry
let _ = Tactics.register_setoid_symmetry_in setoid_symmetry_in
let _ = Tactics.register_setoid_transitivity setoid_transitivity
TACTIC EXTEND setoid_symmetry
[ "setoid_symmetry" ] -> [ setoid_symmetry ]
| [ "setoid_symmetry" "in" hyp(n) ] -> [ setoid_symmetry_in n ]
END
TACTIC EXTEND setoid_reflexivity
[ "setoid_reflexivity" ] -> [ setoid_reflexivity ]
END
TACTIC EXTEND setoid_transitivity
[ "setoid_transitivity" constr(t) ] -> [ setoid_transitivity t ]
END
let rec head_of_constr t =
let t = strip_outer_cast(collapse_appl t) in
match kind_of_term t with
| Prod (_,_,c2) -> head_of_constr c2
| LetIn (_,_,_,c2) -> head_of_constr c2
| App (f,args) -> head_of_constr f
| _ -> t
TACTIC EXTEND head_of_constr
[ "head_of_constr" ident(h) constr(c) ] -> [
let c = head_of_constr c in
letin_tac None (Name h) c None allHyps
]
END
let coq_List_nth = lazy (gen_constant ["Lists"; "List"] "nth")
let coq_List_cons = lazy (gen_constant ["Lists"; "List"] "cons")
let coq_List_nil = lazy (gen_constant ["Lists"; "List"] "nil")
let freevars c =
let rec frec acc c = match kind_of_term c with
| Var id -> Idset.add id acc
| _ -> fold_constr frec acc c
in
frec Idset.empty c
let coq_zero = lazy (gen_constant ["Init"; "Datatypes"] "O")
let coq_succ = lazy (gen_constant ["Init"; "Datatypes"] "S")
let coq_nat = lazy (gen_constant ["Init"; "Datatypes"] "nat")
let rec coq_nat_of_int = function
| 0 -> Lazy.force coq_zero
| n -> mkApp (Lazy.force coq_succ, [| coq_nat_of_int (pred n) |])
let varify_constr_list ty def varh c =
let vars = Idset.elements (freevars c) in
let mkaccess i =
mkApp (Lazy.force coq_List_nth,
[| ty; coq_nat_of_int i; varh; def |])
in
let l = List.fold_right (fun id acc ->
mkApp (Lazy.force coq_List_cons, [| ty ; mkVar id; acc |]))
vars (mkApp (Lazy.force coq_List_nil, [| ty |]))
in
let subst =
list_map_i (fun i id -> (id, mkaccess i)) 0 vars
in
l, replace_vars subst c
let coq_varmap_empty = lazy (gen_constant ["ring"; "Quote"] "Empty_vm")
let coq_varmap_node = lazy (gen_constant ["ring"; "Quote"] "Node_vm")
(* | Node_vm : A -> varmap -> varmap -> varmap. *)
let coq_varmap_lookup = lazy (gen_constant ["ring"; "Quote"] "varmap_find")
let coq_index_left = lazy (gen_constant ["ring"; "Quote"] "Left_idx")
let coq_index_right = lazy (gen_constant ["ring"; "Quote"] "Right_idx")
let coq_index_end = lazy (gen_constant ["ring"; "Quote"] "End_idx")
let rec split_interleaved l r = function
| hd :: hd' :: tl' ->
split_interleaved (hd :: l) (hd' :: r) tl'
| hd :: [] -> (List.rev (hd :: l), List.rev r)
| [] -> (List.rev l, List.rev r)
(* let rec mkidx i acc = *)
(* if i mod 2 = 0 then *)
(* let acc' = mkApp (Lazy.force coq_index_left, [|acc|]) in *)
(* if i = 0 then acc' *)
(* else mkidx (i / 2) acc' *)
(* else *)
(* let acc' = mkApp (Lazy.force coq_index_right, [|acc|]) in *)
(* if i = 1 then acc' *)
(* else mkidx (i / 2) acc' *)
let rec mkidx i p =
if i mod 2 = 0 then
if i = 0 then mkApp (Lazy.force coq_index_left, [|Lazy.force coq_index_end|])
else mkApp (Lazy.force coq_index_left, [|mkidx (i - p) (2 * p)|])
else if i = 1 then mkApp (Lazy.force coq_index_right, [|Lazy.force coq_index_end|])
else mkApp (Lazy.force coq_index_right, [|mkidx (i - p) (2 * p)|])
let varify_constr_varmap ty def varh c =
let vars = Idset.elements (freevars c) in
let mkaccess i =
mkApp (Lazy.force coq_varmap_lookup,
[| ty; def; i; varh |])
in
let rec vmap_aux l cont =
match l with
| [] -> [], mkApp (Lazy.force coq_varmap_empty, [| ty |])
| hd :: tl ->
let left, right = split_interleaved [] [] tl in
let leftvars, leftmap = vmap_aux left (fun x -> cont (mkApp (Lazy.force coq_index_left, [| x |]))) in
let rightvars, rightmap = vmap_aux right (fun x -> cont (mkApp (Lazy.force coq_index_right, [| x |]))) in
(hd, cont (Lazy.force coq_index_end)) :: leftvars @ rightvars,
mkApp (Lazy.force coq_varmap_node, [| ty; hd; leftmap ; rightmap |])
in
let subst, vmap = vmap_aux (def :: List.map (fun x -> mkVar x) vars) (fun x -> x) in
let subst = List.map (fun (id, x) -> (destVar id, mkaccess x)) (List.tl subst) in
vmap, replace_vars subst c
TACTIC EXTEND varify
[ "varify" ident(varh) ident(h') constr(ty) constr(def) constr(c) ] -> [
let vars, c' = varify_constr_varmap ty def (mkVar varh) c in
tclTHEN (letin_tac None (Name varh) vars None allHyps)
(letin_tac None (Name h') c' None allHyps)
]
END
|