summaryrefslogtreecommitdiff
path: root/pretyping/retyping.ml
blob: 061382f7323802ac69714deb2c2274354463986a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: retyping.ml,v 1.43.2.1 2004/07/16 19:30:46 herbelin Exp $ *)

open Util
open Term
open Inductive
open Names
open Reductionops
open Environ
open Typeops
open Declarations
open Instantiate

let outsort env sigma t =
  match kind_of_term (whd_betadeltaiota env sigma t) with
    | Sort s -> s
    | _ -> anomaly "Retyping: found a type of type which is not a sort"

let rec subst_type env sigma typ = function
  | [] -> typ
  | h::rest ->
      match kind_of_term (whd_betadeltaiota env sigma typ) with
        | Prod (na,c1,c2) -> subst_type env sigma (subst1 h c2) rest
        | _ -> anomaly "Non-functional construction"

(* Si ft est le type d'un terme f, lequel est appliqué à args, *)
(* [sort_of_atomic_ty] calcule ft[args] qui doit être une sorte *)
(* On suit une méthode paresseuse, en espèrant que ft est une arité *)
(* et sinon on substitue *)

let sort_of_atomic_type env sigma ft args =
  let rec concl_of_arity env ar =
    match kind_of_term (whd_betadeltaiota env sigma ar) with
      | Prod (na, t, b) -> concl_of_arity (push_rel (na,None,t) env) b
      | Sort s -> s
      | _ -> outsort env sigma (subst_type env sigma ft (Array.to_list args))
  in concl_of_arity env ft

let typeur sigma metamap =
  let rec type_of env cstr=
    match kind_of_term cstr with
    | Meta n ->
          (try strip_outer_cast (List.assoc n metamap)
           with Not_found -> anomaly "type_of: this is not a well-typed term")
    | Rel n ->
        let (_,_,ty) = lookup_rel n env in
        lift n ty
    | Var id ->
        (try
          let (_,_,ty) = lookup_named id env in
          body_of_type ty
        with Not_found ->
          anomaly ("type_of: variable "^(string_of_id id)^" unbound"))
    | Const c ->
        let cb = lookup_constant c env in
        body_of_type cb.const_type
    | Evar ev -> existential_type sigma ev
    | Ind ind -> body_of_type (type_of_inductive env ind)
    | Construct cstr -> body_of_type (type_of_constructor env cstr)
    | Case (_,p,c,lf) ->
        let Inductiveops.IndType(_,realargs) =
          try Inductiveops.find_rectype env sigma (type_of env c)
          with Not_found -> anomaly "type_of: Bad recursive type" in
        let t = whd_beta (applist (p, realargs)) in
        (match kind_of_term (whd_betadeltaiota env sigma (type_of env t)) with
          | Prod _ -> whd_beta (applist (t, [c]))
          | _ -> t)
    | Lambda (name,c1,c2) ->
          mkProd (name, c1, type_of (push_rel (name,None,c1) env) c2)
    | LetIn (name,b,c1,c2) ->
         subst1 b (type_of (push_rel (name,Some b,c1) env) c2)
    | Fix ((_,i),(_,tys,_)) -> tys.(i)
    | CoFix (i,(_,tys,_)) -> tys.(i)
    | App(f,args)->
        strip_outer_cast
          (subst_type env sigma (type_of env f) (Array.to_list args))
    | Cast (c,t) -> t
    | Sort _ | Prod _ -> mkSort (sort_of env cstr)

  and sort_of env t = 
    match kind_of_term t with
    | Cast (c,s) when isSort s -> destSort s
    | Sort (Prop c) -> type_0
    | Sort (Type u) -> Type (Univ.super u)
    | Prod (name,t,c2) ->
        (match (sort_of env t, sort_of (push_rel (name,None,t) env) c2) with
	  | _, (Prop Null as s) -> s
          | Prop _, (Prop Pos as s) -> s
          | Type _, (Prop Pos as s) when
              Environ.engagement env = Some ImpredicativeSet -> s
          | Type _ as s, Prop Pos -> s
	  | _, (Type u2 as s) -> s (*Type Univ.dummy_univ*))
    | App(f,args) -> sort_of_atomic_type env sigma (type_of env f) args
    | Lambda _ | Fix _ | Construct _ ->
        anomaly "sort_of: Not a type (1)"
    | _ -> outsort env sigma (type_of env t)

  and sort_family_of env t =
    match kind_of_term t with
    | Cast (c,s) when isSort s -> family_of_sort (destSort s)
    | Sort (Prop c) -> InType
    | Sort (Type u) -> InType
    | Prod (name,t,c2) -> sort_family_of (push_rel (name,None,t) env) c2
    | App(f,args) -> 
       family_of_sort (sort_of_atomic_type env sigma (type_of env f) args)
    | Lambda _ | Fix _ | Construct _ ->
        anomaly "sort_of: Not a type (1)"
    | _ -> family_of_sort (outsort env sigma (type_of env t))

  in type_of, sort_of, sort_family_of

let get_type_of env sigma c = let f,_,_ = typeur sigma [] in f env c
let get_sort_of env sigma t = let _,f,_ = typeur sigma [] in f env t
let get_sort_family_of env sigma c = let _,_,f = typeur sigma [] in f env c

let get_type_of_with_meta env sigma metamap = 
  let f,_,_ = typeur sigma metamap in f env

(* Makes an assumption from a constr *)
let get_assumption_of env evc c = c

(* Makes an unsafe judgment from a constr *)
let get_judgment_of env evc c = { uj_val = c; uj_type = get_type_of env evc c }