1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: matching.ml 11735 2009-01-02 17:22:31Z herbelin $ *)
(*i*)
open Util
open Names
open Libnames
open Nameops
open Termops
open Reductionops
open Term
open Rawterm
open Sign
open Environ
open Pattern
(*i*)
(* Given a term with second-order variables in it,
represented by Meta's, and possibly applied using [SOAPP] to
terms, this function will perform second-order, binding-preserving,
matching, in the case where the pattern is a pattern in the sense
of Dale Miller.
ALGORITHM:
Given a pattern, we decompose it, flattening Cast's and apply's,
recursing on all operators, and pushing the name of the binder each
time we descend a binder.
When we reach a first-order variable, we ask that the corresponding
term's free-rels all be higher than the depth of the current stack.
When we reach a second-order application, we ask that the
intersection of the free-rels of the term and the current stack be
contained in the arguments of the application, and in that case, we
construct a LAMBDA with the names on the stack.
*)
type bound_ident_map = (identifier * identifier) list
exception PatternMatchingFailure
let constrain (n,m) (names,terms as subst) =
try
if eq_constr m (List.assoc n terms) then subst
else raise PatternMatchingFailure
with
Not_found ->
if List.mem_assoc n names then
Flags.if_verbose Pp.warning
("Collision between bound variable "^string_of_id n^
" and a metavariable of same name.");
(names,(n,m)::terms)
let add_binders na1 na2 (names,terms as subst) =
match na1, na2 with
| Name id1, Name id2 ->
if List.mem_assoc id1 names then
(Flags.if_verbose Pp.warning
("Collision between bound variables of name"^string_of_id id1);
(names,terms))
else
(if List.mem_assoc id1 terms then
Flags.if_verbose Pp.warning
("Collision between bound variable "^string_of_id id1^
" and another bound variable of same name.");
((id1,id2)::names,terms));
| _ -> subst
let build_lambda toabstract stk (m : constr) =
let rec buildrec m p_0 p_1 = match p_0,p_1 with
| (_, []) -> m
| (n, (na,t)::tl) ->
if List.mem n toabstract then
buildrec (mkLambda (na,t,m)) (n+1) tl
else
buildrec (lift (-1) m) (n+1) tl
in
buildrec m 1 stk
let memb_metavars m n =
match (m,n) with
| (None, _) -> true
| (Some mvs, n) -> List.mem n mvs
let eq_context ctxt1 ctxt2 = array_for_all2 eq_constr ctxt1 ctxt2
let same_case_structure (_,cs1,ind,_) ci2 br1 br2 =
match ind with
| Some ind -> ind = ci2.ci_ind
| None -> cs1 = ci2.ci_cstr_nargs
let matches_core convert allow_partial_app pat c =
let conv = match convert with
| None -> eq_constr
| Some (env,sigma) -> is_conv env sigma in
let rec sorec stk subst p t =
let cT = strip_outer_cast t in
match p,kind_of_term cT with
| PSoApp (n,args),m ->
let relargs =
List.map
(function
| PRel n -> n
| _ -> error "Only bound indices allowed in second order pattern matching.")
args in
let frels = Intset.elements (free_rels cT) in
if list_subset frels relargs then
constrain (n,build_lambda relargs stk cT) subst
else
raise PatternMatchingFailure
| PMeta (Some n), m ->
let depth = List.length stk in
if depth = 0 then
(* Optimisation *)
constrain (n,cT) subst
else
let frels = Intset.elements (free_rels cT) in
if List.for_all (fun i -> i > depth) frels then
constrain (n,lift (-depth) cT) subst
else
raise PatternMatchingFailure
| PMeta None, m -> subst
| PRef (VarRef v1), Var v2 when v1 = v2 -> subst
| PVar v1, Var v2 when v1 = v2 -> subst
| PRef ref, _ when conv (constr_of_global ref) cT -> subst
| PRel n1, Rel n2 when n1 = n2 -> subst
| PSort (RProp c1), Sort (Prop c2) when c1 = c2 -> subst
| PSort (RType _), Sort (Type _) -> subst
| PApp (p, [||]), _ -> sorec stk subst p t
| PApp (PApp (h, a1), a2), _ ->
sorec stk subst (PApp(h,Array.append a1 a2)) t
| PApp (PMeta (Some n),args1), App (c2,args2) when allow_partial_app ->
let p = Array.length args2 - Array.length args1 in
if p>=0 then
let args21, args22 = array_chop p args2 in
let subst =
let depth = List.length stk in
let c = mkApp(c2,args21) in
let frels = Intset.elements (free_rels c) in
if List.for_all (fun i -> i > depth) frels then
constrain (n,lift (-depth) c) subst
else
raise PatternMatchingFailure in
array_fold_left2 (sorec stk) subst args1 args22
else raise PatternMatchingFailure
| PApp (c1,arg1), App (c2,arg2) ->
(try array_fold_left2 (sorec stk) (sorec stk subst c1 c2) arg1 arg2
with Invalid_argument _ -> raise PatternMatchingFailure)
| PProd (na1,c1,d1), Prod(na2,c2,d2) ->
sorec ((na2,c2)::stk)
(add_binders na1 na2 (sorec stk subst c1 c2)) d1 d2
| PLambda (na1,c1,d1), Lambda(na2,c2,d2) ->
sorec ((na2,c2)::stk)
(add_binders na1 na2 (sorec stk subst c1 c2)) d1 d2
| PLetIn (na1,c1,d1), LetIn(na2,c2,t2,d2) ->
sorec ((na2,t2)::stk)
(add_binders na1 na2 (sorec stk subst c1 c2)) d1 d2
| PIf (a1,b1,b1'), Case (ci,_,a2,[|b2;b2'|]) ->
let ctx,b2 = decompose_lam_n_assum ci.ci_cstr_nargs.(0) b2 in
let ctx',b2' = decompose_lam_n_assum ci.ci_cstr_nargs.(1) b2' in
let n = rel_context_length ctx in
let n' = rel_context_length ctx' in
if noccur_between 1 n b2 & noccur_between 1 n' b2' then
let s = List.fold_left (fun l (na,_,t) -> (na,t)::l) stk ctx in
let s' = List.fold_left (fun l (na,_,t) -> (na,t)::l) stk ctx' in
let b1 = lift_pattern n b1 and b1' = lift_pattern n' b1' in
sorec s' (sorec s (sorec stk subst a1 a2) b1 b2) b1' b2'
else
raise PatternMatchingFailure
| PCase (ci1,p1,a1,br1), Case (ci2,p2,a2,br2) ->
if same_case_structure ci1 ci2 br1 br2 then
array_fold_left2 (sorec stk)
(sorec stk (sorec stk subst a1 a2) p1 p2) br1 br2
else
raise PatternMatchingFailure
| PFix c1, Fix _ when eq_constr (mkFix c1) cT -> subst
| PCoFix c1, CoFix _ when eq_constr (mkCoFix c1) cT -> subst
| _ -> raise PatternMatchingFailure
in
let names,terms = sorec [] ([],[]) pat c in
(names,Sort.list (fun (a,_) (b,_) -> a<b) terms)
let extended_matches = matches_core None true
let matches c p = snd (matches_core None true c p)
let special_meta = (-1)
(* Tells if it is an authorized occurrence and if the instance is closed *)
let authorized_occ partial_app closed pat c mk_ctx next =
try
let sigma = matches_core None partial_app pat c in
if closed && not (List.for_all (fun (_,c) -> closed0 c) (snd sigma))
then next ()
else sigma, mk_ctx (mkMeta special_meta), next
with
PatternMatchingFailure -> next ()
(* Tries to match a subterm of [c] with [pat] *)
let sub_match ?(partial_app=false) ?(closed=true) pat c =
let rec aux c mk_ctx next =
match kind_of_term c with
| Cast (c1,k,c2) ->
authorized_occ partial_app closed pat c mk_ctx (fun () ->
let mk_ctx lc = mk_ctx (mkCast (List.hd lc, k,c2)) in
try_aux [c1] mk_ctx next)
| Lambda (x,c1,c2) ->
authorized_occ partial_app closed pat c mk_ctx (fun () ->
let mk_ctx lc = mk_ctx (mkLambda (x,List.hd lc,List.nth lc 1)) in
try_aux [c1;c2] mk_ctx next)
| Prod (x,c1,c2) ->
authorized_occ partial_app closed pat c mk_ctx (fun () ->
let mk_ctx lc = mk_ctx (mkProd (x,List.hd lc,List.nth lc 1)) in
try_aux [c1;c2] mk_ctx next)
| LetIn (x,c1,t,c2) ->
authorized_occ partial_app closed pat c mk_ctx (fun () ->
let mk_ctx = function [c1;c2] -> mkLetIn (x,c1,t,c2) | _ -> assert false
in try_aux [c1;c2] mk_ctx next)
| App (c1,lc) ->
authorized_occ partial_app closed pat c mk_ctx (fun () ->
let topdown = true in
if partial_app then
if topdown then
let lc1 = Array.sub lc 0 (Array.length lc - 1) in
let app = mkApp (c1,lc1) in
let mk_ctx = function
| [app';c] -> mk_ctx (mkApp (app',[|c|]))
| _ -> assert false in
try_aux [app;array_last lc] mk_ctx next
else
let rec aux2 app args next =
match args with
| [] ->
let mk_ctx le =
mk_ctx (mkApp (List.hd le, Array.of_list (List.tl le))) in
try_aux (c1::Array.to_list lc) mk_ctx next
| arg :: args ->
let app = mkApp (app,[|arg|]) in
let next () = aux2 app args next in
let mk_ctx ce = mk_ctx (mkApp (ce, Array.of_list args)) in
aux app mk_ctx next in
aux2 c1 (Array.to_list lc) next
else
let mk_ctx le =
mk_ctx (mkApp (List.hd le, Array.of_list (List.tl le))) in
try_aux (c1::Array.to_list lc) mk_ctx next)
| Case (ci,hd,c1,lc) ->
authorized_occ partial_app closed pat c mk_ctx (fun () ->
let mk_ctx le =
mk_ctx (mkCase (ci,hd,List.hd le,Array.of_list (List.tl le))) in
try_aux (c1::Array.to_list lc) mk_ctx next)
| Construct _ | Fix _ | Ind _|CoFix _ |Evar _|Const _
| Rel _|Meta _|Var _|Sort _ ->
authorized_occ partial_app closed pat c mk_ctx next
(* Tries [sub_match] for all terms in the list *)
and try_aux lc mk_ctx next =
let rec try_sub_match_rec lacc = function
| [] -> next ()
| c::tl ->
let mk_ctx ce = mk_ctx (List.rev_append lacc (ce::tl)) in
let next () = try_sub_match_rec (c::lacc) tl in
aux c mk_ctx next in
try_sub_match_rec [] lc in
aux c (fun x -> x) (fun () -> raise PatternMatchingFailure)
type subterm_matching_result =
(bound_ident_map * patvar_map) * constr * (unit -> subterm_matching_result)
let match_subterm pat c = sub_match pat c
let match_appsubterm pat c = sub_match ~partial_app:true pat c
let match_subterm_gen app pat c = sub_match ~partial_app:app pat c
let is_matching pat c =
try let _ = matches pat c in true
with PatternMatchingFailure -> false
let is_matching_appsubterm ?(closed=true) pat c =
try let _ = sub_match ~partial_app:true ~closed pat c in true
with PatternMatchingFailure -> false
let matches_conv env sigma c p =
snd (matches_core (Some (env,sigma)) false c p)
let is_matching_conv env sigma pat n =
try let _ = matches_conv env sigma pat n in true
with PatternMatchingFailure -> false
|