summaryrefslogtreecommitdiff
path: root/proofs/refiner.ml
blob: a540eef6454cd50d6e801090f1b31de59893ccc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: refiner.ml 14641 2011-11-06 11:59:10Z herbelin $ *)

open Pp
open Util
open Term
open Termops
open Sign
open Evd
open Sign
open Environ
open Reductionops
open Type_errors
open Proof_trees
open Proof_type
open Logic

type transformation_tactic = proof_tree -> (goal list * validation)

let hypotheses gl = gl.evar_hyps
let conclusion gl = gl.evar_concl

let sig_it x = x.it
let project x = x.sigma

let pf_status pf = pf.open_subgoals

let is_complete pf = (0 = (pf_status pf))

let on_open_proofs f pf = if is_complete pf then pf else f pf

let and_status = List.fold_left (+) 0

(* Getting env *)

let pf_env gls = Global.env_of_context (sig_it gls).evar_hyps
let pf_hyps gls = named_context_of_val (sig_it gls).evar_hyps


let descend n p =
  match p.ref with
    | None        -> error "It is a leaf."
    | Some(r,pfl) ->
    	if List.length pfl >= n then
	  (match list_chop (n-1) pfl with
	     | left,(wanted::right) ->
		 (wanted,
		  (fun pfl' ->
		    if false (* debug *) then assert
		      (List.length pfl'=1 & (List.hd pfl').goal = wanted.goal);
                    let pf'       = List.hd pfl' in
                    let spfl      = left@(pf'::right) in
                    let newstatus = and_status (List.map pf_status spfl) in
                    { p with
			open_subgoals = newstatus;
			ref           = Some(r,spfl) }))
	     | _ -> assert false)
    	else
	  error "Too few subproofs"


(* [mapshape [ l1 ; ... ; lk ] [ v1 ; ... ; vk ] [ p_1 ; .... ; p_(l1+...+lk) ]]
   gives
   [ (v1 [p_1 ... p_l1]) ; (v2 [ p_(l1+1) ... p_(l1+l2) ]) ; ... ;
   (vk [ p_(l1+...+l(k-1)+1) ... p_(l1+...lk) ]) ]
 *)

let rec mapshape nl (fl : (proof_tree list -> proof_tree) list)
                    (l : proof_tree list) =
  match nl with
    | [] -> []
    | h::t ->
	let m,l = list_chop h l in
	(List.hd fl m) :: (mapshape t (List.tl fl) l)

(* [frontier : proof_tree -> goal list * validation]
   given a proof [p], [frontier p] gives [(l,v)] where [l] is the list of goals
   to be solved to complete the proof, and [v] is the corresponding
   validation *)

let rec frontier p =
  match p.ref with
    | None ->
	([p.goal],
	 (fun lp' ->
	    let p' = List.hd lp' in
            if Evd.eq_evar_info p'.goal p.goal then
	      p'
            else
	      errorlabstrm "Refiner.frontier"
                (str"frontier was handed back a ill-formed proof.")))
    | Some(r,pfl) ->
    	let gll,vl = List.split(List.map frontier pfl) in
    	(List.flatten gll,
         (fun retpfl ->
            let pfl' = mapshape (List.map List.length gll) vl retpfl in
              { p with
		  open_subgoals = and_status (List.map pf_status pfl');
		  ref = Some(r,pfl')}))

(* TODO LEM: I might have to make sure that these hooks are called
   only when called from solve_nth_pftreestate; I can build the hook
   call into the "f", then.
 *)
let solve_hook = ref ignore
let set_solve_hook = (:=) solve_hook

let rec frontier_map_rec f n p =
  if n < 1 || n > p.open_subgoals then p else
  match p.ref with
    | None ->
        let p' = f p in
        if Evd.eq_evar_info p'.goal p.goal then
	  begin
	    !solve_hook p';
	    p'
	  end
        else
	  errorlabstrm "Refiner.frontier_map"
            (str"frontier_map was handed back a ill-formed proof.")
    | Some(r,pfl) ->
        let (_,rpfl') =
          List.fold_left
            (fun (n,acc) p -> (n-p.open_subgoals,frontier_map_rec f n p::acc))
            (n,[]) pfl in
        let pfl' = List.rev rpfl' in
        { p with
	    open_subgoals = and_status (List.map pf_status pfl');
            ref = Some(r,pfl')}

let frontier_map f n p =
  let nmax = p.open_subgoals in
  let n = if n < 0 then nmax + n + 1 else n in
  if n < 1 || n > nmax then
    errorlabstrm "Refiner.frontier_map" (str "No such subgoal");
  frontier_map_rec f n p

let rec frontier_mapi_rec f i p =
  if p.open_subgoals = 0 then p else
  match p.ref with
    | None ->
        let p' = f i p in
        if Evd.eq_evar_info p'.goal p.goal then
	  begin
	    !solve_hook p';
	    p'
	  end
        else
	  errorlabstrm "Refiner.frontier_mapi"
            (str"frontier_mapi was handed back a ill-formed proof.")
    | Some(r,pfl) ->
        let (_,rpfl') =
          List.fold_left
            (fun (n,acc) p -> (n+p.open_subgoals,frontier_mapi_rec f n p::acc))
            (i,[]) pfl in
        let pfl' = List.rev rpfl' in
        { p with
	    open_subgoals = and_status (List.map pf_status pfl');
            ref = Some(r,pfl')}

let frontier_mapi f p = frontier_mapi_rec f 1 p

(* [list_pf p] is the lists of goals to be solved in order to complete the
   proof [p] *)

let list_pf p = fst (frontier p)

let rec nb_unsolved_goals pf = pf.open_subgoals

(* leaf g is the canonical incomplete proof of a goal g *)

let leaf g =
  { open_subgoals = 1;
    goal = g;
    ref = None }

(* refiner r is a tactic applying the rule r *)

let check_subproof_connection gl spfl =
  list_for_all2eq (fun g pf -> Evd.eq_evar_info g pf.goal) gl spfl

let abstract_operation syntax semantics gls =
  let (sgl_sigma,validation) = semantics gls in
  let hidden_proof = validation (List.map leaf sgl_sigma.it) in
  (sgl_sigma,
  fun spfl ->
    assert (check_subproof_connection sgl_sigma.it spfl);
    { open_subgoals = and_status (List.map pf_status spfl);
      goal = gls.it;
      ref = Some(Nested(syntax,hidden_proof),spfl)})

let abstract_tactic_expr ?(dflt=false) te tacfun gls =
  abstract_operation (Tactic(te,dflt)) tacfun gls

let abstract_tactic ?(dflt=false) te =
  !abstract_tactic_box := Some te;
  abstract_tactic_expr ~dflt (Tacexpr.TacAtom (dummy_loc,te))

let abstract_extended_tactic ?(dflt=false) s args =
  abstract_tactic ~dflt (Tacexpr.TacExtend (dummy_loc, s, args))

let refiner = function
  | Prim pr as r ->
      let prim_fun = prim_refiner pr in
	(fun goal_sigma ->
          let (sgl,sigma') = prim_fun goal_sigma.sigma goal_sigma.it in
	    ({it=sgl; sigma = sigma'},
            (fun spfl ->
	      assert (check_subproof_connection sgl spfl);
              { open_subgoals = and_status (List.map pf_status spfl);
		goal = goal_sigma.it;
		ref = Some(r,spfl) })))


  | Nested (_,_) | Decl_proof _ ->
      failwith "Refiner: should not occur"

	(* Daimon is a canonical unfinished proof *)

  | Daimon ->
      fun gls ->
	({it=[];sigma=gls.sigma},
	 fun spfl ->
	   assert (spfl=[]);
	   { open_subgoals = 0;
             goal = gls.it;
             ref = Some(Daimon,[])})


let norm_evar_tac gl = refiner (Prim Change_evars) gl

let norm_evar_proof sigma pf =
  let nf_subgoal i sgl =
    let (gll,v) = norm_evar_tac {it=sgl.goal;sigma=sigma} in
      v (List.map leaf gll.it) in
    frontier_mapi nf_subgoal pf

(* [extract_open_proof : proof_tree -> constr * (int * constr) list]
   takes a (not necessarly complete) proof and gives a pair (pfterm,obl)
   where pfterm is the constr corresponding to the proof
   and [obl] is an [int*constr list] [ (m1,c1) ; ... ; (mn,cn)]
   where the mi are metavariables numbers, and ci are their types.
   Their proof should be completed in order to complete the initial proof *)

let extract_open_proof sigma pf =
  let next_meta =
    let meta_cnt = ref 0 in
    let rec f () =
      incr meta_cnt;
      if Evd.mem sigma (existential_of_int !meta_cnt) then f ()
      else !meta_cnt
    in f
  in
  let open_obligations = ref [] in
  let rec proof_extractor vl = function
    | {ref=Some(Prim _,_)} as pf -> prim_extractor proof_extractor vl pf

    | {ref=Some(Nested(_,hidden_proof),spfl)} ->
	let sgl,v = frontier hidden_proof in
	let flat_proof = v spfl in
	proof_extractor vl flat_proof

    | {ref=Some(Decl_proof _,[pf])} -> (proof_extractor vl) pf

    | {ref=(None|Some(Daimon,[]));goal=goal} ->
	let visible_rels =
          map_succeed
            (fun id ->
               try let n = proof_variable_index id vl in (n,id)
	       with Not_found -> failwith "caught")
            (ids_of_named_context (named_context_of_val goal.evar_hyps)) in
	let sorted_rels =
	  Sort.list (fun (n1,_) (n2,_) -> n1 > n2 ) visible_rels in
        let sorted_env =
          List.map (fun (n,id) -> (n,lookup_named_val id goal.evar_hyps))
            sorted_rels in
	let abs_concl =
          List.fold_right (fun (_,decl) c -> mkNamedProd_or_LetIn decl c)
            sorted_env goal.evar_concl	in
        let inst = List.filter (fun (_,(_,b,_)) -> b = None) sorted_env in
        let meta = next_meta () in
	open_obligations := (meta,abs_concl):: !open_obligations;
	applist (mkMeta meta, List.map (fun (n,_) -> mkRel n) inst)

    | _ -> anomaly "Bug: a case has been forgotten in proof_extractor"
  in
  let pfterm = proof_extractor [] pf in
  (pfterm, List.rev !open_obligations)

(*********************)
(*   Tacticals       *)
(*********************)

(* unTAC : tactic -> goal sigma -> proof sigma *)

let unTAC tac g =
  let (gl_sigma,v) = tac g in
  { it = v (List.map leaf gl_sigma.it); sigma = gl_sigma.sigma }

let unpackage glsig = (ref (glsig.sigma)),glsig.it

let repackage r v = {it=v;sigma = !r}

let apply_sig_tac r tac g =
  check_for_interrupt (); (* Breakpoint *)
  let glsigma,v = tac (repackage r g) in
  r := glsigma.sigma;
  (glsigma.it,v)

let idtac_valid = function
    [pf] -> pf
  | _ -> anomaly "Refiner.idtac_valid"

(* [goal_goal_list : goal sigma -> goal list sigma] *)
let goal_goal_list gls = {it=[gls.it];sigma=gls.sigma}

(* forces propagation of evar constraints *)
let tclNORMEVAR = norm_evar_tac

(* identity tactic without any message *)
let tclIDTAC gls = (goal_goal_list gls, idtac_valid)

(* the message printing identity tactic *)
let tclIDTAC_MESSAGE s gls =
  msg (hov 0 s); tclIDTAC gls

(* General failure tactic *)
let tclFAIL_s s gls = errorlabstrm "Refiner.tclFAIL_s" (str s)

(* A special exception for levels for the Fail tactic *)
exception FailError of int * std_ppcmds Lazy.t

(* The Fail tactic *)
let tclFAIL lvl s g = raise (FailError (lvl,lazy s))

let tclFAIL_lazy lvl s g = raise (FailError (lvl,s))

let start_tac gls =
  let (sigr,g) = unpackage gls in
  (sigr,[g],idtac_valid)

let finish_tac (sigr,gl,p) = (repackage sigr gl, p)

(* Apply [taci.(i)] on the first n subgoals and [tac] on the others *)
let thens3parts_tac tacfi tac tacli (sigr,gs,p) =
  let nf = Array.length tacfi in
  let nl = Array.length tacli in
  let ng = List.length gs in
  if ng<nf+nl then errorlabstrm "Refiner.thensn_tac" (str "Not enough subgoals.");
  let gll,pl =
    List.split
      (list_map_i (fun i ->
        apply_sig_tac sigr (if i<nf then tacfi.(i) else if i>=ng-nl then tacli.(nl-ng+i) else tac))
	0 gs) in
  (sigr, List.flatten gll,
   compose p (mapshape (List.map List.length gll) pl))

(* Apply [taci.(i)] on the first n subgoals and [tac] on the others *)
let thensf_tac taci tac = thens3parts_tac taci tac [||]

(* Apply [taci.(i)] on the last n subgoals and [tac] on the others *)
let thensl_tac tac taci = thens3parts_tac [||] tac taci

(* Apply [tac i] on the ith subgoal (no subgoals number check) *)
let thensi_tac tac (sigr,gs,p) =
  let gll,pl =
    List.split (list_map_i (fun i -> apply_sig_tac sigr (tac i)) 1 gs) in
  (sigr, List.flatten gll, compose p (mapshape (List.map List.length gll) pl))

let then_tac tac = thensf_tac [||] tac

let non_existent_goal n =
  errorlabstrm ("No such goal: "^(string_of_int n))
    (str"Trying to apply a tactic to a non existent goal")

(* Apply tac on the i-th goal (if i>0). If i<0, then start counting from
   the last goal (i=-1). *)
let theni_tac i tac ((_,gl,_) as subgoals) =
  let nsg = List.length gl in
  let k = if i < 0 then nsg + i + 1 else i in
  if nsg < 1 then errorlabstrm "theni_tac" (str"No more subgoals.")
  else if k >= 1 & k <= nsg then
    thensf_tac
      (Array.init k (fun i -> if i+1 = k then tac else tclIDTAC)) tclIDTAC
      subgoals
  else non_existent_goal k

(* [tclTHENS3PARTS tac1 [|t1 ; ... ; tn|] tac2 [|t'1 ; ... ; t'm|] gls]
   applies the tactic [tac1] to [gls] then, applies [t1], ..., [tn] to
   the first [n] resulting subgoals, [t'1], ..., [t'm] to the last [m]
   subgoals and [tac2] to the rest of the subgoals in the middle. Raises an
   error if the number of resulting subgoals is strictly less than [n+m] *)
let tclTHENS3PARTS tac1 tacfi tac tacli gls =
  finish_tac (thens3parts_tac tacfi tac tacli (then_tac tac1 (start_tac gls)))

(* [tclTHENSFIRSTn tac1 [|t1 ; ... ; tn|] tac2 gls] applies the tactic [tac1]
   to [gls] and applies [t1], ..., [tn] to the first [n] resulting
   subgoals, and [tac2] to the others subgoals. Raises an error if
   the number of resulting subgoals is strictly less than [n] *)
let tclTHENSFIRSTn tac1 taci tac = tclTHENS3PARTS tac1 taci tac [||]

(* [tclTHENSLASTn tac1 tac2 [|t1 ;...; tn|] gls] applies the tactic [tac1]
   to [gls] and applies [t1], ..., [tn] to the last [n] resulting
   subgoals, and [tac2] to the other subgoals. Raises an error if the
   number of resulting subgoals is strictly less than [n] *)
let tclTHENSLASTn tac1 tac taci = tclTHENS3PARTS tac1 [||] tac taci

(* [tclTHEN_i tac taci gls] applies the tactic [tac] to [gls] and applies
   [(taci i)] to the i_th resulting subgoal (starting from 1), whatever the
   number of subgoals is *)
let tclTHEN_i tac taci gls =
  finish_tac (thensi_tac taci (then_tac tac (start_tac gls)))

let tclTHENLASTn tac1 taci = tclTHENSLASTn tac1 tclIDTAC taci
let tclTHENFIRSTn tac1 taci = tclTHENSFIRSTn tac1 taci tclIDTAC

(* [tclTHEN tac1 tac2 gls] applies the tactic [tac1] to [gls] and applies
   [tac2] to every resulting subgoals *)
let tclTHEN tac1 tac2 = tclTHENS3PARTS tac1 [||] tac2 [||]

(* [tclTHENSV tac1 [t1 ; ... ; tn] gls] applies the tactic [tac1] to
   [gls] and applies [t1],..., [tn] to the [n] resulting subgoals. Raises
   an error if the number of resulting subgoals is not [n] *)
let tclTHENSV tac1 tac2v =
  tclTHENS3PARTS tac1 tac2v (tclFAIL_s "Wrong number of tactics.") [||]

let tclTHENS tac1 tac2l = tclTHENSV tac1 (Array.of_list tac2l)

(* [tclTHENLAST tac1 tac2 gls] applies the tactic [tac1] to [gls] and [tac2]
   to the last resulting subgoal *)
let tclTHENLAST tac1 tac2 = tclTHENSLASTn tac1 tclIDTAC [|tac2|]

(* [tclTHENFIRST tac1 tac2 gls] applies the tactic [tac1] to [gls] and [tac2]
   to the first resulting subgoal *)
let tclTHENFIRST tac1 tac2 = tclTHENSFIRSTn tac1 [|tac2|] tclIDTAC

(* [tclTHENLIST [t1;..;tn]] applies [t1] then [t2] ... then [tn]. More
   convenient than [tclTHEN] when [n] is large. *)
let rec tclTHENLIST = function
    [] -> tclIDTAC
  | t1::tacl -> tclTHEN t1 (tclTHENLIST tacl)

(* [tclMAP f [x1..xn]] builds [(f x1);(f x2);...(f xn)] *)
let tclMAP tacfun l =
  List.fold_right (fun x -> (tclTHEN (tacfun x))) l tclIDTAC

(* various progress criterions *)
let same_goal gl subgoal =
  eq_constr (conclusion subgoal) (conclusion gl) &&
  eq_named_context_val (hypotheses subgoal) (hypotheses gl)


let weak_progress gls ptree =
  (List.length gls.it <> 1) ||
  (not (same_goal (List.hd gls.it) ptree.it))

let progress gls ptree =
  (progress_evar_map ptree.sigma gls.sigma) ||
  (weak_progress gls ptree)


(* PROGRESS tac ptree applies tac to the goal ptree and fails if tac leaves
the goal unchanged *)
let tclPROGRESS tac ptree =
  let rslt = tac ptree in
  if progress (fst rslt) ptree then rslt
  else errorlabstrm "Refiner.PROGRESS" (str"Failed to progress.")

(* weak_PROGRESS tac ptree applies tac to the goal ptree and fails
   if tac leaves the goal unchanged, possibly modifying sigma *)
let tclWEAK_PROGRESS tac ptree =
  let rslt = tac ptree in
  if weak_progress (fst rslt) ptree then rslt
  else errorlabstrm "Refiner.tclWEAK_PROGRESS" (str"Failed to progress.")


(* Same as tclWEAK_PROGRESS but fails also if tactics generates several goals,
   one of them being identical to the original goal *)
let tclNOTSAMEGOAL (tac : tactic) goal =
  let rslt = tac goal in
  let gls = (fst rslt).it in
  if List.exists (same_goal goal.it) gls
  then errorlabstrm "Refiner.tclNOTSAMEGOAL"
      (str"Tactic generated a subgoal identical to the original goal.")
  else rslt

let catch_failerror e =
  if catchable_exception e then check_for_interrupt ()
  else match e with
  | FailError (0,_) | Stdpp.Exc_located(_, FailError (0,_))
  | Stdpp.Exc_located(_, LtacLocated (_,FailError (0,_)))  ->
      check_for_interrupt ()
  | FailError (lvl,s) -> raise (FailError (lvl - 1, s))
  | Stdpp.Exc_located(s,FailError (lvl,s')) ->
      raise (Stdpp.Exc_located(s,FailError (lvl - 1, s')))
  | Stdpp.Exc_located(s,LtacLocated (s'',FailError (lvl,s')))  ->
      raise
       (Stdpp.Exc_located(s,LtacLocated (s'',FailError (lvl - 1,s'))))
  | e -> raise e

(* ORELSE0 t1 t2 tries to apply t1 and if it fails, applies t2 *)
let tclORELSE0 t1 t2 g =
  try
    t1 g
  with (* Breakpoint *)
    | e -> catch_failerror e; t2 g

(* ORELSE t1 t2 tries to apply t1 and if it fails or does not progress,
   then applies t2 *)
let tclORELSE t1 t2 = tclORELSE0 (tclPROGRESS t1) t2

(* applies t1;t2then if t1 succeeds or t2else if t1 fails
   t2* are called in terminal position (unless t1 produces more than
   1 subgoal!) *)
let tclORELSE_THEN t1 t2then t2else gls =
  match
    try Some(tclPROGRESS t1 gls)
    with e -> catch_failerror e; None
  with
    | None -> t2else gls
    | Some (sgl,v) ->
        let (sigr,gl) = unpackage sgl in
        finish_tac (then_tac t2then  (sigr,gl,v))

(* TRY f tries to apply f, and if it fails, leave the goal unchanged *)
let tclTRY f = (tclORELSE0 f tclIDTAC)

let tclTHENTRY f g = (tclTHEN f (tclTRY g))

(* Try the first tactic that does not fail in a list of tactics *)

let rec tclFIRST = function
  | [] -> tclFAIL_s "No applicable tactic."
  |  t::rest -> tclORELSE0 t (tclFIRST rest)

let ite_gen tcal tac_if continue tac_else gl=
  let success=ref false in
  let tac_if0 gl=
    let result=tac_if gl in
      success:=true;result in
  let tac_else0 e gl=
    if !success then
      raise e
    else
      tac_else gl in
    try
      tcal tac_if0 continue gl
    with (* Breakpoint *)
      | e -> catch_failerror e; tac_else0 e gl

(* Try the first tactic and, if it succeeds, continue with
   the second one, and if it fails, use the third one *)

let tclIFTHENELSE=ite_gen tclTHEN

(* Idem with tclTHENS and tclTHENSV *)

let tclIFTHENSELSE=ite_gen tclTHENS

let tclIFTHENSVELSE=ite_gen tclTHENSV

let tclIFTHENTRYELSEMUST tac1 tac2 gl =
  tclIFTHENELSE tac1 (tclTRY tac2) tac2 gl

(* Fails if a tactic did not solve the goal *)
let tclCOMPLETE tac = tclTHEN tac (tclFAIL_s "Proof is not complete.")

(* Try the first thats solves the current goal *)
let tclSOLVE tacl = tclFIRST (List.map tclCOMPLETE tacl)


(* Iteration tacticals *)

let tclDO n t =
  let rec dorec k =
    if k < 0 then errorlabstrm "Refiner.tclDO"
      (str"Wrong argument : Do needs a positive integer.");
    if k = 0 then tclIDTAC
    else if k = 1 then t else (tclTHEN t (dorec (k-1)))
  in
  dorec n


(* Beware: call by need of CAML, g is needed *)
let rec tclREPEAT t g =
  tclORELSE_THEN t (tclREPEAT t) tclIDTAC g

let tclAT_LEAST_ONCE t = (tclTHEN t (tclREPEAT t))

(* Repeat on the first subgoal (no failure if no more subgoal) *)
let rec tclREPEAT_MAIN t g =
  (tclORELSE (tclTHEN_i t (fun i -> if i = 1 then (tclREPEAT_MAIN t) else
    tclIDTAC)) tclIDTAC) g

(*s Tactics handling a list of goals. *)

type validation_list = proof_tree list -> proof_tree list

type tactic_list = (goal list sigma) -> (goal list sigma) * validation_list

(* Functions working on goal list for correct backtracking in Prolog *)

let tclFIRSTLIST = tclFIRST
let tclIDTAC_list gls = (gls, fun x -> x)

(* first_goal : goal list sigma -> goal sigma *)

let first_goal gls =
  let gl = gls.it and sig_0 = gls.sigma in
  if gl = [] then error "first_goal";
  { it = List.hd gl; sigma = sig_0 }

(* goal_goal_list : goal sigma -> goal list sigma *)

let goal_goal_list gls =
  let gl = gls.it and sig_0 = gls.sigma in { it = [gl]; sigma = sig_0 }

(* tactic -> tactic_list : Apply a tactic to the first goal in the list *)

let apply_tac_list tac glls =
  let (sigr,lg) = unpackage glls in
  match lg with
  | (g1::rest) ->
      let (gl,p) = apply_sig_tac sigr tac g1 in
      let n = List.length gl in
      (repackage sigr (gl@rest),
       fun pfl -> let (pfg,pfrest) = list_chop n pfl in (p pfg)::pfrest)
  | _ -> error "apply_tac_list"

let then_tactic_list tacl1 tacl2 glls =
  let (glls1,pl1) = tacl1 glls in
  let (glls2,pl2) = tacl2 glls1 in
  (glls2, compose pl1 pl2)

(* Transform a tactic_list into a tactic *)

let tactic_list_tactic tac gls =
    let (glres,vl) = tac (goal_goal_list gls) in
    (glres, compose idtac_valid vl)



(* The type of proof-trees state and a few utilities
   A proof-tree state is built from a proof-tree, a set of global
   constraints, and a stack which allows to navigate inside the
   proof-tree remembering how to rebuild the global proof-tree
   possibly after modification of one of the focused children proof-tree.
   The number in the stack corresponds to
   either the selected subtree and the validation is a function from a
   proof-tree list consisting only of one proof-tree to the global
   proof-tree
   or -1 when the move is done behind a registered tactic in which
   case the validation corresponds to a constant function giving back
   the original proof-tree. *)

type pftreestate = {
  tpf      : proof_tree ;
  tpfsigma : evar_map;
  tstack   : (int * validation) list }

let proof_of_pftreestate pts = pts.tpf
let is_top_pftreestate pts = pts.tstack = []
let cursor_of_pftreestate pts = List.map fst pts.tstack
let evc_of_pftreestate pts = pts.tpfsigma

let top_goal_of_pftreestate pts =
  { it = goal_of_proof pts.tpf; sigma = pts.tpfsigma }

let nth_goal_of_pftreestate n pts =
  let goals = fst (frontier pts.tpf) in
  try {it = List.nth goals (n-1); sigma = pts.tpfsigma }
  with Invalid_argument _ | Failure _ -> non_existent_goal n

let traverse n pts = match n with
  | 0 -> (* go to the parent *)
      (match  pts.tstack with
	 | [] -> error "traverse: no ancestors"
	 | (_,v)::tl ->
             let pf = v [pts.tpf] in
             let pf = norm_evar_proof pts.tpfsigma pf in
	     { tpf = pf;
	       tstack = tl;
	       tpfsigma = pts.tpfsigma })
  | -1 -> (* go to the hidden tactic-proof, if any, otherwise fail *)
      (match pts.tpf.ref with
	 | Some (Nested (_,spf),_) ->
	     let v = (fun pfl -> pts.tpf) in
	     { tpf = spf;
               tstack = (-1,v)::pts.tstack;
               tpfsigma = pts.tpfsigma }
	 | _ -> error "traverse: not a tactic-node")
  | n -> (* when n>0, go to the nth child *)
      let (npf,v) = descend n pts.tpf in
      { tpf = npf;
        tpfsigma = pts.tpfsigma;
        tstack = (n,v):: pts.tstack }

let change_constraints_pftreestate newgc pts = { pts with tpfsigma = newgc }

let app_tac sigr tac p =
  let (gll,v) = tac {it=p.goal;sigma= !sigr} in
  sigr := gll.sigma;
  v (List.map leaf gll.it)

(* modify proof state at current position *)

let map_pftreestate f pts =
  let sigr = ref pts.tpfsigma in
  let tpf' = f sigr pts.tpf in
  let tpf'' =
    if !sigr == pts.tpfsigma then tpf' else norm_evar_proof !sigr tpf' in
  { tpf      = tpf'';
    tpfsigma = !sigr;
    tstack   = pts.tstack }

(* solve the nth subgoal with tactic tac *)

let solve_nth_pftreestate n tac =
  map_pftreestate
    (fun sigr pt -> frontier_map (app_tac sigr tac) n pt)

let solve_pftreestate = solve_nth_pftreestate 1

(* This function implements a poor man's undo at the current goal.
   This is a gross approximation as it does not attempt to clean correctly
   the global constraints given in tpfsigma. *)

let weak_undo_pftreestate pts =
  let pf = leaf pts.tpf.goal in
  { tpf = pf;
    tpfsigma = pts.tpfsigma;
    tstack = pts.tstack }

(* Gives a new proof (a leaf) of a goal gl *)
let mk_pftreestate g =
  { tpf      = leaf g;
    tstack   = [];
    tpfsigma = Evd.empty }

(* Extracts a constr from a proof-tree state ; raises an error if the
   proof is not complete or the state does not correspond to the head
   of the proof-tree *)

let extract_open_pftreestate pts =
  extract_open_proof pts.tpfsigma pts.tpf

let extract_pftreestate pts =
  if pts.tstack <> [] then
    errorlabstrm "extract_pftreestate" (str"Proof blocks need to be closed");
  let pfterm,subgoals = extract_open_pftreestate pts in
  let exl = Evarutil.non_instantiated pts.tpfsigma in
  if subgoals <> [] or exl <> [] then
    errorlabstrm "extract_proof"
      (if subgoals <> [] then
        str "Attempt to save an incomplete proof"
      else
        str "Attempt to save a proof with existential variables still non-instantiated");
  let env = Global.env_of_context pts.tpf.goal.evar_hyps in
  nf_betaiota_preserving_vm_cast env pts.tpfsigma pfterm
  (* strong whd_betaiotaevar env pts.tpfsigma pfterm *)
  (***
  local_strong (Evarutil.whd_ise (ts_it pts.tpfsigma)) pfterm
  ***)
(* Focus on the first leaf proof in a proof-tree state *)

let rec first_unproven pts =
  let pf = (proof_of_pftreestate pts) in
  if is_complete_proof pf then
    errorlabstrm "first_unproven" (str"No unproven subgoals");
  if is_leaf_proof pf then
    pts
  else
    let childnum =
      list_try_find_i
	(fun n pf ->
	   if not(is_complete_proof pf) then n else failwith "caught")
	1 (children_of_proof pf)
    in
    first_unproven (traverse childnum pts)

(* Focus on the last leaf proof in a proof-tree state *)

let rec last_unproven pts =
  let pf = proof_of_pftreestate pts in
  if is_complete_proof pf then
    errorlabstrm "last_unproven" (str"No unproven subgoals");
  if is_leaf_proof pf then
    pts
  else
    let children = (children_of_proof pf) in
    let nchilds = List.length children in
    let childnum =
      list_try_find_i
        (fun n pf ->
           if not(is_complete_proof pf) then n else failwith "caught")
        1 (List.rev children)
    in
    last_unproven (traverse (nchilds-childnum+1) pts)

let rec nth_unproven n pts =
  let pf = proof_of_pftreestate pts in
  if is_complete_proof pf then
    errorlabstrm "nth_unproven" (str"No unproven subgoals");
  if is_leaf_proof pf then
    if n = 1 then
      pts
    else
      errorlabstrm "nth_unproven" (str"Not enough unproven subgoals")
  else
    let children = children_of_proof pf in
    let rec process i k = function
      | [] ->
	  errorlabstrm "nth_unproven" (str"Not enough unproven subgoals")
      | pf1::rest ->
	  let k1 = nb_unsolved_goals pf1 in
	  if k1 < k then
	    process (i+1) (k-k1) rest
	  else
	    nth_unproven k (traverse i pts)
    in
    process 1 n children

let rec node_prev_unproven loc pts =
  let pf = proof_of_pftreestate pts in
  match cursor_of_pftreestate pts with
    | [] -> last_unproven pts
    | n::l ->
	if is_complete_proof pf or loc = 1 then
          node_prev_unproven n (traverse 0 pts)
	else
	  let child = List.nth (children_of_proof pf) (loc - 2) in
	  if is_complete_proof child then
	    node_prev_unproven (loc - 1) pts
	  else
	    first_unproven (traverse (loc - 1) pts)

let rec node_next_unproven loc pts =
  let pf = proof_of_pftreestate pts in
  match cursor_of_pftreestate pts with
    | [] -> first_unproven pts
    | n::l ->
	if is_complete_proof pf ||
           loc = (List.length (children_of_proof pf)) then
             node_next_unproven n (traverse 0 pts)
	else if is_complete_proof (List.nth (children_of_proof pf) loc) then
	  node_next_unproven (loc + 1) pts
	else
	  last_unproven(traverse (loc + 1) pts)

let next_unproven pts =
  let pf = proof_of_pftreestate pts in
  if is_leaf_proof pf then
    match cursor_of_pftreestate pts with
      | [] -> error "next_unproven"
      | n::_ -> node_next_unproven n (traverse 0 pts)
  else
    node_next_unproven (List.length (children_of_proof pf)) pts

let prev_unproven pts =
  let pf = proof_of_pftreestate pts in
  if is_leaf_proof pf then
    match cursor_of_pftreestate pts with
      | [] -> error "prev_unproven"
      | n::_ -> node_prev_unproven n (traverse 0 pts)
  else
    node_prev_unproven 1 pts

let rec top_of_tree pts =
  if is_top_pftreestate pts then pts else top_of_tree(traverse 0 pts)

(* FIXME: cette fonction n'est (as of October 2007) appelée nulle part *)
let change_rule f pts =
  let mark_top _ pt =
    match pt.ref with
	Some (oldrule,l) ->
	  {pt with ref=Some (f oldrule,l)}
      | _ -> invalid_arg "change_rule" in
    map_pftreestate mark_top pts

let match_rule p pts =
  match (proof_of_pftreestate pts).ref with
      Some (r,_) -> p r
    | None -> false

let rec up_until_matching_rule p pts =
  if is_top_pftreestate pts then
    raise Not_found
  else
    let one_up = traverse 0 pts in
      if match_rule p one_up then
	pts
      else
	up_until_matching_rule p one_up

let rec up_to_matching_rule p pts =
  if match_rule p pts then
    pts
  else
    if is_top_pftreestate pts then
      raise Not_found
    else
      let one_up = traverse 0 pts in
      	up_to_matching_rule p one_up

(* Change evars *)
let tclEVARS sigma gls = tclIDTAC {gls with sigma=sigma}

(* Pretty-printers. *)

let pp_info = ref (fun _ _ _ -> assert false)
let set_info_printer f = pp_info := f

let tclINFO (tac : tactic) gls =
  let (sgl,v) as res = tac gls in
  begin try
    let pf = v (List.map leaf (sig_it sgl)) in
    let sign = named_context_of_val (sig_it gls).evar_hyps in
    msgnl (hov 0 (str" == " ++
                  !pp_info (project gls) sign pf))
  with e when catchable_exception e ->
    msgnl (hov 0 (str "Info failed to apply validation"))
  end;
  res

let pp_proof = ref (fun _ _ _ -> assert false)
let set_proof_printer f = pp_proof := f

let print_pftreestate {tpf = pf; tpfsigma = sigma; tstack = stack } =
  (if stack = []
   then str "Rooted proof tree is:"
   else (str "Proof tree at occurrence [" ++
         prlist_with_sep (fun () -> str ";") (fun (n,_) -> int n)
           (List.rev stack) ++ str "] is:")) ++ fnl() ++
  !pp_proof sigma (Global.named_context()) pf ++
  Evd.pr_evar_map sigma

(* Check that holes in arguments have been resolved *)

let check_evars env sigma evm gl =
  let origsigma = gl.sigma in
  let rest =
    Evd.fold (fun ev evi acc ->
      if not (Evd.mem origsigma ev) && not (Evd.is_defined sigma ev)
      then Evd.add acc ev evi else acc)
      evm Evd.empty
  in
  if rest <> Evd.empty then
    let (evk,evi) = List.hd (Evd.to_list rest) in
    let (loc,k) = evar_source evk rest in
    let evi = Evarutil.nf_evar_info sigma evi in
    Pretype_errors.error_unsolvable_implicit loc env sigma evi k None

let tclWITHHOLES accept_unresolved_holes tac sigma c gl =
  if sigma == project gl then tac c gl
  else
    let res = tclTHEN (tclEVARS sigma) (tac c) gl in
    if not accept_unresolved_holes then
      check_evars (pf_env gl) (fst res).sigma sigma gl;
    res