1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: unification.ml 8759 2006-04-28 12:24:14Z herbelin $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Environ
open Evd
open Reduction
open Reductionops
open Rawterm
open Pattern
open Evarutil
open Pretype_errors
(* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms,
gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *)
let abstract_scheme env c l lname_typ =
List.fold_left2
(fun t (locc,a) (na,_,ta) ->
let na = match kind_of_term a with Var id -> Name id | _ -> na in
if occur_meta ta then error "cannot find a type for the generalisation"
else if occur_meta a then lambda_name env (na,ta,t)
else lambda_name env (na,ta,subst_term_occ locc a t))
c
(List.rev l)
lname_typ
let abstract_list_all env sigma typ c l =
let ctxt,_ = decomp_n_prod env sigma (List.length l) typ in
let p = abstract_scheme env c (List.map (function a -> [],a) l) ctxt in
try
if is_conv_leq env sigma (Typing.type_of env sigma p) typ then p
else error "abstract_list_all"
with UserError _ ->
raise (PretypeError (env,CannotGeneralize typ))
(*******************************)
(* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n]
renvoie deux listes:
metasubst:(int*constr)list récolte les instances des (Meta k)
evarsubst:(constr*constr)list récolte les instances des (Const "?k")
Attention : pas d'unification entre les différences instances d'une
même meta ou evar, il peut rester des doublons *)
(* Unification order: *)
(* Left to right: unifies first argument and then the other arguments *)
(*let unify_l2r x = List.rev x
(* Right to left: unifies last argument and then the other arguments *)
let unify_r2l x = x
let sort_eqns = unify_r2l
*)
let unify_0 env sigma cv_pb mod_delta m n =
let trivial_unify pb substn m n =
if (not(occur_meta m)) && (if mod_delta then is_fconv pb env sigma m n else eq_constr m n) then substn
else error_cannot_unify env sigma (m,n) in
let rec unirec_rec pb ((metasubst,evarsubst) as substn) m n =
let cM = Evarutil.whd_castappevar sigma m
and cN = Evarutil.whd_castappevar sigma n in
match (kind_of_term cM,kind_of_term cN) with
| Meta k1, Meta k2 ->
if k1 < k2 then (k1,cN)::metasubst,evarsubst
else if k1 = k2 then substn
else (k2,cM)::metasubst,evarsubst
| Meta k, _ -> (k,cN)::metasubst,evarsubst
| _, Meta k -> (k,cM)::metasubst,evarsubst
| Evar _, _ -> metasubst,((cM,cN)::evarsubst)
| _, Evar _ -> metasubst,((cN,cM)::evarsubst)
| Lambda (_,t1,c1), Lambda (_,t2,c2) ->
unirec_rec CONV (unirec_rec CONV substn t1 t2) c1 c2
| Prod (_,t1,c1), Prod (_,t2,c2) ->
unirec_rec pb (unirec_rec CONV substn t1 t2) c1 c2
| LetIn (_,b,_,c), _ -> unirec_rec pb substn (subst1 b c) cN
| _, LetIn (_,b,_,c) -> unirec_rec pb substn cM (subst1 b c)
| App (f1,l1), App (f2,l2) ->
let len1 = Array.length l1
and len2 = Array.length l2 in
let (f1,l1,f2,l2) =
if len1 = len2 then (f1,l1,f2,l2)
else if len1 < len2 then
let extras,restl2 = array_chop (len2-len1) l2 in
(f1, l1, appvect (f2,extras), restl2)
else
let extras,restl1 = array_chop (len1-len2) l1 in
(appvect (f1,extras), restl1, f2, l2) in
(try
array_fold_left2 (unirec_rec CONV)
(unirec_rec CONV substn f1 f2) l1 l2
with ex when precatchable_exception ex ->
trivial_unify pb substn cM cN)
| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
array_fold_left2 (unirec_rec CONV)
(unirec_rec CONV (unirec_rec CONV substn p1 p2) c1 c2) cl1 cl2
| _ -> trivial_unify pb substn cM cN
in
if (not(occur_meta m)) &&
(if mod_delta then is_fconv cv_pb env sigma m n else eq_constr m n)
then
([],[])
else
let (mc,ec) = unirec_rec cv_pb ([],[]) m n in
((*sort_eqns*) mc, (*sort_eqns*) ec)
(* Unification
*
* Procedure:
* (1) The function [unify mc wc M N] produces two lists:
* (a) a list of bindings Meta->RHS
* (b) a list of bindings EVAR->RHS
*
* The Meta->RHS bindings cannot themselves contain
* meta-vars, so they get applied eagerly to the other
* bindings. This may or may not close off all RHSs of
* the EVARs. For each EVAR whose RHS is closed off,
* we can just apply it, and go on. For each which
* is not closed off, we need to do a mimick step -
* in general, we have something like:
*
* ?X == (c e1 e2 ... ei[Meta(k)] ... en)
*
* so we need to do a mimick step, converting ?X
* into
*
* ?X -> (c ?z1 ... ?zn)
*
* of the proper types. Then, we can decompose the
* equation into
*
* ?z1 --> e1
* ...
* ?zi --> ei[Meta(k)]
* ...
* ?zn --> en
*
* and keep on going. Whenever we find that a R.H.S.
* is closed, we can, as before, apply the constraint
* directly. Whenever we find an equation of the form:
*
* ?z -> Meta(n)
*
* we can reverse the equation, put it into our metavar
* substitution, and keep going.
*
* The most efficient mimick possible is, for each
* Meta-var remaining in the term, to declare a
* new EVAR of the same type. This is supposedly
* determinable from the clausale form context -
* we look up the metavar, take its type there,
* and apply the metavar substitution to it, to
* close it off. But this might not always work,
* since other metavars might also need to be resolved. *)
let applyHead env evd n c =
let rec apprec n c cty evd =
if n = 0 then
(evd, c)
else
match kind_of_term (whd_betadeltaiota env (evars_of evd) cty) with
| Prod (_,c1,c2) ->
let (evd',evar) = Evarutil.new_evar evd env c1 in
apprec (n-1) (mkApp(c,[|evar|])) (subst1 evar c2) evd'
| _ -> error "Apply_Head_Then"
in
apprec n c (Typing.type_of env (evars_of evd) c) evd
let is_mimick_head f =
match kind_of_term f with
(Const _|Var _|Rel _|Construct _|Ind _) -> true
| _ -> false
(* [w_merge env sigma b metas evars] merges common instances in metas
or in evars, possibly generating new unification problems; if [b]
is true, unification of types of metas is required *)
let w_merge env with_types mod_delta metas evars evd =
let ty_metas = ref [] in
let ty_evars = ref [] in
let rec w_merge_rec evd metas evars =
match (evars,metas) with
| ([], []) -> evd
| ((lhs,rhs)::t, metas) ->
(match kind_of_term rhs with
| Meta k -> w_merge_rec evd ((k,lhs)::metas) t
| krhs ->
(match kind_of_term lhs with
| Evar (evn,_ as ev) ->
if is_defined_evar evd ev then
let (metas',evars') =
unify_0 env (evars_of evd) CONV mod_delta rhs lhs in
w_merge_rec evd (metas'@metas) (evars'@t)
else begin
let rhs' =
if occur_meta rhs then subst_meta metas rhs else rhs
in
if occur_evar evn rhs' then
error "w_merge: recursive equation";
match krhs with
| App (f,cl) when is_mimick_head f ->
(try
w_merge_rec (fst (evar_define env ev rhs' evd)) metas t
with ex when precatchable_exception ex ->
let evd' =
mimick_evar evd mod_delta f (Array.length cl) evn in
w_merge_rec evd' metas evars)
| _ ->
(* ensure tail recursion in non-mimickable case! *)
w_merge_rec (fst (evar_define env ev rhs' evd)) metas t
end
| _ -> anomaly "w_merge_rec"))
| ([], (mv,n)::t) ->
if meta_defined evd mv then
let (metas',evars') =
unify_0 env (evars_of evd) CONV mod_delta
(meta_fvalue evd mv).rebus n in
w_merge_rec evd (metas'@t) evars'
else
begin
if with_types (* or occur_meta mvty *) then
(let mvty = Typing.meta_type evd mv in
try
let sigma = evars_of evd in
(* why not typing with the metamap ? *)
let nty = Typing.type_of env sigma (nf_meta evd n) in
let (mc,ec) = unify_0 env sigma CUMUL mod_delta nty mvty in
ty_metas := mc @ !ty_metas;
ty_evars := ec @ !ty_evars
with e when precatchable_exception e -> ());
let evd' = meta_assign mv n evd in
w_merge_rec evd' t []
end
and mimick_evar evd mod_delta hdc nargs sp =
let ev = Evd.find (evars_of evd) sp in
let sp_env = Global.env_of_context ev.evar_hyps in
let (evd', c) = applyHead sp_env evd nargs hdc in
let (mc,ec) =
unify_0 sp_env (evars_of evd') CUMUL mod_delta
(Retyping.get_type_of sp_env (evars_of evd') c) ev.evar_concl in
let evd'' = w_merge_rec evd' mc ec in
if (evars_of evd') == (evars_of evd'')
then Evd.evar_define sp c evd''
else Evd.evar_define sp (Evarutil.nf_evar (evars_of evd'') c) evd'' in
(* merge constraints *)
let evd' = w_merge_rec evd metas evars in
if with_types then
(* merge constraints about types: if they fail, don't worry *)
try w_merge_rec evd' !ty_metas !ty_evars
with e when precatchable_exception e -> evd'
else
evd'
(* [w_unify env evd M N]
performs a unification of M and N, generating a bunch of
unification constraints in the process. These constraints
are processed, one-by-one - they may either generate new
bindings, or, if there is already a binding, new unifications,
which themselves generate new constraints. This continues
until we get failure, or we run out of constraints.
[clenv_typed_unify M N clenv] expects in addition that expected
types of metavars are unifiable with the types of their instances *)
let w_unify_core_0 env with_types cv_pb mod_delta m n evd =
let (mc,ec) = unify_0 env (evars_of evd) cv_pb mod_delta m n in
w_merge env with_types mod_delta mc ec evd
let w_unify_0 env = w_unify_core_0 env false
let w_typed_unify env = w_unify_core_0 env true
(* takes a substitution s, an open term op and a closed term cl
try to find a subterm of cl which matches op, if op is just a Meta
FAIL because we cannot find a binding *)
let iter_fail f a =
let n = Array.length a in
let rec ffail i =
if i = n then error "iter_fail"
else
try f a.(i)
with ex when precatchable_exception ex -> ffail (i+1)
in ffail 0
(* Tries to find an instance of term [cl] in term [op].
Unifies [cl] to every subterm of [op] until it finds a match.
Fails if no match is found *)
let w_unify_to_subterm env ?(mod_delta=true) (op,cl) evd =
let rec matchrec cl =
let cl = strip_outer_cast cl in
(try
if closed0 cl
then w_unify_0 env CONV mod_delta op cl evd,cl
else error "Bound 1"
with ex when precatchable_exception ex ->
(match kind_of_term cl with
| App (f,args) ->
let n = Array.length args in
assert (n>0);
let c1 = mkApp (f,Array.sub args 0 (n-1)) in
let c2 = args.(n-1) in
(try
matchrec c1
with ex when precatchable_exception ex ->
matchrec c2)
| Case(_,_,c,lf) -> (* does not search in the predicate *)
(try
matchrec c
with ex when precatchable_exception ex ->
iter_fail matchrec lf)
| LetIn(_,c1,_,c2) ->
(try
matchrec c1
with ex when precatchable_exception ex ->
matchrec c2)
| Fix(_,(_,types,terms)) ->
(try
iter_fail matchrec types
with ex when precatchable_exception ex ->
iter_fail matchrec terms)
| CoFix(_,(_,types,terms)) ->
(try
iter_fail matchrec types
with ex when precatchable_exception ex ->
iter_fail matchrec terms)
| Prod (_,t,c) ->
(try
matchrec t
with ex when precatchable_exception ex ->
matchrec c)
| Lambda (_,t,c) ->
(try
matchrec t
with ex when precatchable_exception ex ->
matchrec c)
| _ -> error "Match_subterm"))
in
try matchrec cl
with ex when precatchable_exception ex ->
raise (PretypeError (env,NoOccurrenceFound op))
let w_unify_to_subterm_list env mod_delta allow_K oplist t evd =
List.fold_right
(fun op (evd,l) ->
if isMeta op then
if allow_K then (evd,op::l)
else error "Match_subterm"
else if occur_meta op then
let (evd',cl) =
try
(* This is up to delta for subterms w/o metas ... *)
w_unify_to_subterm env ~mod_delta (strip_outer_cast op,t) evd
with PretypeError (env,NoOccurrenceFound _) when allow_K -> (evd,op)
in
(evd',cl::l)
else if allow_K or dependent op t then
(evd,op::l)
else
(* This is not up to delta ... *)
raise (PretypeError (env,NoOccurrenceFound op)))
oplist
(evd,[])
let secondOrderAbstraction env mod_delta allow_K typ (p, oplist) evd =
let sigma = evars_of evd in
let (evd',cllist) =
w_unify_to_subterm_list env mod_delta allow_K oplist typ evd in
let typp = Typing.meta_type evd' p in
let pred = abstract_list_all env sigma typp typ cllist in
w_unify_0 env CONV mod_delta (mkMeta p) pred evd'
let w_unify2 env mod_delta allow_K cv_pb ty1 ty2 evd =
let c1, oplist1 = whd_stack ty1 in
let c2, oplist2 = whd_stack ty2 in
match kind_of_term c1, kind_of_term c2 with
| Meta p1, _ ->
(* Find the predicate *)
let evd' =
secondOrderAbstraction env mod_delta allow_K ty2 (p1,oplist1) evd in
(* Resume first order unification *)
w_unify_0 env cv_pb mod_delta (nf_meta evd' ty1) ty2 evd'
| _, Meta p2 ->
(* Find the predicate *)
let evd' =
secondOrderAbstraction env mod_delta allow_K ty1 (p2, oplist2) evd in
(* Resume first order unification *)
w_unify_0 env cv_pb mod_delta ty1 (nf_meta evd' ty2) evd'
| _ -> error "w_unify2"
(* The unique unification algorithm works like this: If the pattern is
flexible, and the goal has a lambda-abstraction at the head, then
we do a first-order unification.
If the pattern is not flexible, then we do a first-order
unification, too.
If the pattern is flexible, and the goal doesn't have a
lambda-abstraction head, then we second-order unification. *)
(* We decide here if first-order or second-order unif is used for Apply *)
(* We apply a term of type (ai:Ai)C and try to solve a goal C' *)
(* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *)
(* 3-4-99 [HH] New fo/so choice heuristic :
In case we have to unify (Meta(1) args) with ([x:A]t args')
we first try second-order unification and if it fails first-order.
Before, second-order was used if the type of Meta(1) and [x:A]t was
convertible and first-order otherwise. But if failed if e.g. the type of
Meta(1) had meta-variables in it. *)
let w_unify allow_K env cv_pb ?(mod_delta=true) ty1 ty2 evd =
let hd1,l1 = whd_stack ty1 in
let hd2,l2 = whd_stack ty2 in
match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with
(* Pattern case *)
| (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true)
when List.length l1 = List.length l2 ->
(try
w_typed_unify env cv_pb mod_delta ty1 ty2 evd
with ex when precatchable_exception ex ->
try
w_unify2 env mod_delta allow_K cv_pb ty1 ty2 evd
with PretypeError (env,NoOccurrenceFound c) as e -> raise e
| ex when precatchable_exception ex ->
error "Cannot solve a second-order unification problem")
(* Second order case *)
| (Meta _, true, _, _ | _, _, Meta _, true) ->
(try
w_unify2 env mod_delta allow_K cv_pb ty1 ty2 evd
with PretypeError (env,NoOccurrenceFound c) as e -> raise e
| ex when precatchable_exception ex ->
try
w_typed_unify env cv_pb mod_delta ty1 ty2 evd
with ex when precatchable_exception ex ->
error "Cannot solve a second-order unification problem")
(* General case: try first order *)
| _ -> w_unify_0 env cv_pb mod_delta ty1 ty2 evd
|