1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: pretyping.ml,v 1.123.2.3 2004/07/16 19:30:45 herbelin Exp $ *)
open Pp
open Util
open Names
open Sign
open Evd
open Term
open Termops
open Reductionops
open Environ
open Type_errors
open Typeops
open Libnames
open Classops
open List
open Recordops
open Evarutil
open Pretype_errors
open Rawterm
open Evarconv
open Coercion
open Pattern
open Dyn
(************************************************************************)
(* This concerns Cases *)
open Declarations
open Inductive
open Inductiveops
open Instantiate
let lift_context n l =
let k = List.length l in
list_map_i (fun i (name,c) -> (name,liftn n (k-i) c)) 0 l
let transform_rec loc env sigma (pj,c,lf) indt =
let p = pj.uj_val in
let (indf,realargs) = dest_ind_type indt in
let (ind,params) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let recargs = mip.mind_recargs in
let mI = mkInd ind in
let ci = make_default_case_info env (if Options.do_translate() then RegularStyle else MatchStyle) ind in
let nconstr = Array.length mip.mind_consnames in
if Array.length lf <> nconstr then
(let cj = {uj_val=c; uj_type=mkAppliedInd indt} in
error_number_branches_loc loc env sigma cj nconstr);
let tyi = snd ind in
if mis_is_recursive_subset [tyi] recargs then
let dep =
is_dependent_elimination env (nf_evar sigma pj.uj_type) indf in
let init_depFvec i = if i = tyi then Some(dep,mkRel 1) else None in
let depFvec = Array.init mib.mind_ntypes init_depFvec in
(* build now the fixpoint *)
let lnames,_ = get_arity env indf in
let nar = List.length lnames in
let nparams = mip.mind_nparams in
let constrs = get_constructors env (lift_inductive_family (nar+2) indf) in
let branches =
array_map3
(fun f t reca ->
whd_beta
(Indrec.make_rec_branch_arg env sigma
(nparams,depFvec,nar+1)
f t reca))
(Array.map (lift (nar+2)) lf) constrs (dest_subterms recargs)
in
let deffix =
it_mkLambda_or_LetIn_name env
(lambda_create env
(applist (mI,List.append (List.map (lift (nar+1)) params)
(extended_rel_list 0 lnames)),
mkCase (ci, lift (nar+2) p, mkRel 1, branches)))
(lift_rel_context 1 lnames)
in
if noccurn 1 deffix then
whd_beta (applist (pop deffix,realargs@[c]))
else
let ind = applist (mI,(List.append
(List.map (lift nar) params)
(extended_rel_list 0 lnames))) in
let typPfix =
it_mkProd_or_LetIn_name env
(prod_create env
(ind,
(if dep then
let ext_lnames = (Anonymous,None,ind)::lnames in
let args = extended_rel_list 0 ext_lnames in
whd_beta (applist (lift (nar+1) p, args))
else
let args = extended_rel_list 1 lnames in
whd_beta (applist (lift (nar+1) p, args)))))
lnames in
let fix =
mkFix (([|nar|],0),
([|Name(id_of_string "F")|],[|typPfix|],[|deffix|])) in
applist (fix,realargs@[c])
else
mkCase (ci, p, c, lf)
(************************************************************************)
(* To embed constr in rawconstr *)
let ((constr_in : constr -> Dyn.t),
(constr_out : Dyn.t -> constr)) = create "constr"
let mt_evd = Evd.empty
let vect_lift_type = Array.mapi (fun i t -> type_app (lift i) t)
(* Utilisé pour inférer le prédicat des Cases *)
(* Semble exagérement fort *)
(* Faudra préférer une unification entre les types de toutes les clauses *)
(* et autoriser des ? à rester dans le résultat de l'unification *)
let evar_type_fixpoint loc env isevars lna lar vdefj =
let lt = Array.length vdefj in
if Array.length lar = lt then
for i = 0 to lt-1 do
if not (the_conv_x_leq env isevars
(vdefj.(i)).uj_type
(lift lt lar.(i))) then
error_ill_typed_rec_body_loc loc env (evars_of isevars)
i lna vdefj lar
done
let check_branches_message loc env isevars c (explft,lft) =
for i = 0 to Array.length explft - 1 do
if not (the_conv_x_leq env isevars lft.(i) explft.(i)) then
let sigma = evars_of isevars in
error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i)
done
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon loc env isevars j = function
| None -> j
| Some typ -> inh_conv_coerce_to loc env isevars j typ
let push_rels vars env = List.fold_right push_rel vars env
(*
let evar_type_case isevars env ct pt lft p c =
let (mind,bty,rslty) = type_case_branches env (evars_of isevars) ct pt p c
in check_branches_message isevars env (c,ct) (bty,lft); (mind,rslty)
*)
let strip_meta id = (* For Grammar v7 compatibility *)
let s = string_of_id id in
if s.[0]='$' then id_of_string (String.sub s 1 (String.length s - 1))
else id
let pretype_id loc env (lvar,unbndltacvars) id =
let id = strip_meta id in (* May happen in tactics defined by Grammar *)
try
List.assoc id lvar
with Not_found ->
try
let (n,typ) = lookup_rel_id id (rel_context env) in
{ uj_val = mkRel n; uj_type = type_app (lift n) typ }
with Not_found ->
try
let (_,_,typ) = lookup_named id env in
{ uj_val = mkVar id; uj_type = typ }
with Not_found ->
try (* To build a nicer ltac error message *)
match List.assoc id unbndltacvars with
| None -> user_err_loc (loc,"",
str (string_of_id id ^ " ist not bound to a term"))
| Some id0 -> Pretype_errors.error_var_not_found_loc loc id0
with Not_found ->
error_var_not_found_loc loc id
(* make a dependent predicate from an undependent one *)
let make_dep_of_undep env (IndType (indf,realargs)) pj =
let n = List.length realargs in
let rec decomp n p =
if n=0 then p else
match kind_of_term p with
| Lambda (_,_,c) -> decomp (n-1) c
| _ -> decomp (n-1) (applist (lift 1 p, [mkRel 1]))
in
let sign,s = decompose_prod_n n pj.uj_type in
let ind = build_dependent_inductive env indf in
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
{uj_val=lam_it ccl' sign; uj_type=prod_it s' sign}
(*************************************************************************)
(* Main pretyping function *)
let pretype_ref isevars env ref =
let c = constr_of_reference ref in
make_judge c (Retyping.get_type_of env Evd.empty c)
let pretype_sort = function
| RProp c -> judge_of_prop_contents c
| RType _ -> judge_of_new_Type ()
(* [pretype tycon env isevars lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [(evars_of isevars)] and *)
(* the type constraint tycon *)
let rec pretype tycon env isevars lvar = function
| RRef (loc,ref) ->
inh_conv_coerce_to_tycon loc env isevars
(pretype_ref isevars env ref)
tycon
| RVar (loc, id) ->
inh_conv_coerce_to_tycon loc env isevars
(pretype_id loc env lvar id)
tycon
| REvar (loc, ev, instopt) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let hyps = (Evd.map (evars_of isevars) ev).evar_hyps in
let args = match instopt with
| None -> instance_from_named_context hyps
| Some inst -> failwith "Evar subtitutions not implemented" in
let c = mkEvar (ev, args) in
let j = (Retyping.get_judgment_of env (evars_of isevars) c) in
inh_conv_coerce_to_tycon loc env isevars j tycon
| RPatVar (loc,(someta,n)) ->
anomaly "Found a pattern variable in a rawterm to type"
| RHole (loc,k) ->
if !compter then nbimpl:=!nbimpl+1;
(match tycon with
| Some ty ->
{ uj_val = new_isevar isevars env (loc,k) ty; uj_type = ty }
| None -> error_unsolvable_implicit loc env (evars_of isevars) k)
| RRec (loc,fixkind,names,bl,lar,vdef) ->
let rec type_bl env ctxt = function
[] -> ctxt
| (na,None,ty)::bl ->
let ty' = pretype_type empty_valcon env isevars lvar ty in
let dcl = (na,None,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl
| (na,Some bd,ty)::bl ->
let ty' = pretype_type empty_valcon env isevars lvar ty in
let bd' = pretype (mk_tycon ty'.utj_val) env isevars lvar ty in
let dcl = (na,Some bd'.uj_val,ty'.utj_val) in
type_bl (push_rel dcl env) (add_rel_decl dcl ctxt) bl in
let ctxtv = Array.map (type_bl env empty_rel_context) bl in
let larj =
array_map2
(fun e ar ->
pretype_type empty_valcon (push_rel_context e env) isevars lvar ar)
ctxtv lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let ftys = array_map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
(* Note: bodies are not used by push_rec_types, so [||] is safe *)
let newenv = push_rec_types (names,ftys,[||]) env in
let vdefj =
array_map2_i
(fun i ctxt def ->
(* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
let (ctxt,ty) =
decompose_prod_n_assum (rel_context_length ctxt)
(lift nbfix ftys.(i)) in
let nenv = push_rel_context ctxt newenv in
let j = pretype (mk_tycon ty) nenv isevars lvar def in
{ uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
ctxtv vdef in
evar_type_fixpoint loc env isevars names ftys vdefj;
let fixj =
match fixkind with
| RFix (vn,i as vni) ->
let fix = (vni,(names,ftys,Array.map j_val vdefj)) in
(try check_fix env fix with e -> Stdpp.raise_with_loc loc e);
make_judge (mkFix fix) ftys.(i)
| RCoFix i ->
let cofix = (i,(names,ftys,Array.map j_val vdefj)) in
(try check_cofix env cofix with e -> Stdpp.raise_with_loc loc e);
make_judge (mkCoFix cofix) ftys.(i) in
inh_conv_coerce_to_tycon loc env isevars fixj tycon
| RSort (loc,s) ->
inh_conv_coerce_to_tycon loc env isevars (pretype_sort s) tycon
| RApp (loc,f,args) ->
let fj = pretype empty_tycon env isevars lvar f in
let floc = loc_of_rawconstr f in
let rec apply_rec env n resj = function
| [] -> resj
| c::rest ->
let argloc = loc_of_rawconstr c in
let resj = inh_app_fun env isevars resj in
let resty =
whd_betadeltaiota env (evars_of isevars) resj.uj_type in
match kind_of_term resty with
| Prod (na,c1,c2) ->
let hj = pretype (mk_tycon c1) env isevars lvar c in
let newresj =
{ uj_val = applist (j_val resj, [j_val hj]);
uj_type = subst1 hj.uj_val c2 } in
apply_rec env (n+1) newresj rest
| _ ->
let hj = pretype empty_tycon env isevars lvar c in
error_cant_apply_not_functional_loc
(join_loc floc argloc) env (evars_of isevars)
resj [hj]
in let resj = apply_rec env 1 fj args in
(*
let apply_one_arg (floc,tycon,jl) c =
let (dom,rng) = split_tycon floc env isevars tycon in
let cj = pretype dom env isevars lvar c in
let rng_tycon = option_app (subst1 cj.uj_val) rng in
let argloc = loc_of_rawconstr c in
(join_loc floc argloc,rng_tycon,(argloc,cj)::jl) in
let _,_,jl =
List.fold_left apply_one_arg (floc,mk_tycon j.uj_type,[]) args in
let jl = List.rev jl in
let resj = inh_apply_rel_list loc env isevars jl (floc,j) tycon in
*)
inh_conv_coerce_to_tycon loc env isevars resj tycon
| RLambda(loc,name,c1,c2) ->
let (name',dom,rng) = split_tycon loc env isevars tycon in
let dom_valcon = valcon_of_tycon dom in
let j = pretype_type dom_valcon env isevars lvar c1 in
let var = (name,None,j.utj_val) in
let j' = pretype rng (push_rel var env) isevars lvar c2 in
judge_of_abstraction env name j j'
| RProd(loc,name,c1,c2) ->
let j = pretype_type empty_valcon env isevars lvar c1 in
let var = (name,j.utj_val) in
let env' = push_rel_assum var env in
let j' = pretype_type empty_valcon env' isevars lvar c2 in
let resj =
try judge_of_product env name j j'
with TypeError _ as e -> Stdpp.raise_with_loc loc e in
inh_conv_coerce_to_tycon loc env isevars resj tycon
| RLetIn(loc,name,c1,c2) ->
let j = pretype empty_tycon env isevars lvar c1 in
let t = Evarutil.refresh_universes j.uj_type in
let var = (name,Some j.uj_val,t) in
let tycon = option_app (lift 1) tycon in
let j' = pretype tycon (push_rel var env) isevars lvar c2 in
{ uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ;
uj_type = type_app (subst1 j.uj_val) j'.uj_type }
| RLetTuple (loc,nal,(na,po),c,d) ->
let cj = pretype empty_tycon env isevars lvar c in
let (IndType (indf,realargs) as indt) =
try find_rectype env (evars_of isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of isevars) cj
in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 1 then
user_err_loc (loc,"",str "Destructing let is only for inductive types with one constructor");
let cs = cstrs.(0) in
if List.length nal <> cs.cs_nargs then
user_err_loc (loc,"", str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables");
let fsign = List.map2 (fun na (_,c,t) -> (na,c,t))
(List.rev nal) cs.cs_args in
let env_f = push_rels fsign env in
(* Make dependencies from arity signature impossible *)
let arsgn,_ = get_arity env indf in
let arsgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let nar = List.length arsgn in
(match po with
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p isevars lvar p in
let ccl = nf_evar (evars_of isevars) pj.utj_val in
let psign = make_arity_signature env true indf in (* with names *)
let p = it_mkLambda_or_LetIn ccl psign in
let inst =
(Array.to_list cs.cs_concl_realargs)
@[build_dependent_constructor cs] in
let lp = lift cs.cs_nargs p in
let fty = hnf_lam_applist env (evars_of isevars) lp inst in
let fj = pretype (mk_tycon fty) env_f isevars lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env LetStyle mis in
mkCase (ci, p, cj.uj_val,[|f|]) in
let cs = build_dependent_constructor cs in
{ uj_val = v; uj_type = substl (realargs@[cj.uj_val]) ccl }
| None ->
let tycon = option_app (lift cs.cs_nargs) tycon in
let fj = pretype tycon env_f isevars lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let ccl = nf_evar (evars_of isevars) fj.uj_type in
let ccl =
if noccur_between 1 cs.cs_nargs ccl then
lift (- cs.cs_nargs) ccl
else
error_cant_find_case_type_loc loc env (evars_of isevars)
cj.uj_val in
let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env LetStyle mis in
mkCase (ci, p, cj.uj_val,[|f|] )
in
{ uj_val = v; uj_type = ccl })
(* Special Case for let constructions to avoid exponential behavior *)
| ROrderedCase (loc,st,po,c,[|f|],xx) when st <> MatchStyle ->
let cj = pretype empty_tycon env isevars lvar c in
let (IndType (indf,realargs) as indt) =
try find_rectype env (evars_of isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of isevars) cj
in
let j = match po with
| Some p ->
let pj = pretype empty_tycon env isevars lvar p in
let dep = is_dependent_elimination env pj.uj_type indf in
let ar =
arity_of_case_predicate env indf dep (Type (new_univ())) in
let _ = the_conv_x_leq env isevars pj.uj_type ar in
let pj = j_nf_evar (evars_of isevars) pj in
let pj = if dep then pj else make_dep_of_undep env indt pj in
let (bty,rsty) =
Indrec.type_rec_branches
false env (evars_of isevars) indt pj.uj_val cj.uj_val
in
if Array.length bty <> 1 then
error_number_branches_loc
loc env (evars_of isevars) cj (Array.length bty);
let fj =
let tyc = bty.(0) in
pretype (mk_tycon tyc) env isevars lvar f
in
let fv = j_val fj in
let ft = fj.uj_type in
check_branches_message loc env isevars cj.uj_val (bty,[|ft|]);
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env st mis in
mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val,[|fv|])
in
{ uj_val = v; uj_type = rsty }
| None ->
(* get type information from type of branches *)
let expbr = Cases.branch_scheme env isevars false indf in
if Array.length expbr <> 1 then
error_number_branches_loc loc env (evars_of isevars)
cj (Array.length expbr);
let expti = expbr.(0) in
let fj = pretype (mk_tycon expti) env isevars lvar f in
let use_constraint () =
(* get type information from constraint *)
(* warning: if the constraint comes from an evar type, it *)
(* may be Type while Prop or Set would be expected *)
match tycon with
| Some pred ->
let arsgn = make_arity_signature env true indf in
let pred = lift (List.length arsgn) pred in
let pred =
it_mkLambda_or_LetIn (nf_evar (evars_of isevars) pred)
arsgn in
false, pred
| None ->
let sigma = evars_of isevars in
error_cant_find_case_type_loc loc env sigma cj.uj_val
in
let ok, p =
try
let pred =
Cases.pred_case_ml
env (evars_of isevars) false indt (0,fj.uj_type)
in
if has_undefined_isevars isevars pred then
use_constraint ()
else
true, pred
with Cases.NotInferable _ ->
use_constraint ()
in
let p = nf_evar (evars_of isevars) p in
let (bty,rsty) =
Indrec.type_rec_branches
false env (evars_of isevars) indt p cj.uj_val
in
let _ = option_app (the_conv_x_leq env isevars rsty) tycon in
let fj =
if ok then fj
else pretype (mk_tycon bty.(0)) env isevars lvar f
in
let fv = fj.uj_val in
let ft = fj.uj_type in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env st mis in
mkCase (ci, (nf_betaiota p), cj.uj_val,[|fv|] )
in
{ uj_val = v; uj_type = rsty } in
(* Build the LetTuple form for v8 *)
let c =
let (ind,params) = dest_ind_family indf in
let rtntypopt, indnalopt = match po with
| None -> None, (Anonymous,None)
| Some p ->
let pj = pretype empty_tycon env isevars lvar p in
let dep = is_dependent_elimination env pj.uj_type indf in
let rec decomp_lam_force n avoid l p =
(* avoid is not exhaustive ! *)
if n = 0 then (List.rev l,p,avoid) else
match p with
| RLambda (_,(Name id as na),_,c) ->
decomp_lam_force (n-1) (id::avoid) (na::l) c
| RLambda (_,(Anonymous as na),_,c) ->
decomp_lam_force (n-1) avoid (na::l) c
| _ ->
let x = Nameops.next_ident_away (id_of_string "x") avoid in
decomp_lam_force (n-1) (x::avoid) (Name x :: l)
(* eta-expansion *)
(RApp (dummy_loc,p, [RVar (dummy_loc,x)])) in
let (nal,p,avoid) =
decomp_lam_force (List.length realargs) [] [] p in
let na,rtntyp,_ =
if dep then decomp_lam_force 1 avoid [] p
else [Anonymous],p,[] in
let intyp =
if List.for_all
(function
| Anonymous -> true
| Name id -> not (occur_rawconstr id rtntyp)) nal
then (* No dependency in realargs *)
None
else
let args = List.map (fun _ -> Anonymous) params @ nal in
Some (dummy_loc,ind,args) in
(Some rtntyp,(List.hd na,intyp)) in
let cs = (get_constructors env indf).(0) in
match indnalopt with
| (na,None) -> (* Represented as a let *)
let rec decomp_lam_force n avoid l p =
if n = 0 then (List.rev l,p) else
match p with
| RLambda (_,(Name id as na),_,c) ->
decomp_lam_force (n-1) (id::avoid) (na::l) c
| RLambda (_,(Anonymous as na),_,c) ->
decomp_lam_force (n-1) avoid (na::l) c
| _ ->
let x = Nameops.next_ident_away (id_of_string "x") avoid in
decomp_lam_force (n-1) (x::avoid) (Name x :: l)
(* eta-expansion *)
(let a = RVar (dummy_loc,x) in
match p with
| RApp (loc,p,l) -> RApp (loc,p,l@[a])
| _ -> (RApp (dummy_loc,p,[a]))) in
let (nal,d) = decomp_lam_force cs.cs_nargs [] [] f in
RLetTuple (loc,nal,(na,rtntypopt),c,d)
| _ -> (* Represented as a match *)
let detype_eqn constr construct_nargs branch =
let name_cons = function
| Anonymous -> fun l -> l
| Name id -> fun l -> id::l in
let make_pat na avoid b ids =
PatVar (dummy_loc,na),
name_cons na avoid,name_cons na ids
in
let rec buildrec ids patlist avoid n b =
if n=0 then
(dummy_loc, ids,
[PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)],
b)
else
match b with
| RLambda (_,x,_,b) ->
let pat,new_avoid,new_ids = make_pat x avoid b ids in
buildrec new_ids (pat::patlist) new_avoid (n-1) b
| RLetIn (_,x,_,b) ->
let pat,new_avoid,new_ids = make_pat x avoid b ids in
buildrec new_ids (pat::patlist) new_avoid (n-1) b
| RCast (_,c,_) -> (* Oui, il y a parfois des cast *)
buildrec ids patlist avoid n c
| _ -> (* eta-expansion *)
(* nommage de la nouvelle variable *)
let id = Nameops.next_ident_away (id_of_string "x") avoid in
let new_b = RApp (dummy_loc, b, [RVar(dummy_loc,id)])in
let pat,new_avoid,new_ids =
make_pat (Name id) avoid new_b ids in
buildrec new_ids (pat::patlist) new_avoid (n-1) new_b
in
buildrec [] [] [] construct_nargs branch in
let eqn = detype_eqn (ind,1) cs.cs_nargs f in
RCases (loc,(po,ref rtntypopt),[c,ref indnalopt],[eqn])
in
xx := Some c;
(* End building the v8 syntax *)
j
| RIf (loc,c,(na,po),b1,b2) ->
let cj = pretype empty_tycon env isevars lvar c in
let (IndType (indf,realargs) as indt) =
try find_rectype env (evars_of isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of isevars) cj in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 2 then
user_err_loc (loc,"",
str "If is only for inductive types with two constructors");
(* Make dependencies from arity signature impossible *)
let arsgn,_ = get_arity env indf in
let arsgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) arsgn in
let nar = List.length arsgn in
let psign = (na,None,build_dependent_inductive env indf)::arsgn in
let pred,p = match po with
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p isevars lvar p in
let ccl = nf_evar (evars_of isevars) pj.utj_val in
let pred = it_mkLambda_or_LetIn ccl psign in
pred, lift (- nar) (beta_applist (pred,[cj.uj_val]))
| None ->
let p = match tycon with
| Some ty -> ty
| None -> new_isevar isevars env (loc,InternalHole) (new_Type ())
in
it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
let f cs b =
let n = rel_context_length cs.cs_args in
let pi = liftn n 2 pred in
let pi = beta_applist (pi, [build_dependent_constructor cs]) in
let csgn = List.map (fun (_,b,t) -> (Anonymous,b,t)) cs.cs_args in
let env_c = push_rels csgn env in
let bj = pretype (Some pi) env_c isevars lvar b in
it_mkLambda_or_LetIn bj.uj_val cs.cs_args in
let b1 = f cstrs.(0) b1 in
let b2 = f cstrs.(1) b2 in
let pred = nf_evar (evars_of isevars) pred in
let p = nf_evar (evars_of isevars) p in
let v =
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env IfStyle mis in
mkCase (ci, pred, cj.uj_val, [|b1;b2|])
in
{ uj_val = v; uj_type = p }
| ROrderedCase (loc,st,po,c,lf,x) ->
let isrec = (st = MatchStyle) in
let cj = pretype empty_tycon env isevars lvar c in
let (IndType (indf,realargs) as indt) =
try find_rectype env (evars_of isevars) cj.uj_type
with Not_found ->
let cloc = loc_of_rawconstr c in
error_case_not_inductive_loc cloc env (evars_of isevars) cj in
let (dep,pj) = match po with
| Some p ->
let pj = pretype empty_tycon env isevars lvar p in
let dep = is_dependent_elimination env pj.uj_type indf in
let ar =
arity_of_case_predicate env indf dep (Type (new_univ())) in
let _ = the_conv_x_leq env isevars pj.uj_type ar in
(dep, pj)
| None ->
(* get type information from type of branches *)
let expbr = Cases.branch_scheme env isevars isrec indf in
let rec findtype i =
if i >= Array.length lf
then
(* get type information from constraint *)
(* warning: if the constraint comes from an evar type, it *)
(* may be Type while Prop or Set would be expected *)
match tycon with
| Some pred ->
let arsgn = make_arity_signature env true indf in
let pred = lift (List.length arsgn) pred in
let pred =
it_mkLambda_or_LetIn (nf_evar (evars_of isevars) pred)
arsgn in
(true,
Retyping.get_judgment_of env (evars_of isevars) pred)
| None ->
let sigma = evars_of isevars in
error_cant_find_case_type_loc loc env sigma cj.uj_val
else
try
let expti = expbr.(i) in
let fj =
pretype (mk_tycon expti) env isevars lvar lf.(i) in
let pred =
Cases.pred_case_ml (* eta-expanse *)
env (evars_of isevars) isrec indt (i,fj.uj_type) in
if has_undefined_isevars isevars pred then findtype (i+1)
else
let pty =
Retyping.get_type_of env (evars_of isevars) pred in
let pj = { uj_val = pred; uj_type = pty } in
(*
let _ = option_app (the_conv_x_leq env isevars pred) tycon
in
*)
(true,pj)
with Cases.NotInferable _ -> findtype (i+1) in
findtype 0
in
let pj = j_nf_evar (evars_of isevars) pj in
let pj = if dep then pj else make_dep_of_undep env indt pj in
let (bty,rsty) =
Indrec.type_rec_branches
isrec env (evars_of isevars) indt pj.uj_val cj.uj_val in
let _ = option_app (the_conv_x_leq env isevars rsty) tycon in
if Array.length bty <> Array.length lf then
error_number_branches_loc loc env (evars_of isevars)
cj (Array.length bty)
else
let lfj =
array_map2
(fun tyc f -> pretype (mk_tycon tyc) env isevars lvar f) bty
lf in
let lfv = Array.map j_val lfj in
let lft = Array.map (fun j -> j.uj_type) lfj in
check_branches_message loc env isevars cj.uj_val (bty,lft);
let v =
if isrec
then
transform_rec loc env (evars_of isevars)(pj,cj.uj_val,lfv) indt
else
let mis,_ = dest_ind_family indf in
let ci = make_default_case_info env st mis in
mkCase (ci, (nf_betaiota pj.uj_val), cj.uj_val,
Array.map (fun j-> j.uj_val) lfj)
in
(* Build the Cases form for v8 *)
let c =
let (ind,params) = dest_ind_family indf in
let (mib,mip) = lookup_mind_specif env ind in
let recargs = mip.mind_recargs in
let mI = mkInd ind in
let nconstr = Array.length mip.mind_consnames in
let tyi = snd ind in
if isrec && mis_is_recursive_subset [tyi] recargs then
Some (Detyping.detype (false,env)
(ids_of_context env) (names_of_rel_context env)
(nf_evar (evars_of isevars) v))
else
(* Translate into a "match ... with" *)
let rtntypopt, indnalopt = match po with
| None -> None, (Anonymous,None)
| Some p ->
let rec decomp_lam_force n avoid l p =
(* avoid is not exhaustive ! *)
if n = 0 then (List.rev l,p,avoid) else
match p with
| RLambda (_,(Name id as na),_,c) ->
decomp_lam_force (n-1) (id::avoid) (na::l) c
| RLambda (_,(Anonymous as na),_,c) ->
decomp_lam_force (n-1) avoid (na::l) c
| _ ->
let x = Nameops.next_ident_away (id_of_string "x") avoid in
decomp_lam_force (n-1) (x::avoid) (Name x :: l)
(* eta-expansion *)
(RApp (dummy_loc,p, [RVar (dummy_loc,x)])) in
let (nal,p,avoid) =
decomp_lam_force (List.length realargs) [] [] p in
let na,rtntyopt,_ =
if dep then decomp_lam_force 1 avoid [] p
else [Anonymous],p,[] in
let intyp =
if nal=[] then None else
let args = List.map (fun _ -> Anonymous) params @ nal in
Some (dummy_loc,ind,args) in
(Some rtntyopt,(List.hd na,intyp)) in
let rawbranches =
array_map3 (fun bj b cstr ->
let rec strip n r = if n=0 then r else
match r with
| RLambda (_,_,_,t) -> strip (n-1) t
| RLetIn (_,_,_,t) -> strip (n-1) t
| _ -> assert false in
let n = rel_context_length cstr.cs_args in
try
let _,ccl = decompose_lam_n_assum n bj.uj_val in
if noccur_between 1 n ccl then Some (strip n b) else None
with _ -> (* Not eta-expanded or not reduced *) None)
lfj lf (get_constructors env indf) in
if st = IfStyle & snd indnalopt = None
& rawbranches.(0) <> None && rawbranches.(1) <> None then
(* Translate into a "if ... then ... else" *)
(* TODO: translate into a "if" even if po is dependent *)
Some (RIf (loc,c,(fst indnalopt,rtntypopt),
out_some rawbranches.(0),out_some rawbranches.(1)))
else
let detype_eqn constr construct_nargs branch =
let name_cons = function
| Anonymous -> fun l -> l
| Name id -> fun l -> id::l in
let make_pat na avoid b ids =
PatVar (dummy_loc,na),
name_cons na avoid,name_cons na ids
in
let rec buildrec ids patlist avoid n b =
if n=0 then
(dummy_loc, ids,
[PatCstr(dummy_loc, constr, List.rev patlist,Anonymous)],
b)
else
match b with
| RLambda (_,x,_,b) ->
let pat,new_avoid,new_ids = make_pat x avoid b ids in
buildrec new_ids (pat::patlist) new_avoid (n-1) b
| RLetIn (_,x,_,b) ->
let pat,new_avoid,new_ids = make_pat x avoid b ids in
buildrec new_ids (pat::patlist) new_avoid (n-1) b
| RCast (_,c,_) -> (* Oui, il y a parfois des cast *)
buildrec ids patlist avoid n c
| _ -> (* eta-expansion *)
(* nommage de la nouvelle variable *)
let id = Nameops.next_ident_away (id_of_string "x") avoid in
let new_b = RApp (dummy_loc, b, [RVar(dummy_loc,id)])in
let pat,new_avoid,new_ids =
make_pat (Name id) avoid new_b ids in
buildrec new_ids (pat::patlist) new_avoid (n-1) new_b
in
buildrec [] [] [] construct_nargs branch in
let (mib,mip) = Inductive.lookup_mind_specif (Global.env()) ind in
let get_consnarg j =
let typi = mis_nf_constructor_type (ind,mib,mip) (j+1) in
let _,t = decompose_prod_n_assum mip.mind_nparams typi in
List.rev (fst (decompose_prod_assum t)) in
let consnargs = Array.init (Array.length mip.mind_consnames) get_consnarg in
let consnargsl = Array.map List.length consnargs in
let constructs = Array.init (Array.length lf) (fun i -> (ind,i+1)) in
let eqns = array_map3 detype_eqn constructs consnargsl lf in
Some (RCases (loc,(po,ref rtntypopt),[c,ref indnalopt],Array.to_list eqns)) in
x := c;
(* End build the Cases form for v8 *)
{ uj_val = v;
uj_type = rsty }
| RCases (loc,po,tml,eqns) ->
Cases.compile_cases loc
((fun vtyc env -> pretype vtyc env isevars lvar),isevars)
tycon env (* loc *) (po,tml,eqns)
| RCast(loc,c,t) ->
let tj = pretype_type empty_tycon env isevars lvar t in
let cj = pretype (mk_tycon tj.utj_val) env isevars lvar c in
(* User Casts are for helping pretyping, experimentally not to be kept*)
(* ... except for Correctness *)
let v = mkCast (cj.uj_val, tj.utj_val) in
let cj = { uj_val = v; uj_type = tj.utj_val } in
inh_conv_coerce_to_tycon loc env isevars cj tycon
| RDynamic (loc,d) ->
if (tag d) = "constr" then
let c = constr_out d in
let j = (Retyping.get_judgment_of env (evars_of isevars) c) in
j
(*inh_conv_coerce_to_tycon loc env isevars j tycon*)
else
user_err_loc (loc,"pretype",(str "Not a constr tagged Dynamic"))
(* [pretype_type valcon env isevars lvar c] coerces [c] into a type *)
and pretype_type valcon env isevars lvar = function
| RHole loc ->
if !compter then nbimpl:=!nbimpl+1;
(match valcon with
| Some v ->
let s =
let sigma = evars_of isevars in
let t = Retyping.get_type_of env sigma v in
match kind_of_term (whd_betadeltaiota env sigma t) with
| Sort s -> s
| Evar v when is_Type (existential_type sigma v) ->
define_evar_as_sort isevars v
| _ -> anomaly "Found a type constraint which is not a type"
in
{ utj_val = v;
utj_type = s }
| None ->
let s = new_Type_sort () in
{ utj_val = new_isevar isevars env loc (mkSort s);
utj_type = s})
| c ->
let j = pretype empty_tycon env isevars lvar c in
let tj = inh_coerce_to_sort env isevars j in
match valcon with
| None -> tj
| Some v ->
if the_conv_x_leq env isevars v tj.utj_val then tj
else
error_unexpected_type_loc
(loc_of_rawconstr c) env (evars_of isevars) tj.utj_val v
let unsafe_infer tycon isevars env lvar constr =
let j = pretype tycon env isevars lvar constr in
j_nf_evar (evars_of isevars) j
let unsafe_infer_type valcon isevars env lvar constr =
let tj = pretype_type valcon env isevars lvar constr in
tj_nf_evar (evars_of isevars) tj
(* If fail_evar is false, [process_evars] builds a meta_map with the
unresolved Evar that were not in initial sigma; otherwise it fail
on the first unresolved Evar not already in the initial sigma. *)
(* [fail_evar] says how to process unresolved evars:
* true -> raise an error message
* false -> convert them into new Metas (casted with their type)
*)
(* assumes the defined existentials have been replaced in c (should be
done in unsafe_infer and unsafe_infer_type) *)
let check_evars fail_evar env initial_sigma isevars c =
let sigma = evars_of isevars in
let rec proc_rec c =
match kind_of_term c with
| Evar (ev,args as k) ->
assert (Evd.in_dom sigma ev);
if not (Evd.in_dom initial_sigma ev) then
(if fail_evar then
let (loc,k) = evar_source ev isevars in
error_unsolvable_implicit loc env sigma k)
| _ -> iter_constr proc_rec c
in
proc_rec c
(* TODO: comment faire remonter l'information si le typage a resolu des
variables du sigma original. il faudrait que la fonction de typage
retourne aussi le nouveau sigma...
*)
(* constr with holes *)
type open_constr = evar_map * constr
let ise_resolve_casted_gen fail_evar sigma env lvar typ c =
let isevars = create_evar_defs sigma in
let j = unsafe_infer (mk_tycon typ) isevars env lvar c in
check_evars fail_evar env sigma isevars (mkCast(j.uj_val,j.uj_type));
(evars_of isevars, j)
let ise_resolve_casted sigma env typ c =
ise_resolve_casted_gen true sigma env ([],[]) typ c
(* Raw calls to the unsafe inference machine: boolean says if we must fail
on unresolved evars, or replace them by Metas; the unsafe_judgment list
allows us to extend env with some bindings *)
let ise_infer_gen fail_evar sigma env lvar exptyp c =
let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in
let isevars = create_evar_defs sigma in
let j = unsafe_infer tycon isevars env lvar c in
check_evars fail_evar env sigma isevars (mkCast(j.uj_val,j.uj_type));
(evars_of isevars, j)
let ise_infer_type_gen fail_evar sigma env lvar c =
let isevars = create_evar_defs sigma in
let tj = unsafe_infer_type empty_valcon isevars env lvar c in
check_evars fail_evar env sigma isevars tj.utj_val;
(evars_of isevars, tj)
type var_map = (identifier * unsafe_judgment) list
let understand_judgment sigma env c =
snd (ise_infer_gen true sigma env ([],[]) None c)
let understand_type_judgment sigma env c =
snd (ise_infer_type_gen true sigma env ([],[]) c)
let understand sigma env c =
let _, c = ise_infer_gen true sigma env ([],[]) None c in
c.uj_val
let understand_type sigma env c =
let _,c = ise_infer_type_gen true sigma env ([],[]) c in
c.utj_val
let understand_gen_ltac sigma env lvar ~expected_type:exptyp c =
let _, c = ise_infer_gen true sigma env lvar exptyp c in
c.uj_val
let understand_gen sigma env lvar ~expected_type:exptyp c =
let _, c = ise_infer_gen true sigma env (lvar,[]) exptyp c in
c.uj_val
let understand_gen_tcc sigma env lvar exptyp c =
let metamap, c = ise_infer_gen false sigma env (lvar,[]) exptyp c in
metamap, c.uj_val
let interp_sort = function
| RProp c -> Prop c
| RType _ -> new_Type_sort ()
let interp_elimination_sort = function
| RProp Null -> InProp
| RProp Pos -> InSet
| RType _ -> InType
|