1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: tacred.ml 11897 2009-02-09 19:28:02Z barras $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Libnames
open Termops
open Declarations
open Inductive
open Environ
open Closure
open Reductionops
open Cbv
open Rawterm
(* Errors *)
type reduction_tactic_error =
InvalidAbstraction of env * constr * (env * Type_errors.type_error)
exception ReductionTacticError of reduction_tactic_error
(* Evaluable reference *)
exception Elimconst
exception Redelimination
let is_evaluable env = function
| EvalConstRef kn ->
is_transparent (ConstKey kn) &&
let cb = Environ.lookup_constant kn env in
cb.const_body <> None & not cb.const_opaque
| EvalVarRef id ->
is_transparent (VarKey id) &&
let (_,value,_) = Environ.lookup_named id env in
value <> None
let value_of_evaluable_ref env = function
| EvalConstRef con -> constant_value env con
| EvalVarRef id -> Option.get (pi2 (lookup_named id env))
let constr_of_evaluable_ref = function
| EvalConstRef con -> mkConst con
| EvalVarRef id -> mkVar id
type evaluable_reference =
| EvalConst of constant
| EvalVar of identifier
| EvalRel of int
| EvalEvar of existential
let mkEvalRef = function
| EvalConst cst -> mkConst cst
| EvalVar id -> mkVar id
| EvalRel n -> mkRel n
| EvalEvar ev -> mkEvar ev
let isEvalRef env c = match kind_of_term c with
| Const sp -> is_evaluable env (EvalConstRef sp)
| Var id -> is_evaluable env (EvalVarRef id)
| Rel _ | Evar _ -> true
| _ -> false
let destEvalRef c = match kind_of_term c with
| Const cst -> EvalConst cst
| Var id -> EvalVar id
| Rel n -> EvalRel n
| Evar ev -> EvalEvar ev
| _ -> anomaly "Not an unfoldable reference"
let reference_opt_value sigma env = function
| EvalConst cst -> constant_opt_value env cst
| EvalVar id ->
let (_,v,_) = lookup_named id env in
v
| EvalRel n ->
let (_,v,_) = lookup_rel n env in
Option.map (lift n) v
| EvalEvar ev -> Evd.existential_opt_value sigma ev
exception NotEvaluable
let reference_value sigma env c =
match reference_opt_value sigma env c with
| None -> raise NotEvaluable
| Some d -> d
(************************************************************************)
(* Reduction of constants hiding a fixpoint (e.g. for "simpl" tactic). *)
(* One reuses the name of the function after reduction of the fixpoint *)
type constant_evaluation =
| EliminationFix of int * int * (int * (int * constr) list * int)
| EliminationMutualFix of
int * evaluable_reference *
((int*evaluable_reference) option array *
(int * (int * constr) list * int))
| EliminationCases of int
| NotAnElimination
(* We use a cache registered as a global table *)
module CstOrdered =
struct
type t = constant
let compare = Pervasives.compare
end
module Cstmap = Map.Make(CstOrdered)
let eval_table = ref Cstmap.empty
type frozen = (int * constant_evaluation) Cstmap.t
let init () =
eval_table := Cstmap.empty
let freeze () =
!eval_table
let unfreeze ct =
eval_table := ct
let _ =
Summary.declare_summary "evaluation"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_module = false;
Summary.survive_section = false }
(* Check that c is an "elimination constant"
either [xn:An]..[x1:A1](<P>Case (Rel i) of f1..fk end g1 ..gp)
or [xn:An]..[x1:A1](Fix(f|t) (Rel i1) ..(Rel ip))
with i1..ip distinct variables not occuring in t
In the second case, keep relevenant information ([i1,Ai1;..;ip,Aip],n)
in order to compute an equivalent of Fix(f|t)[xi<-ai] as
[yip:Bip]..[yi1:Bi1](F bn..b1)
== [yip:Bip]..[yi1:Bi1](Fix(f|t)[xi<-ai] (Rel p)..(Rel 1))
with bj=aj if j<>ik and bj=(Rel c) and Bic=Aic[xn..xic-1 <- an..aic-1]
*)
let check_fix_reversibility labs args ((lv,i),(_,tys,bds)) =
let n = List.length labs in
let nargs = List.length args in
if nargs > n then raise Elimconst;
let nbfix = Array.length bds in
let li =
List.map
(function d -> match kind_of_term d with
| Rel k ->
if
array_for_all (noccurn k) tys
&& array_for_all (noccurn (k+nbfix)) bds
then
(k, List.nth labs (k-1))
else
raise Elimconst
| _ ->
raise Elimconst) args
in
if not (list_distinct (List.map fst li)) then
raise Elimconst;
let k = lv.(i) in
if k < nargs then
(* Such an optimisation would need eta-expansion
let p = destRel (List.nth args k) in
EliminationFix (n-p+1,(nbfix,li,n))
*)
EliminationFix (n,nargs,(nbfix,li,n))
else
EliminationFix (n-nargs+k+1,nargs,(nbfix,li,n))
(* Heuristic to look if global names are associated to other
components of a mutual fixpoint *)
let invert_name labs l na0 env sigma ref = function
| Name id ->
let minfxargs = List.length l in
if na0 <> Name id then
let refi = match ref with
| EvalRel _ | EvalEvar _ -> None
| EvalVar id' -> Some (EvalVar id)
| EvalConst kn ->
let (mp,dp,_) = repr_con kn in
Some (EvalConst (make_con mp dp (label_of_id id))) in
match refi with
| None -> None
| Some ref ->
try match reference_opt_value sigma env ref with
| None -> None
| Some c ->
let labs',ccl = decompose_lam c in
let _, l' = whd_betalet_stack sigma ccl in
let labs' = List.map snd labs' in
if labs' = labs & l = l' then Some (minfxargs,ref)
else None
with Not_found (* Undefined ref *) -> None
else Some (minfxargs,ref)
| Anonymous -> None (* Actually, should not occur *)
(* [compute_consteval_direct] expand all constant in a whole, but
[compute_consteval_mutual_fix] only one by one, until finding the
last one before the Fix if the latter is mutually defined *)
let compute_consteval_direct sigma env ref =
let rec srec env n labs c =
let c',l = whd_betadelta_stack env sigma c in
match kind_of_term c' with
| Lambda (id,t,g) when l=[] ->
srec (push_rel (id,None,t) env) (n+1) (t::labs) g
| Fix fix ->
(try check_fix_reversibility labs l fix
with Elimconst -> NotAnElimination)
| Case (_,_,d,_) when isRel d -> EliminationCases n
| _ -> NotAnElimination
in
match reference_opt_value sigma env ref with
| None -> NotAnElimination
| Some c -> srec env 0 [] c
let compute_consteval_mutual_fix sigma env ref =
let rec srec env minarg labs ref c =
let c',l = whd_betalet_stack sigma c in
let nargs = List.length l in
match kind_of_term c' with
| Lambda (na,t,g) when l=[] ->
srec (push_rel (na,None,t) env) (minarg+1) (t::labs) ref g
| Fix ((lv,i),(names,_,_)) ->
(* Last known constant wrapping Fix is ref = [labs](Fix l) *)
(match compute_consteval_direct sigma env ref with
| NotAnElimination -> (*Above const was eliminable but this not!*)
NotAnElimination
| EliminationFix (minarg',minfxargs,infos) ->
let refs =
Array.map
(invert_name labs l names.(i) env sigma ref) names in
let new_minarg = max (minarg'+minarg-nargs) minarg' in
EliminationMutualFix (new_minarg,ref,(refs,infos))
| _ -> assert false)
| _ when isEvalRef env c' ->
(* Forget all \'s and args and do as if we had started with c' *)
let ref = destEvalRef c' in
(match reference_opt_value sigma env ref with
| None -> anomaly "Should have been trapped by compute_direct"
| Some c -> srec env (minarg-nargs) [] ref c)
| _ -> (* Should not occur *) NotAnElimination
in
match reference_opt_value sigma env ref with
| None -> (* Should not occur *) NotAnElimination
| Some c -> srec env 0 [] ref c
let compute_consteval sigma env ref =
match compute_consteval_direct sigma env ref with
| EliminationFix (_,_,(nbfix,_,_)) when nbfix <> 1 ->
compute_consteval_mutual_fix sigma env ref
| elim -> elim
let reference_eval sigma env = function
| EvalConst cst as ref ->
(try
Cstmap.find cst !eval_table
with Not_found -> begin
let v = compute_consteval sigma env ref in
eval_table := Cstmap.add cst v !eval_table;
v
end)
| ref -> compute_consteval sigma env ref
let rev_firstn_liftn fn ln =
let rec rfprec p res l =
if p = 0 then
res
else
match l with
| [] -> invalid_arg "Reduction.rev_firstn_liftn"
| a::rest -> rfprec (p-1) ((lift ln a)::res) rest
in
rfprec fn []
(* If f is bound to EliminationFix (n',infos), then n' is the minimal
number of args for starting the reduction and infos is
(nbfix,[(yi1,Ti1);...;(yip,Tip)],n) indicating that f converts
to some [y1:T1,...,yn:Tn](Fix(..) yip .. yi1) where we can remark that
yij = Rel(n+1-j)
f is applied to largs and we need for recursive calls to build the function
g := [xp:Tip',...,x1:Ti1'](f a1 ... an)
s.t. (g u1 ... up) reduces to (Fix(..) u1 ... up)
This is made possible by setting
a_k:=z_j if k=i_j
a_k:=y_k otherwise
The type Tij' is Tij[yn..yi(j-1)..y1 <- ai(j-1)..a1]
*)
let x = Name (id_of_string "x")
let make_elim_fun (names,(nbfix,lv,n)) largs =
let lu = list_firstn n (list_of_stack largs) in
let p = List.length lv in
let lyi = List.map fst lv in
let la =
list_map_i (fun q aq ->
(* k from the comment is q+1 *)
try mkRel (p+1-(list_index (n-q) lyi))
with Not_found -> aq)
0 (List.map (lift p) lu)
in
fun i ->
match names.(i) with
| None -> None
| Some (minargs,ref) ->
let body = applistc (mkEvalRef ref) la in
let g =
list_fold_left_i (fun q (* j from comment is n+1-q *) c (ij,tij) ->
let subst = List.map (lift (-q)) (list_firstn (n-ij) la) in
let tij' = substl (List.rev subst) tij in
mkLambda (x,tij',c)) 1 body (List.rev lv)
in Some (minargs,g)
(* [f] is convertible to [Fix(recindices,bodynum),bodyvect)]:
do so that the reduction uses this extra information *)
let dummy = mkProp
let vfx = id_of_string"_expanded_fix_"
let vfun = id_of_string"_elimminator_function_"
(* Mark every occurrence of substituted vars (associated to a function)
as a problem variable: an evar that can be instantiated either by
vfx (expanded fixpoint) or vfun (named function). *)
let substl_with_function subst constr =
let cnt = ref 0 in
let evd = ref Evd.empty in
let minargs = ref Intmap.empty in
let v = Array.of_list subst in
let rec subst_total k c =
match kind_of_term c with
Rel i when k<i ->
if i <= k + Array.length v then
match v.(i-k-1) with
| (fx,Some(min,ref)) ->
decr cnt;
evd := Evd.add !evd !cnt
(Evd.make_evar
(val_of_named_context
[(vfx,None,dummy);(vfun,None,dummy)])
dummy);
minargs := Intmap.add !cnt min !minargs;
lift k (mkEvar(!cnt,[|fx;ref|]))
| (fx,None) -> lift k fx
else mkRel (i - Array.length v)
| _ ->
map_constr_with_binders succ subst_total k c in
let c = subst_total 0 constr in
(c,!evd,!minargs)
exception Partial
(* each problem variable that cannot be made totally applied even by
reduction is solved by the expanded fix term. *)
let solve_arity_problem env sigma fxminargs c =
let evm = ref sigma in
let set_fix i = evm := Evd.define !evm i (mkVar vfx) in
let rec check strict c =
let c' = whd_betaiotazeta sigma c in
let (h,rcargs) = decompose_app c' in
match kind_of_term h with
Evar(i,_) when Intmap.mem i fxminargs && not (Evd.is_defined !evm i) ->
let minargs = Intmap.find i fxminargs in
if List.length rcargs < minargs then
if strict then set_fix i
else raise Partial;
List.iter (check strict) rcargs
| (Var _|Const _) when isEvalRef env h ->
(match reference_opt_value sigma env (destEvalRef h) with
Some h' ->
let bak = !evm in
(try List.iter (check false) rcargs
with Partial ->
evm := bak;
check strict (applist(h',rcargs)))
| None -> List.iter (check strict) rcargs)
| _ -> iter_constr (check strict) c' in
check true c;
!evm
let substl_checking_arity env subst c =
(* we initialize the problem: *)
let body,sigma,minargs = substl_with_function subst c in
(* we collect arity constraints *)
let sigma' = solve_arity_problem env sigma minargs body in
(* we propagate the constraints: solved problems are substituted;
the other ones are replaced by the function symbol *)
let rec nf_fix c =
match kind_of_term c with
Evar(i,[|fx;f|] as ev) when Intmap.mem i minargs ->
(match Evd.existential_opt_value sigma' ev with
Some c' -> c'
| None -> f)
| _ -> map_constr nf_fix c in
nf_fix body
let contract_fix_use_function env sigma f
((recindices,bodynum),(_names,_types,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j = (mkFix((recindices,j),typedbodies), f j) in
let lbodies = list_tabulate make_Fi nbodies in
substl_checking_arity env (List.rev lbodies) (nf_beta sigma bodies.(bodynum))
let reduce_fix_use_function env sigma f whfun fix stack =
match fix_recarg fix stack with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') =
if isRel recarg then
(* The recarg cannot be a local def, no worry about the right env *)
(recarg, empty_stack)
else
whfun (recarg, empty_stack) in
let stack' = stack_assign stack recargnum (app_stack recarg') in
(match kind_of_term recarg'hd with
| Construct _ ->
Reduced (contract_fix_use_function env sigma f fix,stack')
| _ -> NotReducible)
let contract_cofix_use_function env sigma f
(bodynum,(_names,_,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j = (mkCoFix(j,typedbodies), f j) in
let subbodies = list_tabulate make_Fi nbodies in
substl_checking_arity env (List.rev subbodies)
(nf_beta sigma bodies.(bodynum))
let reduce_mind_case_use_function func env sigma mia =
match kind_of_term mia.mconstr with
| Construct(ind_sp,i) ->
let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1), real_cargs)
| CoFix (bodynum,(names,_,_) as cofix) ->
let build_cofix_name =
if isConst func then
let (mp,dp,_) = repr_con (destConst func) in
let minargs = List.length mia.mcargs in
fun i ->
if i = bodynum then Some (minargs,func)
else match names.(i) with
| Anonymous -> None
| Name id ->
(* In case of a call to another component of a block of
mutual inductive, try to reuse the global name if
the block was indeed initially built as a global
definition *)
let kn = make_con mp dp (label_of_id id) in
try match constant_opt_value env kn with
| None -> None
(* TODO: check kn is correct *)
| Some _ -> Some (minargs,mkConst kn)
with Not_found -> None
else
fun _ -> None in
let cofix_def =
contract_cofix_use_function env sigma build_cofix_name cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
let special_red_case env sigma whfun (ci, p, c, lf) =
let rec redrec s =
let (constr, cargs) = whfun s in
if isEvalRef env constr then
let ref = destEvalRef constr in
match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some gvalue ->
if reducible_mind_case gvalue then
reduce_mind_case_use_function constr env sigma
{mP=p; mconstr=gvalue; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}
else
redrec (gvalue, cargs)
else
if reducible_mind_case constr then
reduce_mind_case
{mP=p; mconstr=constr; mcargs=list_of_stack cargs;
mci=ci; mlf=lf}
else
raise Redelimination
in
redrec (c, empty_stack)
(* [red_elim_const] contracts iota/fix/cofix redexes hidden behind
constants by keeping the name of the constants in the recursive calls;
it fails if no redex is around *)
let rec red_elim_const env sigma ref largs =
match reference_eval sigma env ref with
| EliminationCases n when stack_args_size largs >= n ->
let c = reference_value sigma env ref in
let c', lrest = whd_betadelta_state env sigma (c,largs) in
let whfun = whd_simpl_state env sigma in
(special_red_case env sigma whfun (destCase c'), lrest)
| EliminationFix (min,minfxargs,infos) when stack_args_size largs >=min ->
let c = reference_value sigma env ref in
let d, lrest = whd_betadelta_state env sigma (c,largs) in
let f = make_elim_fun ([|Some (minfxargs,ref)|],infos) largs in
let whfun = whd_construct_state env sigma in
(match reduce_fix_use_function env sigma f whfun (destFix d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta sigma c, rest))
| EliminationMutualFix (min,refgoal,refinfos)
when stack_args_size largs >= min ->
let rec descend ref args =
let c = reference_value sigma env ref in
if ref = refgoal then
(c,args)
else
let c', lrest = whd_betalet_state sigma (c,args) in
descend (destEvalRef c') lrest in
let (_, midargs as s) = descend ref largs in
let d, lrest = whd_betadelta_state env sigma s in
let f = make_elim_fun refinfos midargs in
let whfun = whd_construct_state env sigma in
(match reduce_fix_use_function env sigma f whfun (destFix d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta sigma c, rest))
| _ -> raise Redelimination
(* reduce to whd normal form or to an applied constant that does not hide
a reducible iota/fix/cofix redex (the "simpl" tactic) *)
and whd_simpl_state env sigma s =
let rec redrec (x, stack as s) =
match kind_of_term x with
| Lambda (na,t,c) ->
(match decomp_stack stack with
| None -> s
| Some (a,rest) -> stacklam redrec [a] c rest)
| LetIn (n,b,t,c) -> stacklam redrec [b] c stack
| App (f,cl) -> redrec (f, append_stack cl stack)
| Cast (c,_,_) -> redrec (c, stack)
| Case (ci,p,c,lf) ->
(try
redrec (special_red_case env sigma redrec (ci,p,c,lf), stack)
with
Redelimination -> s)
| Fix fix ->
(try match reduce_fix (whd_construct_state env) sigma fix stack with
| Reduced s' -> redrec s'
| NotReducible -> s
with Redelimination -> s)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
redrec (red_elim_const env sigma ref stack)
with Redelimination ->
s)
| _ -> s
in
redrec s
(* reduce until finding an applied constructor or fail *)
and whd_construct_state env sigma s =
let (constr, cargs as s') = whd_simpl_state env sigma s in
if reducible_mind_case constr then s'
else if isEvalRef env constr then
let ref = destEvalRef constr in
match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some gvalue -> whd_construct_state env sigma (gvalue, cargs)
else
raise Redelimination
(************************************************************************)
(* Special Purpose Reduction Strategies *)
(* Red reduction tactic: one step of delta reduction + full
beta-iota-fix-cofix-zeta-cast at the head of the conclusion of a
sequence of products; fails if no delta redex is around
*)
let try_red_product env sigma c =
let simpfun = clos_norm_flags betaiotazeta env sigma in
let rec redrec env x =
match kind_of_term x with
| App (f,l) ->
(match kind_of_term f with
| Fix fix ->
let stack = append_stack l empty_stack in
(match fix_recarg fix stack with
| None -> raise Redelimination
| Some (recargnum,recarg) ->
let recarg' = redrec env recarg in
let stack' = stack_assign stack recargnum recarg' in
simpfun (app_stack (f,stack')))
| _ -> simpfun (appvect (redrec env f, l)))
| Cast (c,_,_) -> redrec env c
| Prod (x,a,b) -> mkProd (x, a, redrec (push_rel (x,None,a) env) b)
| LetIn (x,a,b,t) -> redrec env (subst1 a t)
| Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf))
| _ when isEvalRef env x ->
(* TO DO: re-fold fixpoints after expansion *)
(* to get true one-step reductions *)
let ref = destEvalRef x in
(match reference_opt_value sigma env ref with
| None -> raise Redelimination
| Some c -> c)
| _ -> raise Redelimination
in redrec env c
let red_product env sigma c =
try try_red_product env sigma c
with Redelimination -> error "Not reducible."
(*
(* This old version of hnf uses betadeltaiota instead of itself (resp
whd_construct_state) to reduce the argument of Case (resp Fix);
The new version uses the "simpl" strategy instead. For instance,
Variable n:nat.
Eval hnf in match (plus (S n) O) with S n => n | _ => O end.
returned
(fix plus (n m : nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus p m)
end) n 0
while the new version returns (plus n O)
*)
let whd_simpl_orelse_delta_but_fix_old env sigma c =
let whd_all = whd_betadeltaiota_state env sigma in
let rec redrec (x, stack as s) =
match kind_of_term x with
| Lambda (na,t,c) ->
(match decomp_stack stack with
| None -> s
| Some (a,rest) -> stacklam redrec [a] c rest)
| LetIn (n,b,t,c) -> stacklam redrec [b] c stack
| App (f,cl) -> redrec (f, append_stack cl stack)
| Cast (c,_,_) -> redrec (c, stack)
| Case (ci,p,d,lf) ->
(try
redrec (special_red_case env sigma whd_all (ci,p,d,lf), stack)
with Redelimination ->
s)
| Fix fix ->
(match reduce_fix whd_all fix stack with
| Reduced s' -> redrec s'
| NotReducible -> s)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
redrec (red_elim_const env sigma ref stack)
with Redelimination ->
match reference_opt_value sigma env ref with
| Some c ->
(match kind_of_term (snd (decompose_lam c)) with
| CoFix _ | Fix _ -> s
| _ -> redrec (c, stack))
| None -> s)
| _ -> s
in app_stack (redrec (c, empty_stack))
*)
(* Same as [whd_simpl] but also reduces constants that do not hide a
reducible fix, but does this reduction of constants only until it
it immediately hides a non reducible fix or a cofix *)
let whd_simpl_orelse_delta_but_fix env sigma c =
let rec redrec s =
let (constr, stack as s') = whd_simpl_state env sigma s in
if isEvalRef env constr then
match reference_opt_value sigma env (destEvalRef constr) with
| Some c ->
(match kind_of_term (snd (decompose_lam c)) with
| CoFix _ | Fix _ -> s'
| _ -> redrec (c, stack))
| None -> s'
else s'
in app_stack (redrec (c, empty_stack))
let hnf_constr = whd_simpl_orelse_delta_but_fix
(* The "simpl" reduction tactic *)
let whd_simpl env sigma c =
app_stack (whd_simpl_state env sigma (c, empty_stack))
let simpl env sigma c = strong whd_simpl env sigma c
let nf = simpl (* Compatibility *)
(* Reduction at specific subterms *)
let is_head c t =
match kind_of_term t with
| App (f,_) -> f = c
| _ -> false
let contextually byhead ((nowhere_except_in,locs),c) f env sigma t =
let maxocc = List.fold_right max locs 0 in
let pos = ref 1 in
let rec traverse (env,c as envc) t =
if nowhere_except_in & (!pos > maxocc) then t
else
if (not byhead & eq_constr c t) or (byhead & is_head c t) then
let ok =
if nowhere_except_in then List.mem !pos locs
else not (List.mem !pos locs) in
incr pos;
if ok then
f env sigma t
else if byhead then
(* find other occurrences of c in t; TODO: ensure left-to-right *)
let (f,l) = destApp t in
mkApp (f, array_map_left (traverse envc) l)
else
t
else
map_constr_with_binders_left_to_right
(fun d (env,c) -> (push_rel d env,lift 1 c))
traverse envc t
in
let t' = traverse (env,c) t in
if List.exists (fun o -> o >= !pos) locs then error_invalid_occurrence locs;
t'
(* linear bindings (following pretty-printer) of the value of name in c.
* n is the number of the next occurence of name.
* ol is the occurence list to find. *)
let substlin env evalref n (nowhere_except_in,locs) c =
let maxocc = List.fold_right max locs 0 in
let pos = ref n in
assert (List.for_all (fun x -> x >= 0) locs);
let value = value_of_evaluable_ref env evalref in
let term = constr_of_evaluable_ref evalref in
let rec substrec () c =
if nowhere_except_in & !pos > maxocc then c
else if c = term then
let ok =
if nowhere_except_in then List.mem !pos locs
else not (List.mem !pos locs) in
incr pos;
if ok then value else c
else
map_constr_with_binders_left_to_right
(fun _ () -> ())
substrec () c
in
let t' = substrec () c in
(!pos, t')
let string_of_evaluable_ref env = function
| EvalVarRef id -> string_of_id id
| EvalConstRef kn ->
string_of_qualid
(Nametab.shortest_qualid_of_global (vars_of_env env) (ConstRef kn))
let unfold env sigma name =
if is_evaluable env name then
clos_norm_flags (unfold_red name) env sigma
else
error (string_of_evaluable_ref env name^" is opaque.")
(* [unfoldoccs : (readable_constraints -> (int list * section_path) -> constr -> constr)]
* Unfolds the constant name in a term c following a list of occurrences occl.
* at the occurrences of occ_list. If occ_list is empty, unfold all occurences.
* Performs a betaiota reduction after unfolding. *)
let unfoldoccs env sigma ((nowhere_except_in,locs as plocs),name) c =
if locs = [] then if nowhere_except_in then c else unfold env sigma name c
else
let (nbocc,uc) = substlin env name 1 plocs c in
if nbocc = 1 then
error ((string_of_evaluable_ref env name)^" does not occur.");
let rest = List.filter (fun o -> o >= nbocc) locs in
if rest <> [] then error_invalid_occurrence rest;
nf_betaiota sigma uc
(* Unfold reduction tactic: *)
let unfoldn loccname env sigma c =
List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname
(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env sigma c =
let rcom =
try red_product env sigma com
with Redelimination -> error "Not reducible." in
(* Reason first on the beta-iota-zeta normal form of the constant as
unfold produces it, so that the "unfold f; fold f" configuration works
to refold fix expressions *)
let a = subst_term (clos_norm_flags unfold_side_red env sigma rcom) c in
if not (eq_constr a c) then
subst1 com a
else
(* Then reason on the non beta-iota-zeta form for compatibility -
even if it is probably a useless configuration *)
let a = subst_term rcom c in
subst1 com a
let fold_commands cl env sigma c =
List.fold_right (fun com -> fold_one_com com env sigma) (List.rev cl) c
(* call by value reduction functions *)
let cbv_norm_flags flags env sigma t =
cbv_norm (create_cbv_infos flags env sigma) t
let cbv_beta = cbv_norm_flags beta empty_env
let cbv_betaiota = cbv_norm_flags betaiota empty_env
let cbv_betadeltaiota env sigma = cbv_norm_flags betadeltaiota env sigma
let compute = cbv_betadeltaiota
(* Pattern *)
(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
* the specified occurrences. *)
let abstract_scheme env sigma (locc,a) c =
let ta = Retyping.get_type_of env sigma a in
let na = named_hd env ta Anonymous in
if occur_meta ta then error "Cannot find a type for the generalisation.";
if occur_meta a then
mkLambda (na,ta,c)
else
mkLambda (na,ta,subst_term_occ locc a c)
let pattern_occs loccs_trm env sigma c =
let abstr_trm = List.fold_right (abstract_scheme env sigma) loccs_trm c in
try
let _ = Typing.type_of env sigma abstr_trm in
applist(abstr_trm, List.map snd loccs_trm)
with Type_errors.TypeError (env',t) ->
raise (ReductionTacticError (InvalidAbstraction (env,abstr_trm,(env',t))))
(* Used in several tactics. *)
(* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
return name, B and t' *)
let reduce_to_ind_gen allow_product env sigma t =
let rec elimrec env t l =
let t = hnf_constr env sigma t in
match kind_of_term (fst (decompose_app t)) with
| Ind ind-> (ind, it_mkProd_or_LetIn t l)
| Prod (n,ty,t') ->
if allow_product then
elimrec (push_rel (n,None,ty) env) t' ((n,None,ty)::l)
else
errorlabstrm "" (str"Not an inductive definition.")
| _ ->
(* Last chance: we allow to bypass the Opaque flag (as it
was partially the case between V5.10 and V8.1 *)
let t' = whd_betadeltaiota env sigma t in
match kind_of_term (fst (decompose_app t')) with
| Ind ind-> (ind, it_mkProd_or_LetIn t' l)
| _ -> errorlabstrm "" (str"Not an inductive product.")
in
elimrec env t []
let reduce_to_quantified_ind x = reduce_to_ind_gen true x
let reduce_to_atomic_ind x = reduce_to_ind_gen false x
(* Reduce the weak-head redex [beta,iota/fix/cofix[all],cast,zeta,simpl/delta]
or raise [NotStepReducible] if not a weak-head redex *)
exception NotStepReducible
let one_step_reduce env sigma c =
let rec redrec (x, stack) =
match kind_of_term x with
| Lambda (n,t,c) ->
(match decomp_stack stack with
| None -> raise NotStepReducible
| Some (a,rest) -> (subst1 a c, rest))
| App (f,cl) -> redrec (f, append_stack cl stack)
| LetIn (_,f,_,cl) -> (subst1 f cl,stack)
| Cast (c,_,_) -> redrec (c,stack)
| Case (ci,p,c,lf) ->
(try
(special_red_case env sigma (whd_simpl_state env sigma)
(ci,p,c,lf), stack)
with Redelimination -> raise NotStepReducible)
| Fix fix ->
(match reduce_fix (whd_construct_state env) sigma fix stack with
| Reduced s' -> s'
| NotReducible -> raise NotStepReducible)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
red_elim_const env sigma ref stack
with Redelimination ->
match reference_opt_value sigma env ref with
| Some d -> d, stack
| None -> raise NotStepReducible)
| _ -> raise NotStepReducible
in
app_stack (redrec (c, empty_stack))
let isIndRef = function IndRef _ -> true | _ -> false
let reduce_to_ref_gen allow_product env sigma ref t =
if isIndRef ref then
let (mind,t) = reduce_to_ind_gen allow_product env sigma t in
if IndRef mind <> ref then
errorlabstrm "" (str "Cannot recognize a statement based on " ++
Nametab.pr_global_env Idset.empty ref ++ str".")
else
t
else
(* lazily reduces to match the head of [t] with the expected [ref] *)
let rec elimrec env t l =
let c, _ = Reductionops.whd_stack sigma t in
match kind_of_term c with
| Prod (n,ty,t') ->
if allow_product then
elimrec (push_rel (n,None,t) env) t' ((n,None,ty)::l)
else
errorlabstrm ""
(str "Cannot recognize an atomic statement based on " ++
Nametab.pr_global_env Idset.empty ref ++ str".")
| _ ->
try
if global_of_constr c = ref
then it_mkProd_or_LetIn t l
else raise Not_found
with Not_found ->
try
let t' = nf_betaiota sigma (one_step_reduce env sigma t) in
elimrec env t' l
with NotStepReducible ->
errorlabstrm ""
(str "Cannot recognize a statement based on " ++
Nametab.pr_global_env Idset.empty ref ++ str".")
in
elimrec env t []
let reduce_to_quantified_ref = reduce_to_ref_gen true
let reduce_to_atomic_ref = reduce_to_ref_gen false
|