1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: recordops.ml,v 1.26.2.1 2004/07/16 19:30:46 herbelin Exp $ *)
open Util
open Pp
open Names
open Libnames
open Nametab
open Term
open Termops
open Typeops
open Libobject
open Library
open Classops
let nbimpl = ref 0
let nbpathc = ref 0
let nbcoer = ref 0
let nbstruc = ref 0
let nbimplstruc = ref 0
let compter = ref false
(*s Une structure S est un type inductif non récursif à un seul
constructeur (de nom par défaut Build_S) *)
(* Table des structures: le nom de la structure (un [inductive]) donne
le nom du constructeur, le nombre de paramètres et pour chaque
argument réels du constructeur, le noms de la projection
correspondante, si valide *)
type struc_typ = {
s_CONST : identifier;
s_PARAM : int;
s_PROJ : constant option list }
let structure_table = ref (Indmap.empty : struc_typ Indmap.t)
let projection_table = ref KNmap.empty
let option_fold_right f p e = match p with Some a -> f a e | None -> e
let cache_structure (_,(ind,struc)) =
structure_table := Indmap.add ind struc !structure_table;
projection_table :=
List.fold_right (option_fold_right (fun proj -> KNmap.add proj struc))
struc.s_PROJ !projection_table
let subst_structure (_,subst,((kn,i),struc as obj)) =
let kn' = subst_kn subst kn in
let proj' = list_smartmap
(option_smartmap (subst_kn subst))
struc.s_PROJ
in
if proj' == struc.s_PROJ && kn' == kn then obj else
(kn',i),{struc with s_PROJ = proj'}
let (inStruc,outStruc) =
declare_object {(default_object "STRUCTURE") with
cache_function = cache_structure;
load_function = (fun _ o -> cache_structure o);
subst_function = subst_structure;
classify_function = (fun (_,x) -> Substitute x);
export_function = (function x -> Some x) }
let add_new_struc (s,c,n,l) =
Lib.add_anonymous_leaf (inStruc (s,{s_CONST=c;s_PARAM=n;s_PROJ=l}))
let find_structure indsp = Indmap.find indsp !structure_table
let find_projection_nparams = function
| ConstRef cst -> (KNmap.find cst !projection_table).s_PARAM
| _ -> raise Not_found
(*s Un "object" est une fonction construisant une instance d'une structure *)
(* Table des definitions "object" : pour chaque object c,
c := [x1:B1]...[xk:Bk](Build_R a1...am t1...t_n)
avec ti = (ci ui1...uir)
Pour tout ci, et Li, la ième projection de la structure R (si
définie), on déclare une "coercion"
o_DEF = c
o_TABS = B1...Bk
o_PARAMS = a1...am
o_TCOMP = ui1...uir
*)
type obj_typ = {
o_DEF : constr;
o_TABS : constr list; (* dans l'ordre *)
o_TPARAMS : constr list; (* dans l'ordre *)
o_TCOMPS : constr list } (* dans l'ordre *)
let subst_obj subst obj =
let o_DEF' = subst_mps subst obj.o_DEF in
let o_TABS' = list_smartmap (subst_mps subst) obj.o_TABS in
let o_TPARAMS' = list_smartmap (subst_mps subst) obj.o_TPARAMS in
let o_TCOMPS' = list_smartmap (subst_mps subst) obj.o_TCOMPS in
if o_DEF' == obj.o_DEF
&& o_TABS' == obj.o_TABS
&& o_TPARAMS' == obj.o_TPARAMS
&& o_TCOMPS' == obj.o_TCOMPS
then
obj
else
{ o_DEF = o_DEF' ;
o_TABS = o_TABS' ;
o_TPARAMS = o_TPARAMS' ;
o_TCOMPS = o_TCOMPS' }
let object_table =
(ref [] : ((global_reference * global_reference) * obj_typ) list ref)
let cache_object (_,x) = object_table := x :: (!object_table)
let subst_object (_,subst,((r1,r2),o as obj)) =
let r1' = subst_global subst r1 in
let r2' = subst_global subst r2 in
let o' = subst_obj subst o in
if r1' == r1 && r2' == r2 && o' == o then obj else
(r1',r2'),o'
let (inObjDef,outObjDef) =
declare_object {(default_object "OBJDEF") with
open_function = (fun i o -> if i=1 then cache_object o);
cache_function = cache_object;
subst_function = subst_object;
classify_function = (fun (_,x) -> Substitute x);
export_function = (function x -> Some x) }
let add_new_objdef (o,c,la,lp,l) =
try
let _ = List.assoc o !object_table in ()
with Not_found ->
Lib.add_anonymous_leaf
(inObjDef (o,{o_DEF=c;o_TABS=la;o_TPARAMS=lp;o_TCOMPS=l}))
let cache_objdef1 (_,sp) = ()
let (inObjDef1,outObjDef1) =
declare_object {(default_object "OBJDEF1") with
open_function = (fun i o -> if i=1 then cache_objdef1 o);
cache_function = cache_objdef1;
export_function = (function x -> Some x) }
let objdef_info o = List.assoc o !object_table
let freeze () =
!structure_table, !projection_table, !object_table
let unfreeze (s,p,o) =
structure_table := s; projection_table := p; object_table := o
let init () =
structure_table := Indmap.empty; projection_table := KNmap.empty;
object_table:=[]
let _ = init()
let _ =
Summary.declare_summary "objdefs"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init;
Summary.survive_module = false;
Summary.survive_section = false }
|