1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: termops.ml 8003 2006-02-07 22:11:50Z herbelin $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Sign
open Environ
open Libnames
open Nametab
(* Sorts and sort family *)
let print_sort = function
| Prop Pos -> (str "Set")
| Prop Null -> (str "Prop")
| Type u -> (str "Type(" ++ Univ.pr_uni u ++ str ")")
let print_sort_family = function
| InSet -> (str "Set")
| InProp -> (str "Prop")
| InType -> (str "Type")
let pr_name = function
| Name id -> pr_id id
| Anonymous -> str "_"
let pr_sp sp = str(string_of_kn sp)
let pr_con sp = str(string_of_con sp)
let rec pr_constr c = match kind_of_term c with
| Rel n -> str "#"++int n
| Meta n -> str "Meta(" ++ int n ++ str ")"
| Var id -> pr_id id
| Sort s -> print_sort s
| Cast (c,_, t) -> hov 1
(str"(" ++ pr_constr c ++ cut() ++
str":" ++ pr_constr t ++ str")")
| Prod (Name(id),t,c) -> hov 1
(str"forall " ++ pr_id id ++ str":" ++ pr_constr t ++ str"," ++
spc() ++ pr_constr c)
| Prod (Anonymous,t,c) -> hov 0
(str"(" ++ pr_constr t ++ str " ->" ++ spc() ++
pr_constr c ++ str")")
| Lambda (na,t,c) -> hov 1
(str"fun " ++ pr_name na ++ str":" ++
pr_constr t ++ str" =>" ++ spc() ++ pr_constr c)
| LetIn (na,b,t,c) -> hov 0
(str"let " ++ pr_name na ++ str":=" ++ pr_constr b ++
str":" ++ brk(1,2) ++ pr_constr t ++ cut() ++
pr_constr c)
| App (c,l) -> hov 1
(str"(" ++ pr_constr c ++ spc() ++
prlist_with_sep spc pr_constr (Array.to_list l) ++ str")")
| Evar (e,l) -> hov 1
(str"Evar#" ++ int e ++ str"{" ++
prlist_with_sep spc pr_constr (Array.to_list l) ++str"}")
| Const c -> str"Cst(" ++ pr_con c ++ str")"
| Ind (sp,i) -> str"Ind(" ++ pr_sp sp ++ str"," ++ int i ++ str")"
| Construct ((sp,i),j) ->
str"Constr(" ++ pr_sp sp ++ str"," ++ int i ++ str"," ++ int j ++ str")"
| Case (ci,p,c,bl) -> v 0
(hv 0 (str"<"++pr_constr p++str">"++ cut() ++ str"Case " ++
pr_constr c ++ str"of") ++ cut() ++
prlist_with_sep (fun _ -> brk(1,2)) pr_constr (Array.to_list bl) ++
cut() ++ str"end")
| Fix ((t,i),(lna,tl,bl)) ->
let fixl = Array.mapi (fun i na -> (na,t.(i),tl.(i),bl.(i))) lna in
hov 1
(str"fix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,i,ty,bd) ->
pr_name na ++ str"/" ++ int i ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
| CoFix(i,(lna,tl,bl)) ->
let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in
hov 1
(str"cofix " ++ int i ++ spc() ++ str"{" ++
v 0 (prlist_with_sep spc (fun (na,ty,bd) ->
pr_name na ++ str":" ++ pr_constr ty ++
cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
str"}")
let term_printer = ref (fun _ -> pr_constr)
let print_constr_env t = !term_printer t
let print_constr t = !term_printer (Global.env()) t
let set_print_constr f = term_printer := f
let pr_var_decl env (id,c,typ) =
let pbody = match c with
| None -> (mt ())
| Some c ->
(* Force evaluation *)
let pb = print_constr_env env c in
(str" := " ++ pb ++ cut () ) in
let pt = print_constr_env env typ in
let ptyp = (str" : " ++ pt) in
(pr_id id ++ hov 0 (pbody ++ ptyp))
let pr_rel_decl env (na,c,typ) =
let pbody = match c with
| None -> mt ()
| Some c ->
(* Force evaluation *)
let pb = print_constr_env env c in
(str":=" ++ spc () ++ pb ++ spc ()) in
let ptyp = print_constr_env env typ in
match na with
| Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
| Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
let print_named_context env =
hv 0 (fold_named_context
(fun env d pps ->
pps ++ ws 2 ++ pr_var_decl env d)
env ~init:(mt ()))
let print_rel_context env =
hv 0 (fold_rel_context
(fun env d pps -> pps ++ ws 2 ++ pr_rel_decl env d)
env ~init:(mt ()))
let print_env env =
let sign_env =
fold_named_context
(fun env d pps ->
let pidt = pr_var_decl env d in
(pps ++ fnl () ++ pidt))
env ~init:(mt ())
in
let db_env =
fold_rel_context
(fun env d pps ->
let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat))
env ~init:(mt ())
in
(sign_env ++ db_env)
(*let current_module = ref empty_dirpath
let set_module m = current_module := m*)
let new_univ =
let univ_gen = ref 0 in
(fun sp ->
incr univ_gen;
Univ.make_univ (Lib.library_dp(),!univ_gen))
let new_Type () = mkType (new_univ ())
let new_Type_sort () = Type (new_univ ())
(* This refreshes universes in types; works only for inferred types (i.e. for
types of the form (x1:A1)...(xn:An)B with B a sort or an atom in
head normal form) *)
let refresh_universes t =
let modified = ref false in
let rec refresh t = match kind_of_term t with
| Sort (Type _) -> modified := true; new_Type ()
| Prod (na,u,v) -> mkProd (na,u,refresh v)
| _ -> t in
let t' = refresh t in
if !modified then t' else t
let new_sort_in_family = function
| InProp -> mk_Prop
| InSet -> mk_Set
| InType -> Type (new_univ ())
(* prod_it b [xn:Tn;..;x1:T1] = (x1:T1)..(xn:Tn)b *)
let prod_it ~init = List.fold_left (fun c (n,t) -> mkProd (n, t, c)) init
(* lam_it b [xn:Tn;..;x1:T1] = [x1:T1]..[xn:Tn]b *)
let lam_it ~init = List.fold_left (fun c (n,t) -> mkLambda (n, t, c)) init
(* [Rel (n+m);...;Rel(n+1)] *)
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))
let rel_list n m =
let rec reln l p =
if p>m then l else reln (mkRel(n+p)::l) (p+1)
in
reln [] 1
(* Same as [rel_list] but takes a context as argument and skips let-ins *)
let extended_rel_list n hyps =
let rec reln l p = function
| (_,None,_) :: hyps -> reln (mkRel (n+p) :: l) (p+1) hyps
| (_,Some _,_) :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 hyps
let extended_rel_vect n hyps = Array.of_list (extended_rel_list n hyps)
let push_rel_assum (x,t) env = push_rel (x,None,t) env
let push_rels_assum assums =
push_rel_context (List.map (fun (x,t) -> (x,None,t)) assums)
let push_named_rec_types (lna,typarray,_) env =
let ctxt =
array_map2_i
(fun i na t ->
match na with
| Name id -> (id, None, type_app (lift i) t)
| Anonymous -> anomaly "Fix declarations must be named")
lna typarray in
Array.fold_left
(fun e assum -> push_named assum e) env ctxt
let rec lookup_rel_id id sign =
let rec lookrec = function
| (n, (Anonymous,_,_)::l) -> lookrec (n+1,l)
| (n, (Name id',_,t)::l) -> if id' = id then (n,t) else lookrec (n+1,l)
| (_, []) -> raise Not_found
in
lookrec (1,sign)
(* Constructs either [(x:t)c] or [[x=b:t]c] *)
let mkProd_or_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> mkLetIn (na, b, t, c)
(* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *)
let mkProd_wo_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> subst1 b c
let it_mkProd_wo_LetIn ~init =
List.fold_left (fun c d -> mkProd_wo_LetIn d c) init
let it_mkProd_or_LetIn ~init =
List.fold_left (fun c d -> mkProd_or_LetIn d c) init
let it_mkLambda_or_LetIn ~init =
List.fold_left (fun c d -> mkLambda_or_LetIn d c) init
let it_named_context_quantifier f ~init =
List.fold_left (fun c d -> f d c) init
let it_mkNamedProd_or_LetIn = it_named_context_quantifier mkNamedProd_or_LetIn
let it_mkNamedLambda_or_LetIn = it_named_context_quantifier mkNamedLambda_or_LetIn
let it_mkNamedProd_wo_LetIn = it_named_context_quantifier mkNamedProd_wo_LetIn
(* *)
(* strips head casts and flattens head applications *)
let rec strip_head_cast c = match kind_of_term c with
| App (f,cl) ->
let rec collapse_rec f cl2 = match kind_of_term f with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| Cast (c,_,_) -> collapse_rec c cl2
| _ -> if Array.length cl2 = 0 then f else mkApp (f,cl2)
in
collapse_rec f cl
| Cast (c,_,_) -> strip_head_cast c
| _ -> c
(* [map_constr_with_named_binders g f l c] maps [f l] on the immediate
subterms of [c]; it carries an extra data [l] (typically a name
list) which is processed by [g na] (which typically cons [na] to
[l]) at each binder traversal (with name [na]); it is not recursive
and the order with which subterms are processed is not specified *)
let map_constr_with_named_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> mkCast (f l c, k, f l t)
| Prod (na,t,c) -> mkProd (na, f l t, f (g na l) c)
| Lambda (na,t,c) -> mkLambda (na, f l t, f (g na l) c)
| LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g na l) c)
| App (c,al) -> mkApp (f l c, Array.map (f l) al)
| Evar (e,al) -> mkEvar (e, Array.map (f l) al)
| Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl)
| Fix (ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
mkFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
| CoFix(ln,(lna,tl,bl)) ->
let l' = Array.fold_left (fun l na -> g na l) l lna in
mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
immediate subterms of [c]; it carries an extra data [n] (typically
a lift index) which is processed by [g] (which typically add 1 to
[n]) at each binder traversal; the subterms are processed from left
to right according to the usual representation of the constructions
(this may matter if [f] does a side-effect); it is not recursive;
in fact, the usual representation of the constructions is at the
time being almost those of the ML representation (except for
(co-)fixpoint) *)
let fold_rec_types g (lna,typarray,_) e =
let ctxt =
array_map2_i
(fun i na t -> (na, None, type_app (lift i) t)) lna typarray in
Array.fold_left
(fun e assum -> g assum e) e ctxt
let map_constr_with_binders_left_to_right g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> let c' = f l c in mkCast (c',k,f l t)
| Prod (na,t,c) ->
let t' = f l t in
mkProd (na, t', f (g (na,None,t) l) c)
| Lambda (na,t,c) ->
let t' = f l t in
mkLambda (na, t', f (g (na,None,t) l) c)
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (na,Some b,t) l) c in
mkLetIn (na, b', t', c')
| App (c,[||]) -> assert false
| App (c,al) ->
(*Special treatment to be able to recognize partially applied subterms*)
let a = al.(Array.length al - 1) in
let hd = f l (mkApp (c, Array.sub al 0 (Array.length al - 1))) in
mkApp (hd, [| f l a |])
| Evar (e,al) -> mkEvar (e, array_map_left (f l) al)
| Case (ci,p,c,bl) ->
(* In v8 concrete syntax, predicate is after the term to match! *)
let c' = f l c in
let p' = f l p in
mkCase (ci, p', c', array_map_left (f l) bl)
| Fix (ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in
mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl as fx)) ->
let l' = fold_rec_types g fx l in
let (tl',bl') = array_map_left_pair (f l) tl (f l') bl in
mkCoFix (ln,(lna,tl',bl'))
(* strong *)
let map_constr_with_full_binders g f l cstr = match kind_of_term cstr with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> cstr
| Cast (c,k, t) ->
let c' = f l c in
let t' = f l t in
if c==c' && t==t' then cstr else mkCast (c', k, t')
| Prod (na,t,c) ->
let t' = f l t in
let c' = f (g (na,None,t) l) c in
if t==t' && c==c' then cstr else mkProd (na, t', c')
| Lambda (na,t,c) ->
let t' = f l t in
let c' = f (g (na,None,t) l) c in
if t==t' && c==c' then cstr else mkLambda (na, t', c')
| LetIn (na,b,t,c) ->
let b' = f l b in
let t' = f l t in
let c' = f (g (na,Some b,t) l) c in
if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')
| App (c,al) ->
let c' = f l c in
let al' = Array.map (f l) al in
if c==c' && array_for_all2 (==) al al' then cstr else mkApp (c', al')
| Evar (e,al) ->
let al' = Array.map (f l) al in
if array_for_all2 (==) al al' then cstr else mkEvar (e, al')
| Case (ci,p,c,bl) ->
let p' = f l p in
let c' = f l c in
let bl' = Array.map (f l) bl in
if p==p' && c==c' && array_for_all2 (==) bl bl' then cstr else
mkCase (ci, p', c', bl')
| Fix (ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
let bl' = Array.map (f l') bl in
if array_for_all2 (==) tl tl' && array_for_all2 (==) bl bl'
then cstr
else mkFix (ln,(lna,tl',bl'))
| CoFix(ln,(lna,tl,bl)) ->
let tl' = Array.map (f l) tl in
let l' =
array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
let bl' = Array.map (f l') bl in
if array_for_all2 (==) tl tl' && array_for_all2 (==) bl bl'
then cstr
else mkCoFix (ln,(lna,tl',bl'))
(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
subterms of [c] starting from [acc] and proceeding from left to
right according to the usual representation of the constructions as
[fold_constr] but it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive *)
let fold_constr_with_binders g f n acc c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> acc
| Cast (c,_, t) -> f n (f n acc c) t
| Prod (_,t,c) -> f (g n) (f n acc t) c
| Lambda (_,t,c) -> f (g n) (f n acc t) c
| LetIn (_,b,t,c) -> f (g n) (f n (f n acc b) t) c
| App (c,l) -> Array.fold_left (f n) (f n acc c) l
| Evar (_,l) -> Array.fold_left (f n) acc l
| Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl
| Fix (_,(lna,tl,bl)) ->
let n' = iterate g (Array.length tl) n in
let fd = array_map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n (f n' acc t) b) acc fd
| CoFix (_,(lna,tl,bl)) ->
let n' = iterate g (Array.length tl) n in
let fd = array_map2 (fun t b -> (t,b)) tl bl in
Array.fold_left (fun acc (t,b) -> f n (f n' acc t) b) acc fd
(* [iter_constr_with_full_binders g f acc c] iters [f acc] on the immediate
subterms of [c]; it carries an extra data [acc] which is processed by [g] at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
let iter_constr_with_full_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_, t) -> f l c; f l t
| Prod (na,t,c) -> f l t; f (g (na,None,t) l) c
| Lambda (na,t,c) -> f l t; f (g (na,None,t) l) c
| LetIn (na,b,t,c) -> f l b; f l t; f (g (na,Some b,t) l) c
| App (c,args) -> f l c; Array.iter (f l) args
| Evar (_,args) -> Array.iter (f l) args
| Case (_,p,c,bl) -> f l p; f l c; Array.iter (f l) bl
| Fix (_,(lna,tl,bl)) ->
let l' = array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
| CoFix (_,(lna,tl,bl)) ->
let l' = array_fold_left2 (fun l na t -> g (na,None,t) l) l lna tl in
Array.iter (f l) tl;
Array.iter (f l') bl
(***************************)
(* occurs check functions *)
(***************************)
exception Occur
let occur_meta c =
let rec occrec c = match kind_of_term c with
| Meta _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_existential c =
let rec occrec c = match kind_of_term c with
| Evar _ -> raise Occur
| _ -> iter_constr occrec c
in try occrec c; false with Occur -> true
let occur_const s c =
let rec occur_rec c = match kind_of_term c with
| Const sp when sp=s -> raise Occur
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_evar n c =
let rec occur_rec c = match kind_of_term c with
| Evar (sp,_) when sp=n -> raise Occur
| _ -> iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_in_global env id constr =
let vars = vars_of_global env constr in
if List.mem id vars then raise Occur
let occur_var env s c =
let rec occur_rec c =
occur_in_global env s c;
iter_constr occur_rec c
in
try occur_rec c; false with Occur -> true
let occur_var_in_decl env hyp (_,c,typ) =
match c with
| None -> occur_var env hyp typ
| Some body ->
occur_var env hyp typ ||
occur_var env hyp body
(* Tests that t is a subterm of c *)
let occur_term t c =
let eq_constr_fail c = if eq_constr t c then raise Occur
in let rec occur_rec c = eq_constr_fail c; iter_constr occur_rec c
in try occur_rec c; false with Occur -> true
(* returns the list of free debruijn indices in a term *)
let free_rels m =
let rec frec depth acc c = match kind_of_term c with
| Rel n -> if n >= depth then Intset.add (n-depth+1) acc else acc
| _ -> fold_constr_with_binders succ frec depth acc c
in
frec 1 Intset.empty m
(* (dependent M N) is true iff M is eq_term with a subterm of N
M is appropriately lifted through abstractions of N *)
let dependent m t =
let rec deprec m t =
if eq_constr m t then
raise Occur
else
match kind_of_term m, kind_of_term t with
| App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
Array.iter (deprec m)
(Array.sub lt
(Array.length lm) ((Array.length lt) - (Array.length lm)))
| _ -> iter_constr_with_binders (lift 1) deprec m t
in
try deprec m t; false with Occur -> true
let pop t = lift (-1) t
(***************************)
(* bindings functions *)
(***************************)
type metamap = (metavariable * constr) list
let rec subst_meta bl c =
match kind_of_term c with
| Meta i -> (try List.assoc i bl with Not_found -> c)
| _ -> map_constr (subst_meta bl) c
(* First utilities for avoiding telescope computation for subst_term *)
let prefix_application eq_fun (k,c) (t : constr) =
let c' = collapse_appl c and t' = collapse_appl t in
match kind_of_term c', kind_of_term t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
let my_prefix_application eq_fun (k,c) (by_c : constr) (t : constr) =
let c' = collapse_appl c and t' = collapse_appl t in
match kind_of_term c', kind_of_term t' with
| App (f1,cl1), App (f2,cl2) ->
let l1 = Array.length cl1
and l2 = Array.length cl2 in
if l1 <= l2
&& eq_fun c' (mkApp (f2, Array.sub cl2 0 l1)) then
Some (mkApp ((lift k by_c), Array.sub cl2 l1 (l2 - l1)))
else
None
| _ -> None
(* Recognizing occurrences of a given (closed) subterm in a term for Pattern :
[subst_term c t] substitutes [(Rel 1)] for all occurrences of (closed)
term [c] in a term [t] *)
(*i Bizarre : si on cherche un sous terme clos, pourquoi le lifter ? i*)
let subst_term_gen eq_fun c t =
let rec substrec (k,c as kc) t =
match prefix_application eq_fun kc t with
| Some x -> x
| None ->
if eq_fun c t then mkRel k
else
map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c)) substrec kc t
in
substrec (1,c) t
(* Recognizing occurrences of a given (closed) subterm in a term :
[replace_term c1 c2 t] substitutes [c2] for all occurrences of (closed)
term [c1] in a term [t] *)
(*i Meme remarque : a priori [c] n'est pas forcement clos i*)
let replace_term_gen eq_fun c by_c in_t =
let rec substrec (k,c as kc) t =
match my_prefix_application eq_fun kc by_c t with
| Some x -> x
| None ->
(if eq_fun c t then (lift k by_c) else
map_constr_with_binders (fun (k,c) -> (k+1,lift 1 c))
substrec kc t)
in
substrec (0,c) in_t
let subst_term = subst_term_gen eq_constr
let replace_term = replace_term_gen eq_constr
(* Substitute only a list of locations locs, the empty list is
interpreted as substitute all, if 0 is in the list then no
bindings is done. The list may contain only negative occurrences
that will not be substituted. *)
let error_invalid_occurrence l =
errorlabstrm ""
(str ("Invalid occurrence " ^ plural (List.length l) "number" ^": ") ++
prlist_with_sep spc int l)
let subst_term_occ_gen locs occ c t =
let maxocc = List.fold_right max locs 0 in
let pos = ref occ in
let except = List.exists (fun n -> n<0) locs in
if except & (List.exists (fun n -> n>=0) locs)
then error "mixing of positive and negative occurences"
else
let rec substrec (k,c as kc) t =
if (not except) & (!pos > maxocc) then t
else
if eq_constr c t then
let r =
if except then
if List.mem (- !pos) locs then t else (mkRel k)
else
if List.mem !pos locs then (mkRel k) else t
in incr pos; r
else
map_constr_with_binders_left_to_right
(fun d (k,c) -> (k+1,lift 1 c))
substrec kc t
in
let t' = substrec (1,c) t in
(!pos, t')
let subst_term_occ locs c t =
if locs = [] then subst_term c t
else if List.mem 0 locs then
t
else
let (nbocc,t') = subst_term_occ_gen locs 1 c t in
let rest = List.filter (fun o -> o >= nbocc or o <= -nbocc) locs in
if rest <> [] then error_invalid_occurrence rest;
t'
let subst_term_occ_decl locs c (id,bodyopt,typ as d) =
match bodyopt with
| None -> (id,None,subst_term_occ locs c typ)
| Some body ->
if locs = [] then
(id,Some (subst_term c body),type_app (subst_term c) typ)
else if List.mem 0 locs then
d
else
let (nbocc,body') = subst_term_occ_gen locs 1 c body in
let (nbocc',t') = subst_term_occ_gen locs nbocc c typ in
let rest = List.filter (fun o -> o >= nbocc' or o <= -nbocc') locs in
if rest <> [] then error_invalid_occurrence rest;
(id,Some body',t')
(* First character of a constr *)
let first_char id =
let id = string_of_id id in
assert (id <> "");
String.make 1 id.[0]
let lowercase_first_char id = String.lowercase (first_char id)
let vars_of_env env =
let s =
Sign.fold_named_context (fun (id,_,_) s -> Idset.add id s)
(named_context env) ~init:Idset.empty in
Sign.fold_rel_context
(fun (na,_,_) s -> match na with Name id -> Idset.add id s | _ -> s)
(rel_context env) ~init:s
let add_vname vars = function
Name id -> Idset.add id vars
| _ -> vars
let id_of_global = Nametab.id_of_global
let sort_hdchar = function
| Prop(_) -> "P"
| Type(_) -> "T"
let hdchar env c =
let rec hdrec k c =
match kind_of_term c with
| Prod (_,_,c) -> hdrec (k+1) c
| Lambda (_,_,c) -> hdrec (k+1) c
| LetIn (_,_,_,c) -> hdrec (k+1) c
| Cast (c,_,_) -> hdrec k c
| App (f,l) -> hdrec k f
| Const kn ->
let c = lowercase_first_char (id_of_label (con_label kn)) in
if c = "?" then "y" else c
| Ind ((kn,i) as x) ->
if i=0 then
lowercase_first_char (id_of_label (label kn))
else
lowercase_first_char (id_of_global (IndRef x))
| Construct ((sp,i) as x) ->
lowercase_first_char (id_of_global (ConstructRef x))
| Var id -> lowercase_first_char id
| Sort s -> sort_hdchar s
| Rel n ->
(if n<=k then "p" (* the initial term is flexible product/function *)
else
try match Environ.lookup_rel (n-k) env with
| (Name id,_,_) -> lowercase_first_char id
| (Anonymous,_,t) -> hdrec 0 (lift (n-k) t)
with Not_found -> "y")
| Fix ((_,i),(lna,_,_)) ->
let id = match lna.(i) with Name id -> id | _ -> assert false in
lowercase_first_char id
| CoFix (i,(lna,_,_)) ->
let id = match lna.(i) with Name id -> id | _ -> assert false in
lowercase_first_char id
| Meta _|Evar _|Case (_, _, _, _) -> "y"
in
hdrec 0 c
let id_of_name_using_hdchar env a = function
| Anonymous -> id_of_string (hdchar env a)
| Name id -> id
let named_hd env a = function
| Anonymous -> Name (id_of_string (hdchar env a))
| x -> x
let named_hd_type env a = named_hd env (body_of_type a)
let mkProd_name env (n,a,b) = mkProd (named_hd_type env a n, a, b)
let mkLambda_name env (n,a,b) = mkLambda (named_hd_type env a n, a, b)
let lambda_name = mkLambda_name
let prod_name = mkProd_name
let prod_create env (a,b) = mkProd (named_hd_type env a Anonymous, a, b)
let lambda_create env (a,b) = mkLambda (named_hd_type env a Anonymous, a, b)
let name_assumption env (na,c,t) =
match c with
| None -> (named_hd_type env t na, None, t)
| Some body -> (named_hd env body na, c, t)
let name_context env hyps =
snd
(List.fold_left
(fun (env,hyps) d ->
let d' = name_assumption env d in (push_rel d' env, d' :: hyps))
(env,[]) (List.rev hyps))
let mkProd_or_LetIn_name env b d = mkProd_or_LetIn (name_assumption env d) b
let mkLambda_or_LetIn_name env b d = mkLambda_or_LetIn (name_assumption env d)b
let it_mkProd_or_LetIn_name env b hyps =
it_mkProd_or_LetIn b (name_context env hyps)
let it_mkLambda_or_LetIn_name env b hyps =
it_mkLambda_or_LetIn b (name_context env hyps)
(*************************)
(* Names environments *)
(*************************)
type names_context = name list
let add_name n nl = n::nl
let lookup_name_of_rel p names =
try List.nth names (p-1)
with Invalid_argument _ | Failure _ -> raise Not_found
let rec lookup_rel_of_name id names =
let rec lookrec n = function
| Anonymous :: l -> lookrec (n+1) l
| (Name id') :: l -> if id' = id then n else lookrec (n+1) l
| [] -> raise Not_found
in
lookrec 1 names
let empty_names_context = []
let ids_of_rel_context sign =
Sign.fold_rel_context
(fun (na,_,_) l -> match na with Name id -> id::l | Anonymous -> l)
sign ~init:[]
let ids_of_named_context sign =
Sign.fold_named_context (fun (id,_,_) idl -> id::idl) sign ~init:[]
let ids_of_context env =
(ids_of_rel_context (rel_context env))
@ (ids_of_named_context (named_context env))
let names_of_rel_context env =
List.map (fun (na,_,_) -> na) (rel_context env)
(**** Globality of identifiers *)
(* TODO temporary hack!!! *)
let rec is_imported_modpath = function
| MPfile dp -> dp <> (Lib.library_dp ())
(* | MPdot (mp,_) -> is_imported_modpath mp *)
| _ -> false
let is_imported_ref = function
| VarRef _ -> false
| IndRef (kn,_)
| ConstructRef ((kn,_),_)
(* | ModTypeRef ln *) ->
let (mp,_,_) = repr_kn kn in is_imported_modpath mp
(* | ModRef mp ->
is_imported_modpath mp
*)
| ConstRef kn ->
let (mp,_,_) = repr_con kn in is_imported_modpath mp
let is_global id =
try
let ref = locate (make_short_qualid id) in
not (is_imported_ref ref)
with Not_found ->
false
let is_section_variable id =
try let _ = Global.lookup_named id in true
with Not_found -> false
let next_global_ident_from allow_secvar id avoid =
let rec next_rec id =
let id = next_ident_away_from id avoid in
if (allow_secvar && is_section_variable id) || not (is_global id) then
id
else
next_rec (lift_ident id)
in
next_rec id
let next_global_ident_away allow_secvar id avoid =
let id = next_ident_away id avoid in
if (allow_secvar && is_section_variable id) || not (is_global id) then
id
else
next_global_ident_from allow_secvar (lift_ident id) avoid
(* Nouvelle version de renommage des variables (DEC 98) *)
(* This is the algorithm to display distinct bound variables
- Règle 1 : un nom non anonyme, même non affiché, contribue à la liste
des noms à éviter
- Règle 2 : c'est la dépendance qui décide si on affiche ou pas
Exemple :
si bool_ind = (P:bool->Prop)(f:(P true))(f:(P false))(b:bool)(P b), alors
il est affiché (P:bool->Prop)(P true)->(P false)->(b:bool)(P b)
mais f et f0 contribue à la liste des variables à éviter (en supposant
que les noms f et f0 ne sont pas déjà pris)
Intérêt : noms homogènes dans un but avant et après Intro
*)
type used_idents = identifier list
let occur_rel p env id =
try lookup_name_of_rel p env = Name id
with Not_found -> false (* Unbound indice : may happen in debug *)
let occur_id nenv id0 c =
let rec occur n c = match kind_of_term c with
| Var id when id=id0 -> raise Occur
| Const kn when id_of_global (ConstRef kn) = id0 -> raise Occur
| Ind ind_sp
when id_of_global (IndRef ind_sp) = id0 ->
raise Occur
| Construct cstr_sp
when id_of_global (ConstructRef cstr_sp) = id0 ->
raise Occur
| Rel p when p>n & occur_rel (p-n) nenv id0 -> raise Occur
| _ -> iter_constr_with_binders succ occur n c
in
try occur 1 c; false
with Occur -> true
| Not_found -> false (* Case when a global is not in the env *)
let next_name_not_occuring is_goal_ccl name l env_names t =
let rec next id =
if List.mem id l or occur_id env_names id t or
(* To be consistent with intro mechanism *)
(is_goal_ccl & is_global id & not (is_section_variable id))
then next (lift_ident id)
else id
in
match name with
| Name id -> next id
| Anonymous ->
(* Normally, an anonymous name is not dependent and will not be *)
(* taken into account by the function concrete_name; just in case *)
(* invent a valid name *)
id_of_string "H"
(* On reduit une serie d'eta-redex de tete ou rien du tout *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 versions précédentes buggées *)
let rec eta_reduce_head c =
match kind_of_term c with
| Lambda (_,c1,c') ->
(match kind_of_term (eta_reduce_head c') with
| App (f,cl) ->
let lastn = (Array.length cl) - 1 in
if lastn < 1 then anomaly "application without arguments"
else
(match kind_of_term cl.(lastn) with
| Rel 1 ->
let c' =
if lastn = 1 then f
else mkApp (f, Array.sub cl 0 lastn)
in
if noccurn 1 c'
then lift (-1) c'
else c
| _ -> c)
| _ -> c)
| _ -> c
(* alpha-eta conversion : ignore print names and casts *)
let eta_eq_constr =
let rec aux t1 t2 =
let t1 = eta_reduce_head (strip_head_cast t1)
and t2 = eta_reduce_head (strip_head_cast t2) in
t1=t2 or compare_constr aux t1 t2
in aux
(* iterator on rel context *)
let process_rel_context f env =
let sign = named_context_val env in
let rels = rel_context env in
let env0 = reset_with_named_context sign env in
Sign.fold_rel_context f rels ~init:env0
let assums_of_rel_context sign =
Sign.fold_rel_context
(fun (na,c,t) l ->
match c with
Some _ -> l
| None -> (na, t)::l)
sign ~init:[]
let lift_rel_context n sign =
let rec liftrec k = function
| (na,c,t)::sign ->
(na,option_app (liftn n k) c,type_app (liftn n k) t)
::(liftrec (k-1) sign)
| [] -> []
in
liftrec (rel_context_length sign) sign
let fold_named_context_both_sides f l ~init = list_fold_right_and_left f l init
let rec mem_named_context id = function
| (id',_,_) :: _ when id=id' -> true
| _ :: sign -> mem_named_context id sign
| [] -> false
let make_all_name_different env =
let avoid = ref (ids_of_named_context (named_context env)) in
process_rel_context
(fun (na,c,t) newenv ->
let id = next_name_away na !avoid in
avoid := id::!avoid;
push_rel (Name id,c,t) newenv)
env
let global_vars env ids = Idset.elements (global_vars_set env ids)
let global_vars_set_of_decl env = function
| (_,None,t) -> global_vars_set env t
| (_,Some c,t) ->
Idset.union (global_vars_set env t)
(global_vars_set env c)
(* Remark: Anonymous var may be dependent in Evar's contexts *)
let concrete_name is_goal_ccl l env_names n c =
if n = Anonymous & noccurn 1 c then
(Anonymous,l)
else
let fresh_id = next_name_not_occuring is_goal_ccl n l env_names c in
let idopt = if noccurn 1 c then Anonymous else Name fresh_id in
(idopt, fresh_id::l)
let concrete_let_name is_goal_ccl l env_names n c =
let fresh_id = next_name_not_occuring is_goal_ccl n l env_names c in
(Name fresh_id, fresh_id::l)
let rec rename_bound_var env l c =
match kind_of_term c with
| Prod (Name s,c1,c2) ->
if noccurn 1 c2 then
let env' = push_rel (Name s,None,c1) env in
mkProd (Name s, c1, rename_bound_var env' l c2)
else
let s' = next_ident_away s (global_vars env c2@l) in
let env' = push_rel (Name s',None,c1) env in
mkProd (Name s', c1, rename_bound_var env' (s'::l) c2)
| Prod (Anonymous,c1,c2) ->
let env' = push_rel (Anonymous,None,c1) env in
mkProd (Anonymous, c1, rename_bound_var env' l c2)
| Cast (c,k,t) -> mkCast (rename_bound_var env l c, k,t)
| x -> c
|