1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: clenv.ml,v 1.97.2.3 2004/07/16 19:30:48 herbelin Exp $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Instantiate
open Environ
open Evd
open Proof_type
open Refiner
open Proof_trees
open Logic
open Reductionops
open Tacmach
open Evar_refiner
open Rawterm
open Pattern
open Tacexpr
(* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms,
gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *)
let abstract_scheme env c l lname_typ =
List.fold_left2
(fun t (locc,a) (na,_,ta) ->
let na = match kind_of_term a with Var id -> Name id | _ -> na in
if occur_meta ta then error "cannot find a type for the generalisation"
else if occur_meta a then lambda_name env (na,ta,t)
else lambda_name env (na,ta,subst_term_occ locc a t))
c
(List.rev l)
lname_typ
let abstract_list_all env sigma typ c l =
let ctxt,_ = decomp_n_prod env sigma (List.length l) typ in
let p = abstract_scheme env c (List.map (function a -> [],a) l) ctxt in
try
if is_conv_leq env sigma (Typing.type_of env sigma p) typ then p
else error "abstract_list_all"
with UserError _ ->
raise (RefinerError (CannotGeneralize typ))
(* Generator of metavariables *)
let new_meta =
let meta_ctr = ref 0 in
fun () -> incr meta_ctr; !meta_ctr
(* replaces a mapping of existentials into a mapping of metas.
Problem if an evar appears in the type of another one (pops anomaly) *)
let exist_to_meta sigma (emap, c) =
let metamap = ref [] in
let change_exist evar =
let ty = nf_betaiota (nf_evar emap (existential_type emap evar)) in
let n = new_meta() in
metamap := (n, ty) :: !metamap;
mkMeta n in
let rec replace c =
match kind_of_term c with
Evar (k,_ as ev) when not (Evd.in_dom sigma k) -> change_exist ev
| _ -> map_constr replace c in
(!metamap, replace c)
module Metaset = Intset
module Metamap = Intmap
let meta_exists p s = Metaset.fold (fun x b -> (p x) || b) s false
let metamap_in_dom x m =
try let _ = Metamap.find x m in true with Not_found -> false
let metamap_to_list m =
Metamap.fold (fun n v l -> (n,v)::l) m []
let metamap_inv m b =
Metamap.fold (fun n v l -> if v = b then n::l else l) m []
type 'a freelisted = {
rebus : 'a;
freemetas : Metaset.t }
(* collects all metavar occurences, in left-to-right order, preserving
* repetitions and all. *)
let collect_metas c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> mv::acc
| _ -> fold_constr collrec acc c
in
List.rev (collrec [] c)
let metavars_of c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> Metaset.add mv acc
| _ -> fold_constr collrec acc c
in
collrec Metaset.empty c
let mk_freelisted c =
{ rebus = c; freemetas = metavars_of c }
(* Clausal environments *)
type clbinding =
| Cltyp of constr freelisted
| Clval of constr freelisted * constr freelisted
type 'a clausenv = {
templval : constr freelisted;
templtyp : constr freelisted;
namenv : identifier Metamap.t;
env : clbinding Metamap.t;
hook : 'a }
type wc = named_context sigma
(* [mentions clenv mv0 mv1] is true if mv1 is defined and mentions
* mv0, or if one of the free vars on mv1's freelist mentions
* mv0 *)
let mentions clenv mv0 =
let rec menrec mv1 =
try
(match Metamap.find mv1 clenv.env with
| Clval (b,_) ->
Metaset.mem mv0 b.freemetas || meta_exists menrec b.freemetas
| Cltyp _ -> false)
with Not_found ->
false
in
menrec
(* Creates a new clause-environment, whose template has a given
* type, CTY. This is not all that useful, since not very often
* does one know the type of the clause - one usually only has
* a clause which one wants to backchain thru. *)
let mk_clenv wc cty =
let mv = new_meta () in
let cty_fls = mk_freelisted cty in
{ templval = mk_freelisted (mkMeta mv);
templtyp = cty_fls;
namenv = Metamap.empty;
env = Metamap.add mv (Cltyp cty_fls) Metamap.empty ;
hook = wc }
let clenv_environments bound c =
let rec clrec (ne,e,metas) n c =
match n, kind_of_term c with
| (Some 0, _) -> (ne, e, List.rev metas, c)
| (n, Cast (c,_)) -> clrec (ne,e,metas) n c
| (n, Prod (na,c1,c2)) ->
let mv = new_meta () in
let dep = dependent (mkRel 1) c2 in
let ne' =
if dep then
match na with
| Anonymous -> ne
| Name id ->
if metamap_in_dom mv ne then begin
warning ("Cannot put metavar "^(string_of_meta mv)^
" in name-environment twice");
ne
end else
Metamap.add mv id ne
else
ne
in
let e' = Metamap.add mv (Cltyp (mk_freelisted c1)) e in
clrec (ne',e', (mkMeta mv)::metas) (option_app ((+) (-1)) n)
(if dep then (subst1 (mkMeta mv) c2) else c2)
| (n, LetIn (na,b,_,c)) ->
clrec (ne,e,metas) (option_app ((+) (-1)) n) (subst1 b c)
| (n, _) -> (ne, e, List.rev metas, c)
in
clrec (Metamap.empty,Metamap.empty,[]) bound c
let mk_clenv_from_n wc n (c,cty) =
let (namenv,env,args,concl) = clenv_environments n cty in
{ templval = mk_freelisted (match args with [] -> c | _ -> applist (c,args));
templtyp = mk_freelisted concl;
namenv = namenv;
env = env;
hook = wc }
let mk_clenv_from wc = mk_clenv_from_n wc None
let map_fl f cfl = { cfl with rebus=f cfl.rebus }
let map_clb f = function
| Cltyp cfl -> Cltyp (map_fl f cfl)
| Clval (cfl1,cfl2) -> Clval (map_fl f cfl1,map_fl f cfl2)
let subst_clenv f sub clenv =
{ templval = map_fl (subst_mps sub) clenv.templval;
templtyp = map_fl (subst_mps sub) clenv.templtyp;
namenv = clenv.namenv;
env = Metamap.map (map_clb (subst_mps sub)) clenv.env;
hook = f sub clenv.hook }
let connect_clenv wc clenv = { clenv with hook = wc }
(* Was used in wcclausenv.ml
(* Changes the head of a clenv with (templ,templty) *)
let clenv_change_head (templ,templty) clenv =
{ templval = mk_freelisted templ;
templtyp = mk_freelisted templty;
namenv = clenv.namenv;
env = clenv.env;
hook = clenv.hook }
*)
let mk_clenv_hnf_constr_type_of wc t =
mk_clenv_from wc (t,w_hnf_constr wc (w_type_of wc t))
let mk_clenv_rename_from wc (c,t) =
mk_clenv_from wc (c,rename_bound_var (w_env wc) [] t)
let mk_clenv_rename_from_n wc n (c,t) =
mk_clenv_from_n wc n (c,rename_bound_var (w_env wc) [] t)
let mk_clenv_rename_type_of wc t =
mk_clenv_from wc (t,rename_bound_var (w_env wc) [] (w_type_of wc t))
let mk_clenv_rename_hnf_constr_type_of wc t =
mk_clenv_from wc
(t,rename_bound_var (w_env wc) [] (w_hnf_constr wc (w_type_of wc t)))
let mk_clenv_type_of wc t = mk_clenv_from wc (t,w_type_of wc t)
let clenv_assign mv rhs clenv =
let rhs_fls = mk_freelisted rhs in
if meta_exists (mentions clenv mv) rhs_fls.freemetas then
error "clenv__assign: circularity in unification";
try
(match Metamap.find mv clenv.env with
| Clval (fls,ty) ->
if not (eq_constr fls.rebus rhs) then
try
(* Streams are lazy, force evaluation of id to catch Not_found*)
let id = Metamap.find mv clenv.namenv in
errorlabstrm "clenv_assign"
(str "An incompatible instantiation has already been found for " ++
pr_id id)
with Not_found ->
anomaly "clenv_assign: non dependent metavar already assigned"
else
clenv
| Cltyp bty ->
{ templval = clenv.templval;
templtyp = clenv.templtyp;
namenv = clenv.namenv;
env = Metamap.add mv (Clval (rhs_fls,bty)) clenv.env;
hook = clenv.hook })
with Not_found ->
error "clenv_assign"
let clenv_val_of clenv mv =
let rec valrec mv =
try
(match Metamap.find mv clenv.env with
| Cltyp _ -> mkMeta mv
| Clval(b,_) ->
instance (List.map (fun mv' -> (mv',valrec mv'))
(Metaset.elements b.freemetas)) b.rebus)
with Not_found ->
mkMeta mv
in
valrec mv
let clenv_instance clenv b =
let c_sigma =
List.map
(fun mv -> (mv,clenv_val_of clenv mv)) (Metaset.elements b.freemetas)
in
instance c_sigma b.rebus
let clenv_instance_term clenv c =
clenv_instance clenv (mk_freelisted c)
(* This function put casts around metavariables whose type could not be
* infered by the refiner, that is head of applications, predicates and
* subject of Cases.
* Does check that the casted type is closed. Anyway, the refiner would
* fail in this case... *)
let clenv_cast_meta clenv =
let rec crec u =
match kind_of_term u with
| App _ | Case _ -> crec_hd u
| Cast (c,_) when isMeta c -> u
| _ -> map_constr crec u
and crec_hd u =
match kind_of_term (strip_outer_cast u) with
| Meta mv ->
(try
match Metamap.find mv clenv.env with
| Cltyp b ->
let b' = clenv_instance clenv b in
if occur_meta b' then u else mkCast (mkMeta mv, b')
| Clval(_) -> u
with Not_found ->
u)
| App(f,args) -> mkApp (crec_hd f, Array.map crec args)
| Case(ci,p,c,br) ->
mkCase (ci, crec_hd p, crec_hd c, Array.map crec br)
| _ -> u
in
crec
(* [clenv_pose (na,mv,cty) clenv]
* returns a new clausenv which has added to it the metavar MV,
* with type CTY. the name NA, if it is not ANONYMOUS, will
* be entered into the name-map, as a way of accessing the new
* metavar. *)
let clenv_pose (na,mv,cty) clenv =
{ templval = clenv.templval;
templtyp = clenv.templtyp;
env = Metamap.add mv (Cltyp (mk_freelisted cty)) clenv.env;
namenv = (match na with
| Anonymous -> clenv.namenv
| Name id -> Metamap.add mv id clenv.namenv);
hook = clenv.hook }
let clenv_defined clenv mv =
match Metamap.find mv clenv.env with
| Clval _ -> true
| Cltyp _ -> false
let clenv_value clenv mv =
match Metamap.find mv clenv.env with
| Clval(b,_) -> b
| Cltyp _ -> failwith "clenv_value"
let clenv_type clenv mv =
match Metamap.find mv clenv.env with
| Cltyp b -> b
| Clval(_,b) -> b
let clenv_template clenv = clenv.templval
let clenv_template_type clenv = clenv.templtyp
let clenv_instance_value clenv mv =
clenv_instance clenv (clenv_value clenv mv)
let clenv_instance_type clenv mv =
clenv_instance clenv (clenv_type clenv mv)
let clenv_instance_template clenv =
clenv_instance clenv (clenv_template clenv)
let clenv_instance_template_type clenv =
clenv_instance clenv (clenv_template_type clenv)
let clenv_wtactic wt clenv =
{ templval = clenv.templval;
templtyp = clenv.templtyp;
namenv = clenv.namenv;
env = clenv.env;
hook = wt clenv.hook }
let clenv_type_of ce c =
let metamap =
List.map
(function
| (n,Clval(_,typ)) -> (n,typ.rebus)
| (n,Cltyp typ) -> (n,typ.rebus))
(metamap_to_list ce.env)
in
Retyping.get_type_of_with_meta (w_env ce.hook) (w_Underlying ce.hook) metamap c
let clenv_instance_type_of ce c =
clenv_instance ce (mk_freelisted (clenv_type_of ce c))
(* Unification à l'ordre 0 de m et n: [unify_0 mc wc m n] renvoie deux listes:
metasubst:(int*constr)list récolte les instances des (Meta k)
evarsubst:(constr*constr)list récolte les instances des (Const "?k")
Attention : pas d'unification entre les différences instances d'une
même meta ou evar, il peut rester des doublons *)
(* Unification order: *)
(* Left to right: unifies first argument and then the other arguments *)
(*let unify_l2r x = List.rev x
(* Right to left: unifies last argument and then the other arguments *)
let unify_r2l x = x
let sort_eqns = unify_r2l
*)
let unify_0 cv_pb wc m n =
let env = w_env wc
and sigma = w_Underlying wc in
let trivial_unify pb substn m n =
if (not(occur_meta m)) & is_fconv pb env sigma m n then substn
else error_cannot_unify (m,n) in
let rec unirec_rec pb ((metasubst,evarsubst) as substn) m n =
let cM = Evarutil.whd_castappevar sigma m
and cN = Evarutil.whd_castappevar sigma n in
match (kind_of_term cM,kind_of_term cN) with
| Meta k1, Meta k2 ->
if k1 < k2 then (k1,cN)::metasubst,evarsubst
else if k1 = k2 then substn
else (k2,cM)::metasubst,evarsubst
| Meta k, _ -> (k,cN)::metasubst,evarsubst
| _, Meta k -> (k,cM)::metasubst,evarsubst
| Evar _, _ -> metasubst,((cM,cN)::evarsubst)
| _, Evar _ -> metasubst,((cN,cM)::evarsubst)
| Lambda (_,t1,c1), Lambda (_,t2,c2) ->
unirec_rec CONV (unirec_rec CONV substn t1 t2) c1 c2
| Prod (_,t1,c1), Prod (_,t2,c2) ->
unirec_rec pb (unirec_rec CONV substn t1 t2) c1 c2
| LetIn (_,b,_,c), _ -> unirec_rec pb substn (subst1 b c) cN
| _, LetIn (_,b,_,c) -> unirec_rec pb substn cM (subst1 b c)
| App (f1,l1), App (f2,l2) ->
let len1 = Array.length l1
and len2 = Array.length l2 in
let (f1,l1,f2,l2) =
if len1 = len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = array_chop (len2-len1) l2 in
(f1, l1, appvect (f2,extras), restl2)
else
let extras,restl1 = array_chop (len1-len2) l1 in
(appvect (f1,extras), restl1, f2, l2) in
(try
array_fold_left2 (unirec_rec CONV)
(unirec_rec CONV substn f1 f2) l1 l2
with ex when catchable_exception ex ->
trivial_unify pb substn cM cN)
| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
array_fold_left2 (unirec_rec CONV)
(unirec_rec CONV (unirec_rec CONV substn p1 p2) c1 c2) cl1 cl2
| _ -> trivial_unify pb substn cM cN
in
if (not(occur_meta m)) & is_fconv cv_pb env sigma m n then
([],[])
else
let (mc,ec) = unirec_rec cv_pb ([],[]) m n in
((*sort_eqns*) mc, (*sort_eqns*) ec)
(* Unification
*
* Procedure:
* (1) The function [unify mc wc M N] produces two lists:
* (a) a list of bindings Meta->RHS
* (b) a list of bindings EVAR->RHS
*
* The Meta->RHS bindings cannot themselves contain
* meta-vars, so they get applied eagerly to the other
* bindings. This may or may not close off all RHSs of
* the EVARs. For each EVAR whose RHS is closed off,
* we can just apply it, and go on. For each which
* is not closed off, we need to do a mimick step -
* in general, we have something like:
*
* ?X == (c e1 e2 ... ei[Meta(k)] ... en)
*
* so we need to do a mimick step, converting ?X
* into
*
* ?X -> (c ?z1 ... ?zn)
*
* of the proper types. Then, we can decompose the
* equation into
*
* ?z1 --> e1
* ...
* ?zi --> ei[Meta(k)]
* ...
* ?zn --> en
*
* and keep on going. Whenever we find that a R.H.S.
* is closed, we can, as before, apply the constraint
* directly. Whenever we find an equation of the form:
*
* ?z -> Meta(n)
*
* we can reverse the equation, put it into our metavar
* substitution, and keep going.
*
* The most efficient mimick possible is, for each
* Meta-var remaining in the term, to declare a
* new EVAR of the same type. This is supposedly
* determinable from the clausale form context -
* we look up the metavar, take its type there,
* and apply the metavar substitution to it, to
* close it off. But this might not always work,
* since other metavars might also need to be resolved. *)
let applyHead n c wc =
let rec apprec n c cty wc =
if n = 0 then
(wc,c)
else
match kind_of_term (w_whd_betadeltaiota wc cty) with
| Prod (_,c1,c2) ->
let evar = Evarutil.new_evar_in_sign (w_env wc) in
let (evar_n, _) = destEvar evar in
(compose
(apprec (n-1) (applist(c,[evar])) (subst1 evar c2))
(w_Declare evar_n c1))
wc
| _ -> error "Apply_Head_Then"
in
apprec n c (w_type_of wc c) wc
let is_mimick_head f =
match kind_of_term f with
(Const _|Var _|Rel _|Construct _|Ind _) -> true
| _ -> false
let rec mimick_evar hdc nargs sp wc =
let evd = Evd.map wc.sigma sp in
let wc' = extract_decl sp wc in
let (wc'', c) = applyHead nargs hdc wc' in
let (mc,ec) = unify_0 CONV wc'' (w_type_of wc'' c) (evd.evar_concl) in
let (wc''',_) = w_resrec mc ec wc'' in
if wc'== wc'''
then w_Define sp c wc
else
let wc'''' = restore_decl sp evd wc''' in
w_Define sp (Evarutil.nf_evar wc''''.sigma c) {it = wc.it ; sigma = wc''''.sigma}
and w_Unify cv_pb m n wc =
let (mc',ec') = unify_0 cv_pb wc m n in
w_resrec mc' ec' wc
and w_resrec metas evars wc =
match evars with
| [] -> (wc,metas)
| (lhs,rhs) :: t ->
match kind_of_term rhs with
| Meta k -> w_resrec ((k,lhs)::metas) t wc
| krhs ->
match kind_of_term lhs with
| Evar (evn,_) ->
if w_defined_evar wc evn then
let (wc',metas') = w_Unify CONV rhs lhs wc in
w_resrec (metas@metas') t wc'
else
(try
w_resrec metas t (w_Define evn rhs wc)
with ex when catchable_exception ex ->
(match krhs with
| App (f,cl) when is_mimick_head f ->
let wc' = mimick_evar f (Array.length cl) evn wc in
w_resrec metas evars wc'
| _ -> raise ex (*error "w_Unify" *)))
| _ -> anomaly "w_resrec"
(* [unifyTerms] et [unify] ne semble pas gérer les Meta, en
particulier ne semblent pas vérifier que des instances différentes
d'une même Meta sont compatibles. D'ailleurs le "fst" jette les metas
provenant de w_Unify. (Utilisé seulement dans prolog.ml) *)
(* let unifyTerms m n = walking (fun wc -> fst (w_Unify CONV m n [] wc)) *)
let unifyTerms m n gls =
tclIDTAC {it = gls.it;
sigma = (get_gc (fst (w_Unify CONV m n (Refiner.project_with_focus gls))))}
let unify m gls =
let n = pf_concl gls in unifyTerms m n gls
(* [clenv_merge b metas evars clenv] merges common instances in metas
or in evars, possibly generating new unification problems; if [b]
is true, unification of types of metas is required *)
let clenv_merge with_types metas evars clenv =
let ty_metas = ref [] in
let ty_evars = ref [] in
let rec clenv_resrec metas evars clenv =
match (evars,metas) with
| ([], []) -> clenv
| ((lhs,rhs)::t, metas) ->
(match kind_of_term rhs with
| Meta k -> clenv_resrec ((k,lhs)::metas) t clenv
| krhs ->
(match kind_of_term lhs with
| Evar (evn,_) ->
if w_defined_evar clenv.hook evn then
let (metas',evars') = unify_0 CONV clenv.hook rhs lhs in
clenv_resrec (metas'@metas) (evars'@t) clenv
else begin
let rhs' =
if occur_meta rhs then subst_meta metas rhs else rhs
in
if occur_evar evn rhs' then error "w_Unify";
try
clenv_resrec metas t
(clenv_wtactic (w_Define evn rhs') clenv)
with ex when catchable_exception ex ->
(match krhs with
| App (f,cl) when is_mimick_head f ->
clenv_resrec metas evars
(clenv_wtactic
(mimick_evar f (Array.length cl) evn)
clenv)
| _ -> raise ex (********* error "w_Unify" *))
end
| _ -> anomaly "clenv_resrec"))
| ([], (mv,n)::t) ->
if clenv_defined clenv mv then
let (metas',evars') =
unify_0 CONV clenv.hook (clenv_value clenv mv).rebus n in
clenv_resrec (metas'@t) evars' clenv
else
begin
if with_types (* or occur_meta mvty *) then
(let mvty = clenv_instance_type clenv mv in
try
let nty = clenv_type_of clenv
(clenv_instance clenv (mk_freelisted n)) in
let (mc,ec) = unify_0 CUMUL clenv.hook nty mvty in
ty_metas := mc @ !ty_metas;
ty_evars := ec @ !ty_evars
with e when Logic.catchable_exception e -> ());
clenv_resrec t [] (clenv_assign mv n clenv)
end in
(* merge constraints *)
let clenv' = clenv_resrec metas evars clenv in
if with_types then
(* merge constraints about types: if they fail, don't worry *)
try clenv_resrec !ty_metas !ty_evars clenv'
with e when Logic.catchable_exception e -> clenv'
else clenv'
(* [clenv_unify M N clenv]
performs a unification of M and N, generating a bunch of
unification constraints in the process. These constraints
are processed, one-by-one - they may either generate new
bindings, or, if there is already a binding, new unifications,
which themselves generate new constraints. This continues
until we get failure, or we run out of constraints.
[clenv_typed_unify M N clenv] expects in addition that expected
types of metavars are unifiable with the types of their instances *)
let clenv_unify_core_0 with_types cv_pb m n clenv =
let (mc,ec) = unify_0 cv_pb clenv.hook m n in
clenv_merge with_types mc ec clenv
let clenv_unify_0 = clenv_unify_core_0 false
let clenv_typed_unify = clenv_unify_core_0 true
(* takes a substitution s, an open term op and a closed term cl
try to find a subterm of cl which matches op, if op is just a Meta
FAIL because we cannot find a binding *)
let iter_fail f a =
let n = Array.length a in
let rec ffail i =
if i = n then error "iter_fail"
else
try f a.(i)
with ex when catchable_exception ex -> ffail (i+1)
in ffail 0
(* Tries to find an instance of term [cl] in term [op].
Unifies [cl] to every subterm of [op] until it finds a match.
Fails if no match is found *)
let unify_to_subterm clause (op,cl) =
let rec matchrec cl =
let cl = strip_outer_cast cl in
(try
if closed0 cl
then clenv_unify_0 CONV op cl clause,cl
else error "Bound 1"
with ex when catchable_exception ex ->
(match kind_of_term cl with
| App (f,args) ->
let n = Array.length args in
assert (n>0);
let c1 = mkApp (f,Array.sub args 0 (n-1)) in
let c2 = args.(n-1) in
(try
matchrec c1
with ex when catchable_exception ex ->
matchrec c2)
| Case(_,_,c,lf) -> (* does not search in the predicate *)
(try
matchrec c
with ex when catchable_exception ex ->
iter_fail matchrec lf)
| LetIn(_,c1,_,c2) ->
(try
matchrec c1
with ex when catchable_exception ex ->
matchrec c2)
| Fix(_,(_,types,terms)) ->
(try
iter_fail matchrec types
with ex when catchable_exception ex ->
iter_fail matchrec terms)
| CoFix(_,(_,types,terms)) ->
(try
iter_fail matchrec types
with ex when catchable_exception ex ->
iter_fail matchrec terms)
| Prod (_,t,c) ->
(try
matchrec t
with ex when catchable_exception ex ->
matchrec c)
| Lambda (_,t,c) ->
(try
matchrec t
with ex when catchable_exception ex ->
matchrec c)
| _ -> error "Match_subterm"))
in
try matchrec cl
with ex when catchable_exception ex ->
raise (RefinerError (NoOccurrenceFound op))
let unify_to_subterm_list allow_K clause oplist t =
List.fold_right
(fun op (clause,l) ->
if isMeta op then
if allow_K then (clause,op::l)
else error "Match_subterm"
else if occur_meta op then
let (clause',cl) =
try
(* This is up to delta for subterms w/o metas ... *)
unify_to_subterm clause (strip_outer_cast op,t)
with RefinerError (NoOccurrenceFound _) when allow_K -> (clause,op)
in
(clause',cl::l)
else if not allow_K & not (dependent op t) then
(* This is not up to delta ... *)
raise (RefinerError (NoOccurrenceFound op))
else
(clause,op::l))
oplist
(clause,[])
let secondOrderAbstraction allow_K typ (p, oplist) clause =
let env = w_env clause.hook in
let sigma = w_Underlying clause.hook in
let (clause',cllist) = unify_to_subterm_list allow_K clause oplist typ in
let typp = clenv_instance_type clause' p in
let pred = abstract_list_all env sigma typp typ cllist in
clenv_unify_0 CONV (mkMeta p) pred clause'
let clenv_unify2 allow_K cv_pb ty1 ty2 clause =
let c1, oplist1 = whd_stack ty1 in
let c2, oplist2 = whd_stack ty2 in
match kind_of_term c1, kind_of_term c2 with
| Meta p1, _ ->
(* Find the predicate *)
let clause' =
secondOrderAbstraction allow_K ty2 (p1,oplist1) clause in
(* Resume first order unification *)
clenv_unify_0 cv_pb (clenv_instance_term clause' ty1) ty2 clause'
| _, Meta p2 ->
(* Find the predicate *)
let clause' =
secondOrderAbstraction allow_K ty1 (p2, oplist2) clause in
(* Resume first order unification *)
clenv_unify_0 cv_pb ty1 (clenv_instance_term clause' ty2) clause'
| _ -> error "clenv_unify2"
(* The unique unification algorithm works like this: If the pattern is
flexible, and the goal has a lambda-abstraction at the head, then
we do a first-order unification.
If the pattern is not flexible, then we do a first-order
unification, too.
If the pattern is flexible, and the goal doesn't have a
lambda-abstraction head, then we second-order unification. *)
(* We decide here if first-order or second-order unif is used for Apply *)
(* We apply a term of type (ai:Ai)C and try to solve a goal C' *)
(* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *)
(* 3-4-99 [HH] New fo/so choice heuristic :
In case we have to unify (Meta(1) args) with ([x:A]t args')
we first try second-order unification and if it fails first-order.
Before, second-order was used if the type of Meta(1) and [x:A]t was
convertible and first-order otherwise. But if failed if e.g. the type of
Meta(1) had meta-variables in it. *)
let clenv_unify allow_K cv_pb ty1 ty2 clenv =
let hd1,l1 = whd_stack ty1 in
let hd2,l2 = whd_stack ty2 in
match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with
(* Pattern case *)
| (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true)
when List.length l1 = List.length l2 ->
(try
clenv_typed_unify cv_pb ty1 ty2 clenv
with ex when catchable_exception ex ->
try
clenv_unify2 allow_K cv_pb ty1 ty2 clenv
with RefinerError (NoOccurrenceFound c) as e -> raise e
| ex when catchable_exception ex ->
error "Cannot solve a second-order unification problem")
(* Second order case *)
| (Meta _, true, _, _ | _, _, Meta _, true) ->
(try
clenv_unify2 allow_K cv_pb ty1 ty2 clenv
with RefinerError (NoOccurrenceFound c) as e -> raise e
| ex when catchable_exception ex ->
try
clenv_typed_unify cv_pb ty1 ty2 clenv
with ex when catchable_exception ex ->
error "Cannot solve a second-order unification problem")
(* General case: try first order *)
| _ -> clenv_unify_0 cv_pb ty1 ty2 clenv
(* [clenv_bchain mv clenv' clenv]
*
* Resolves the value of "mv" (which must be undefined) in clenv to be
* the template of clenv' be the value "c", applied to "n" fresh
* metavars, whose types are chosen by destructing "clf", which should
* be a clausale forme generated from the type of "c". The process of
* resolution can cause unification of already-existing metavars, and
* of the fresh ones which get created. This operation is a composite
* of operations which pose new metavars, perform unification on
* terms, and make bindings. *)
let clenv_bchain mv subclenv clenv =
(* Add the metavars of [subclenv] to [clenv], with their name-environment *)
let clenv' =
{ templval = clenv.templval;
templtyp = clenv.templtyp;
namenv =
List.fold_left (fun ne (mv,id) ->
if clenv_defined subclenv mv then
ne
else if metamap_in_dom mv ne then begin
warning ("Cannot put metavar "^(string_of_meta mv)^
" in name-environment twice");
ne
end else
Metamap.add mv id ne)
clenv.namenv (metamap_to_list subclenv.namenv);
env = List.fold_left (fun m (n,v) -> Metamap.add n v m)
clenv.env (metamap_to_list subclenv.env);
hook = clenv.hook }
in
(* unify the type of the template of [subclenv] with the type of [mv] *)
let clenv'' =
clenv_unify true CUMUL
(clenv_instance clenv' (clenv_template_type subclenv))
(clenv_instance_type clenv' mv)
clenv'
in
(* assign the metavar *)
let clenv''' =
clenv_assign mv (clenv_instance clenv' (clenv_template subclenv)) clenv''
in
clenv'''
(* swaps the "hooks" in [clenv1] and [clenv2], so we can then use
backchain to hook them together *)
let clenv_swap clenv1 clenv2 =
let clenv1' = { templval = clenv1.templval;
templtyp = clenv1.templtyp;
namenv = clenv1.namenv;
env = clenv1.env;
hook = clenv2.hook}
and clenv2' = { templval = clenv2.templval;
templtyp = clenv2.templtyp;
namenv = clenv2.namenv;
env = clenv2.env;
hook = clenv1.hook}
in
(clenv1',clenv2')
let clenv_fchain mv nextclenv clenv =
let (clenv',nextclenv') = clenv_swap clenv nextclenv in
clenv_bchain mv clenv' nextclenv'
let clenv_refine kONT clenv gls =
tclTHEN
(kONT clenv.hook)
(refine (clenv_instance_template clenv)) gls
let clenv_refine_cast kONT clenv gls =
tclTHEN
(kONT clenv.hook)
(refine (clenv_cast_meta clenv (clenv_instance_template clenv)))
gls
(* [clenv_metavars clenv mv]
* returns a list of the metavars which appear in the type of
* the metavar mv. The list is unordered. *)
let clenv_metavars clenv mv =
match Metamap.find mv clenv.env with
| Clval(_,b) -> b.freemetas
| Cltyp b -> b.freemetas
let clenv_template_metavars clenv = clenv.templval.freemetas
(* [clenv_dependent hyps_only clenv]
* returns a list of the metavars which appear in the template of clenv,
* and which are dependent, This is computed by taking the metavars in cval,
* in right-to-left order, and collecting the metavars which appear
* in their types, and adding in all the metavars appearing in the
* type of clenv.
* If [hyps_only] then metavariables occurring in the type are _excluded_ *)
let dependent_metas clenv mvs conclmetas =
List.fold_right
(fun mv deps ->
Metaset.union deps (clenv_metavars clenv mv))
mvs conclmetas
let clenv_dependent hyps_only clenv =
let mvs = collect_metas (clenv_instance_template clenv) in
let ctyp_mvs = metavars_of (clenv_instance_template_type clenv) in
let deps = dependent_metas clenv mvs ctyp_mvs in
List.filter
(fun mv -> Metaset.mem mv deps && not (hyps_only && Metaset.mem mv ctyp_mvs))
mvs
let clenv_missing c = clenv_dependent true c
(* [clenv_independent clenv]
* returns a list of metavariables which appear in the term cval,
* and which are not dependent. That is, they do not appear in
* the types of other metavars which are in cval, nor in the type
* of cval, ctyp. *)
let clenv_independent clenv =
let mvs = collect_metas (clenv_instance_template clenv) in
let ctyp_mvs = metavars_of (clenv_instance_template_type clenv) in
let deps = dependent_metas clenv mvs ctyp_mvs in
List.filter (fun mv -> not (Metaset.mem mv deps)) mvs
let w_coerce wc c ctyp target =
let j = make_judge c ctyp in
let env = w_env wc in
let isevars = Evarutil.create_evar_defs (w_Underlying wc) in
let j' = Coercion.inh_conv_coerce_to dummy_loc env isevars j target in
(* faire quelque chose avec isevars ? *)
j'.uj_val
let clenv_constrain_dep_args hyps_only clause = function
| [] -> clause
| mlist ->
let occlist = clenv_dependent hyps_only clause in
if List.length occlist = List.length mlist then
List.fold_left2
(fun clenv k c ->
let wc = clause.hook in
try
let k_typ = w_hnf_constr wc (clenv_instance_type clause k) in
let c_typ = w_hnf_constr wc (w_type_of wc c) in
let c' = w_coerce wc c c_typ k_typ in
clenv_unify true CONV (mkMeta k) c' clenv
with _ ->
clenv_unify true CONV (mkMeta k) c clenv)
clause occlist mlist
else
error ("Not the right number of missing arguments (expected "
^(string_of_int (List.length occlist))^")")
let clenv_constrain_missing_args mlist clause =
clenv_constrain_dep_args true clause mlist
let clenv_lookup_name clenv id =
match metamap_inv clenv.namenv id with
| [] ->
errorlabstrm "clenv_lookup_name"
(str"No such bound variable " ++ pr_id id)
| [n] ->
n
| _ ->
anomaly "clenv_lookup_name: a name occurs more than once in clause"
let clenv_match_args s clause =
let mvs = clenv_independent clause in
let rec matchrec clause = function
| [] -> clause
| (loc,b,c)::t ->
let k =
match b with
| NamedHyp s ->
if List.exists (fun (_,b',_) -> b=b') t then
errorlabstrm "clenv_match_args"
(str "The variable " ++ pr_id s ++
str " occurs more than once in binding")
else
clenv_lookup_name clause s
| AnonHyp n ->
if List.exists (fun (_,b',_) -> b=b') t then
errorlabstrm "clenv_match_args"
(str "The position " ++ int n ++
str " occurs more than once in binding");
try
List.nth mvs (n-1)
with (Failure _|Invalid_argument _) ->
errorlabstrm "clenv_match_args" (str "No such binder")
in
let k_typ = w_hnf_constr clause.hook (clenv_instance_type clause k)
(* nf_betaiota was before in type_of - useful to reduce types like *)
(* (x:A)([x]P u) *)
and c_typ = w_hnf_constr clause.hook
(nf_betaiota (w_type_of clause.hook c)) in
let cl =
(* Try to infer some Meta/Evar from the type of [c] *)
try
clenv_assign k c (clenv_unify true CUMUL c_typ k_typ clause)
with _ ->
(* Try to coerce to the type of [k]; cannot merge with the
previous case because Coercion does not handle Meta *)
let c' = w_coerce clause.hook c c_typ k_typ in
try clenv_unify true CONV (mkMeta k) c' clause
with RefinerError (CannotUnify (m,n)) ->
Stdpp.raise_with_loc loc
(RefinerError (CannotUnifyBindingType (m,n)))
in matchrec cl t
in
matchrec clause s
type arg_bindings = (int * constr) list
let clenv_constrain_with_bindings bl clause =
if bl = [] then
clause
else
let all_mvs = collect_metas (clenv_template clause).rebus in
let rec matchrec clause = function
| [] -> clause
| (n,c)::t ->
let k =
(try
if n > 0 then
List.nth all_mvs (n-1)
else if n < 0 then
List.nth (List.rev all_mvs) (-n-1)
else error "clenv_constrain_with_bindings"
with Failure _ ->
errorlabstrm "clenv_constrain_with_bindings"
(str"Clause did not have " ++ int n ++ str"-th" ++
str" absolute argument")) in
let env = Global.env () in
let sigma = Evd.empty in
let k_typ = nf_betaiota (clenv_instance_type clause k) in
let c_typ = nf_betaiota (w_type_of clause.hook c) in
matchrec
(clenv_assign k c (clenv_unify true CUMUL c_typ k_typ clause)) t
in
matchrec clause bl
(* [clenv_pose_dependent_evars clenv]
* For each dependent evar in the clause-env which does not have a value,
* pose a value for it by constructing a fresh evar. We do this in
* left-to-right order, so that every evar's type is always closed w.r.t.
* metas. *)
let clenv_pose_dependent_evars clenv =
let dep_mvs = clenv_dependent false clenv in
List.fold_left
(fun clenv mv ->
let evar = Evarutil.new_evar_in_sign (w_env clenv.hook) in
let (evar_n,_) = destEvar evar in
let tY = clenv_instance_type clenv mv in
let clenv' = clenv_wtactic (w_Declare evar_n tY) clenv in
clenv_assign mv evar clenv')
clenv
dep_mvs
(***************************)
let clenv_unique_resolver allow_K clause gl =
clenv_unify allow_K CUMUL
(clenv_instance_template_type clause) (pf_concl gl) clause
let res_pf kONT clenv gls =
clenv_refine kONT (clenv_unique_resolver false clenv gls) gls
let res_pf_cast kONT clenv gls =
clenv_refine_cast kONT (clenv_unique_resolver false clenv gls) gls
let elim_res_pf kONT clenv allow_K gls =
clenv_refine_cast kONT (clenv_unique_resolver allow_K clenv gls) gls
let elim_res_pf_THEN_i kONT clenv tac gls =
let clenv' = (clenv_unique_resolver true clenv gls) in
tclTHENLASTn (clenv_refine kONT clenv') (tac clenv') gls
let e_res_pf kONT clenv gls =
clenv_refine kONT
(clenv_pose_dependent_evars (clenv_unique_resolver false clenv gls)) gls
(* Clausal environment for an application *)
let make_clenv_binding_gen n wc (c,t) = function
| ImplicitBindings largs ->
let clause = mk_clenv_from_n wc n (c,t) in
clenv_constrain_dep_args (n <> None) clause largs
| ExplicitBindings lbind ->
let clause = mk_clenv_rename_from_n wc n (c,t) in
clenv_match_args lbind clause
| NoBindings ->
mk_clenv_from_n wc n (c,t)
let make_clenv_binding_apply wc n = make_clenv_binding_gen (Some n) wc
let make_clenv_binding = make_clenv_binding_gen None
open Printer
let pr_clenv clenv =
let pr_name mv =
try
let id = Metamap.find mv clenv.namenv in
(str"[" ++ pr_id id ++ str"]")
with Not_found -> (mt ())
in
let pr_meta_binding = function
| (mv,Cltyp b) ->
hov 0
(pr_meta mv ++ pr_name mv ++ str " : " ++ prterm b.rebus ++ fnl ())
| (mv,Clval(b,_)) ->
hov 0
(pr_meta mv ++ pr_name mv ++ str " := " ++ prterm b.rebus ++ fnl ())
in
(str"TEMPL: " ++ prterm clenv.templval.rebus ++
str" : " ++ prterm clenv.templtyp.rebus ++ fnl () ++
(prlist pr_meta_binding (metamap_to_list clenv.env)))
|