1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open CErrors
open Util
open Names
open Univ
open Term
open Constr
open Vars
open Termops
open Declarations
open Declareops
open Environ
open Reductionops
open Context.Rel.Declaration
(* The following three functions are similar to the ones defined in
Inductive, but they expect an env *)
let type_of_inductive env (ind,u) =
let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in
Typeops.check_hyps_inclusion env mkInd ind mib.mind_hyps;
Inductive.type_of_inductive env (specif,u)
(* Return type as quoted by the user *)
let type_of_constructor env (cstr,u) =
let (mib,_ as specif) =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in
Typeops.check_hyps_inclusion env mkConstruct cstr mib.mind_hyps;
Inductive.type_of_constructor (cstr,u) specif
(* Return constructor types in user form *)
let type_of_constructors env (ind,u as indu) =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.type_of_constructors indu specif
(* Return constructor types in normal form *)
let arities_of_constructors env (ind,u as indu) =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.arities_of_constructors indu specif
(* [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = pinductive * constr list
let make_ind_family (mis, params) = (mis,params)
let dest_ind_family (mis,params) = (mis,params)
let map_ind_family f (mis,params) = (mis, List.map f params)
let liftn_inductive_family n d = map_ind_family (liftn n d)
let lift_inductive_family n = liftn_inductive_family n 1
let substnl_ind_family l n = map_ind_family (substnl l n)
type inductive_type = IndType of inductive_family * EConstr.constr list
let make_ind_type (indf, realargs) = IndType (indf,realargs)
let dest_ind_type (IndType (indf,realargs)) = (indf,realargs)
let map_inductive_type f (IndType (indf, realargs)) =
let f' c = EConstr.Unsafe.to_constr (f (EConstr.of_constr c)) in
IndType (map_ind_family f' indf, List.map f realargs)
let liftn_inductive_type n d = map_inductive_type (EConstr.Vars.liftn n d)
let lift_inductive_type n = liftn_inductive_type n 1
let substnl_ind_type l n = map_inductive_type (EConstr.Vars.substnl l n)
let mkAppliedInd (IndType ((ind,params), realargs)) =
let open EConstr in
let ind = on_snd EInstance.make ind in
applist (mkIndU ind, (List.map EConstr.of_constr params)@realargs)
(* Does not consider imbricated or mutually recursive types *)
let mis_is_recursive_subset listind rarg =
let one_is_rec rvec =
List.exists
(fun ra ->
match dest_recarg ra with
| Mrec (_,i) -> Int.List.mem i listind
| _ -> false) rvec
in
Array.exists one_is_rec (dest_subterms rarg)
let mis_is_recursive (ind,mib,mip) =
mis_is_recursive_subset (List.interval 0 (mib.mind_ntypes - 1))
mip.mind_recargs
let mis_nf_constructor_type ((ind,u),mib,mip) j =
let specif = mip.mind_nf_lc
and ntypes = mib.mind_ntypes
and nconstr = Array.length mip.mind_consnames in
let make_Ik k = mkIndU (((fst ind),ntypes-k-1),u) in
if j > nconstr then user_err Pp.(str "Not enough constructors in the type.");
substl (List.init ntypes make_Ik) (subst_instance_constr u specif.(j-1))
(* Number of constructors *)
let nconstructors ind =
let (_,mip) = Global.lookup_inductive ind in
Array.length mip.mind_consnames
let nconstructors_env env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
Array.length mip.mind_consnames
(* Arity of constructors excluding parameters, excluding local defs *)
let constructors_nrealargs ind =
let (_,mip) = Global.lookup_inductive ind in
mip.mind_consnrealargs
let constructors_nrealargs_env env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealargs
(* Arity of constructors excluding parameters, including local defs *)
let constructors_nrealdecls ind =
let (_,mip) = Global.lookup_inductive ind in
mip.mind_consnrealdecls
let constructors_nrealdecls_env env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls
(* Arity of constructors including parameters, excluding local defs *)
let constructor_nallargs (indsp,j) =
let (mib,mip) = Global.lookup_inductive indsp in
mip.mind_consnrealargs.(j-1) + mib.mind_nparams
let constructor_nallargs_env env ((kn,i),j) =
let mib = Environ.lookup_mind kn env in
let mip = mib.mind_packets.(i) in
mip.mind_consnrealargs.(j-1) + mib.mind_nparams
(* Arity of constructors including params, including local defs *)
let constructor_nalldecls (indsp,j) = (* TOCHANGE en decls *)
let (mib,mip) = Global.lookup_inductive indsp in
mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt)
let constructor_nalldecls_env env ((kn,i),j) = (* TOCHANGE en decls *)
let mib = Environ.lookup_mind kn env in
let mip = mib.mind_packets.(i) in
mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt)
(* Arity of constructors excluding params, excluding local defs *)
let constructor_nrealargs (ind,j) =
let (_,mip) = Global.lookup_inductive ind in
mip.mind_consnrealargs.(j-1)
let constructor_nrealargs_env env (ind,j) =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealargs.(j-1)
(* Arity of constructors excluding params, including local defs *)
let constructor_nrealdecls (ind,j) = (* TOCHANGE en decls *)
let (_,mip) = Global.lookup_inductive ind in
mip.mind_consnrealdecls.(j-1)
let constructor_nrealdecls_env env (ind,j) = (* TOCHANGE en decls *)
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls.(j-1)
(* Length of arity, excluding params, excluding local defs *)
let inductive_nrealargs ind =
let (_,mip) = Global.lookup_inductive ind in
mip.mind_nrealargs
let inductive_nrealargs_env env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_nrealargs
(* Length of arity, excluding params, including local defs *)
let inductive_nrealdecls ind =
let (_,mip) = Global.lookup_inductive ind in
mip.mind_nrealdecls
let inductive_nrealdecls_env env ind =
let (_,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_nrealdecls
(* Full length of arity (w/o local defs) *)
let inductive_nallargs ind =
let (mib,mip) = Global.lookup_inductive ind in
mib.mind_nparams + mip.mind_nrealargs
let inductive_nallargs_env env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mib.mind_nparams + mip.mind_nrealargs
(* Length of arity (w/o local defs) *)
let inductive_nparams ind =
let (mib,mip) = Global.lookup_inductive ind in
mib.mind_nparams
let inductive_nparams_env env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mib.mind_nparams
(* Length of arity (with local defs) *)
let inductive_nparamdecls ind =
let (mib,mip) = Global.lookup_inductive ind in
Context.Rel.length mib.mind_params_ctxt
let inductive_nparamdecls_env env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Context.Rel.length mib.mind_params_ctxt
(* Full length of arity (with local defs) *)
let inductive_nalldecls ind =
let (mib,mip) = Global.lookup_inductive ind in
Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls
let inductive_nalldecls_env env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls
(* Others *)
let inductive_paramdecls (ind,u) =
let (mib,mip) = Global.lookup_inductive ind in
Inductive.inductive_paramdecls (mib,u)
let inductive_paramdecls_env env (ind,u) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Inductive.inductive_paramdecls (mib,u)
let inductive_alldecls (ind,u) =
let (mib,mip) = Global.lookup_inductive ind in
Vars.subst_instance_context u mip.mind_arity_ctxt
let inductive_alldecls_env env (ind,u) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Vars.subst_instance_context u mip.mind_arity_ctxt
let constructor_has_local_defs (indsp,j) =
let (mib,mip) = Global.lookup_inductive indsp in
let l1 = mip.mind_consnrealdecls.(j-1) + Context.Rel.length (mib.mind_params_ctxt) in
let l2 = recarg_length mip.mind_recargs j + mib.mind_nparams in
not (Int.equal l1 l2)
let inductive_has_local_defs ind =
let (mib,mip) = Global.lookup_inductive ind in
let l1 = Context.Rel.length (mib.mind_params_ctxt) + mip.mind_nrealdecls in
let l2 = mib.mind_nparams + mip.mind_nrealargs in
not (Int.equal l1 l2)
let allowed_sorts env (kn,i as ind) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_kelim
let projection_nparams_env env p =
let pb = lookup_projection p env in
pb.proj_npars
let projection_nparams p = projection_nparams_env (Global.env ()) p
let has_dependent_elim mib =
match mib.mind_record with
| Some (Some _) -> mib.mind_finite == BiFinite
| _ -> true
(* Annotation for cases *)
let make_case_info env ind style =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let ind_tags =
Context.Rel.to_tags (List.firstn mip.mind_nrealdecls mip.mind_arity_ctxt) in
let cstr_tags =
Array.map2 (fun c n ->
let d,_ = decompose_prod_assum c in
Context.Rel.to_tags (List.firstn n d))
mip.mind_nf_lc mip.mind_consnrealdecls in
let print_info = { ind_tags; cstr_tags; style } in
{ ci_ind = ind;
ci_npar = mib.mind_nparams;
ci_cstr_ndecls = mip.mind_consnrealdecls;
ci_cstr_nargs = mip.mind_consnrealargs;
ci_pp_info = print_info }
(*s Useful functions *)
type constructor_summary = {
cs_cstr : pconstructor;
cs_params : constr list;
cs_nargs : int;
cs_args : Context.Rel.t;
cs_concl_realargs : constr array
}
let lift_constructor n cs = {
cs_cstr = cs.cs_cstr;
cs_params = List.map (lift n) cs.cs_params;
cs_nargs = cs.cs_nargs;
cs_args = lift_rel_context n cs.cs_args;
cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs
}
(* Accept either all parameters or only recursively uniform ones *)
let instantiate_params t params sign =
let nnonrecpar = Context.Rel.nhyps sign - List.length params in
(* Adjust the signature if recursively non-uniform parameters are not here *)
let _,sign = context_chop nnonrecpar sign in
let _,t = decompose_prod_n_assum (Context.Rel.length sign) t in
let subst = subst_of_rel_context_instance sign params in
substl subst t
let get_constructor ((ind,u as indu),mib,mip,params) j =
assert (j <= Array.length mip.mind_consnames);
let typi = mis_nf_constructor_type (indu,mib,mip) j in
let ctx = Vars.subst_instance_context u mib.mind_params_ctxt in
let typi = instantiate_params typi params ctx in
let (args,ccl) = decompose_prod_assum typi in
let (_,allargs) = decompose_app ccl in
let vargs = List.skipn (List.length params) allargs in
{ cs_cstr = (ith_constructor_of_inductive ind j,u);
cs_params = params;
cs_nargs = Context.Rel.length args;
cs_args = args;
cs_concl_realargs = Array.of_list vargs }
let get_constructors env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in
Array.init (Array.length mip.mind_consnames)
(fun j -> get_constructor (ind,mib,mip,params) (j+1))
let get_projections env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in
match mib.mind_record with
| Some (Some (id, projs, pbs)) -> Some projs
| _ -> None
let make_case_or_project env sigma indf ci pred c branches =
let open EConstr in
let projs = get_projections env indf in
match projs with
| None -> (mkCase (ci, pred, c, branches))
| Some ps ->
assert(Array.length branches == 1);
let () =
let _, _, t = destLambda sigma pred in
let (ind, _), _ = dest_ind_family indf in
let mib, _ = Inductive.lookup_mind_specif env ind in
if (* dependent *) not (Vars.noccurn sigma 1 t) &&
not (has_dependent_elim mib) then
user_err ~hdr:"make_case_or_project"
Pp.(str"Dependent case analysis not allowed" ++
str" on inductive type " ++ Names.MutInd.print (fst ind))
in
let branch = branches.(0) in
let ctx, br = decompose_lam_n_assum sigma (Array.length ps) branch in
let n, subst =
List.fold_right
(fun decl (i, subst) ->
match decl with
| LocalAssum (na, t) ->
let t = mkProj (Projection.make ps.(i) true, c) in
(i + 1, t :: subst)
| LocalDef (na, b, t) -> (i, Vars.substl subst b :: subst))
ctx (0, [])
in Vars.substl subst br
(* substitution in a signature *)
let substnl_rel_context subst n sign =
let rec aux n = function
| d::sign -> substnl_decl subst n d :: aux (n+1) sign
| [] -> []
in List.rev (aux n (List.rev sign))
let substl_rel_context subst = substnl_rel_context subst 0
let get_arity env ((ind,u),params) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let parsign =
(* Dynamically detect if called with an instance of recursively
uniform parameter only or also of recursively non-uniform
parameters *)
let nparams = List.length params in
if Int.equal nparams mib.mind_nparams then
mib.mind_params_ctxt
else begin
assert (Int.equal nparams mib.mind_nparams_rec);
let nnonrecparamdecls = mib.mind_nparams - mib.mind_nparams_rec in
snd (Termops.context_chop nnonrecparamdecls mib.mind_params_ctxt)
end in
let parsign = Vars.subst_instance_context u parsign in
let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in
let arsign,_ = List.chop arproperlength mip.mind_arity_ctxt in
let subst = subst_of_rel_context_instance parsign params in
let arsign = Vars.subst_instance_context u arsign in
(substl_rel_context subst arsign, Inductive.inductive_sort_family mip)
(* Functions to build standard types related to inductive *)
let build_dependent_constructor cs =
applist
(mkConstructU cs.cs_cstr,
(List.map (lift cs.cs_nargs) cs.cs_params)
@(Context.Rel.to_extended_list mkRel 0 cs.cs_args))
let build_dependent_inductive env ((ind, params) as indf) =
let arsign,_ = get_arity env indf in
let nrealargs = List.length arsign in
applist
(mkIndU ind,
(List.map (lift nrealargs) params)@(Context.Rel.to_extended_list mkRel 0 arsign))
(* builds the arity of an elimination predicate in sort [s] *)
let make_arity_signature env sigma dep indf =
let (arsign,_) = get_arity env indf in
let arsign = List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) arsign in
if dep then
(* We need names everywhere *)
Namegen.name_context env sigma
((LocalAssum (Anonymous,EConstr.of_constr (build_dependent_inductive env indf)))::arsign)
(* Costly: would be better to name once for all at definition time *)
else
(* No need to enforce names *)
arsign
let make_arity env sigma dep indf s =
let open EConstr in
it_mkProd_or_LetIn (mkSort s) (make_arity_signature env sigma dep indf)
(* [p] is the predicate and [cs] a constructor summary *)
let build_branch_type env sigma dep p cs =
let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in
if dep then
EConstr.Unsafe.to_constr (Namegen.it_mkProd_or_LetIn_name env sigma
(EConstr.of_constr (applist (base,[build_dependent_constructor cs])))
(List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) cs.cs_args))
else
Term.it_mkProd_or_LetIn base cs.cs_args
(**************************************************)
let extract_mrectype sigma t =
let open EConstr in
let (t, l) = decompose_app sigma t in
match EConstr.kind sigma t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_mrectype_vect env sigma c =
let (t, l) = Termops.decompose_app_vect sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_mrectype env sigma c =
let (ind, v) = find_mrectype_vect env sigma c in (ind, Array.to_list v)
let find_rectype env sigma c =
let open EConstr in
let (t, l) = decompose_app sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind (ind,u) ->
let (mib,mip) = Inductive.lookup_mind_specif env ind in
if mib.mind_nparams > List.length l then raise Not_found;
let l = List.map EConstr.Unsafe.to_constr l in
let (par,rargs) = List.chop mib.mind_nparams l in
let indu = (ind, EInstance.kind sigma u) in
IndType((indu, par),List.map EConstr.of_constr rargs)
| _ -> raise Not_found
let find_inductive env sigma c =
let open EConstr in
let (t, l) = decompose_app sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind ind
when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite <> CoFinite ->
let l = List.map EConstr.Unsafe.to_constr l in
(ind, l)
| _ -> raise Not_found
let find_coinductive env sigma c =
let open EConstr in
let (t, l) = decompose_app sigma (whd_all env sigma c) in
match EConstr.kind sigma t with
| Ind ind
when (fst (Inductive.lookup_mind_specif env (fst ind))).mind_finite == CoFinite ->
let l = List.map EConstr.Unsafe.to_constr l in
(ind, l)
| _ -> raise Not_found
(***********************************************)
(* find appropriate names for pattern variables. Useful in the Case
and Inversion (case_then_using et case_nodep_then_using) tactics. *)
let is_predicate_explicitly_dep env sigma pred arsign =
let rec srec env pval arsign =
let pv' = whd_all env sigma pval in
match EConstr.kind sigma pv', arsign with
| Lambda (na,t,b), (LocalAssum _)::arsign ->
srec (push_rel_assum (na, t) env) b arsign
| Lambda (na,_,t), _ ->
(* The following code has an impact on the introduction names
given by the tactics "case" and "inversion": when the
elimination is not dependent, "case" uses Anonymous for
inductive types in Prop and names created by mkProd_name for
inductive types in Set/Type while "inversion" uses anonymous
for inductive types both in Prop and Set/Type !!
Previously, whether names were created or not relied on
whether the predicate created in Indrec.make_case_com had a
dependent arity or not. To avoid different predicates
printed the same in v8, all predicates built in indrec.ml
got a dependent arity (Aug 2004). The new way to decide
whether names have to be created or not is to use an
Anonymous or Named variable to enforce the expected
dependency status (of course, Anonymous implies non
dependent, but not conversely).
From Coq > 8.2, using or not the effective dependency of
the predicate is parametrable! *)
begin match na with
| Anonymous -> false
| Name _ -> true
end
| _ -> anomaly (Pp.str "Non eta-expanded dep-expanded \"match\" predicate.")
in
srec env (EConstr.of_constr pred) arsign
let is_elim_predicate_explicitly_dependent env sigma pred indf =
let arsign,_ = get_arity env indf in
is_predicate_explicitly_dep env sigma pred arsign
let set_names env sigma n brty =
let open EConstr in
let (ctxt,cl) = decompose_prod_n_assum sigma n brty in
EConstr.Unsafe.to_constr (Namegen.it_mkProd_or_LetIn_name env sigma cl ctxt)
let set_pattern_names env sigma ind brv =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let arities =
Array.map
(fun c ->
Context.Rel.length ((prod_assum c)) -
mib.mind_nparams)
mip.mind_nf_lc in
Array.map2 (set_names env sigma) arities brv
let type_case_branches_with_names env sigma indspec p c =
let (ind,args) = indspec in
let args = List.map EConstr.Unsafe.to_constr args in
let (mib,mip as specif) = Inductive.lookup_mind_specif env (fst ind) in
let nparams = mib.mind_nparams in
let (params,realargs) = List.chop nparams args in
let lbrty = Inductive.build_branches_type ind specif params p in
(* Build case type *)
let conclty = lambda_appvect_assum (mip.mind_nrealdecls+1) p (Array.of_list (realargs@[c])) in
(* Adjust names *)
if is_elim_predicate_explicitly_dependent env sigma p (ind,params) then
(set_pattern_names env sigma (fst ind) (Array.map EConstr.of_constr lbrty), conclty)
else (lbrty, conclty)
(* Type of Case predicates *)
let arity_of_case_predicate env (ind,params) dep k =
let arsign,_ = get_arity env (ind,params) in
let mind = build_dependent_inductive env (ind,params) in
let concl = if dep then mkArrow mind (mkSort k) else mkSort k in
Term.it_mkProd_or_LetIn concl arsign
(***********************************************)
(* Inferring the sort of parameters of a polymorphic inductive type
knowing the sort of the conclusion *)
(* Compute the inductive argument types: replace the sorts
that appear in the type of the inductive by the sort of the
conclusion, and the other ones by fresh universes. *)
let rec instantiate_universes env evdref scl is = function
| (LocalDef _ as d)::sign, exp ->
d :: instantiate_universes env evdref scl is (sign, exp)
| d::sign, None::exp ->
d :: instantiate_universes env evdref scl is (sign, exp)
| (LocalAssum (na,ty))::sign, Some l::exp ->
let ctx,_ = Reduction.dest_arity env ty in
let u = Univ.Universe.make l in
let s =
(* Does the sort of parameter [u] appear in (or equal)
the sort of inductive [is] ? *)
if univ_level_mem l is then
scl (* constrained sort: replace by scl *)
else
(* unconstrained sort: replace by fresh universe *)
let evm, s = Evd.new_sort_variable Evd.univ_flexible !evdref in
let evm = Evd.set_leq_sort env evm s (Sorts.sort_of_univ u) in
evdref := evm; s
in
(LocalAssum (na,mkArity(ctx,s))) :: instantiate_universes env evdref scl is (sign, exp)
| sign, [] -> sign (* Uniform parameters are exhausted *)
| [], _ -> assert false
let type_of_inductive_knowing_conclusion env sigma ((mib,mip),u) conclty =
match mip.mind_arity with
| RegularArity s -> sigma, EConstr.of_constr (subst_instance_constr u s.mind_user_arity)
| TemplateArity ar ->
let _,scl = splay_arity env sigma conclty in
let scl = EConstr.ESorts.kind sigma scl in
let ctx = List.rev mip.mind_arity_ctxt in
let evdref = ref sigma in
let ctx =
instantiate_universes
env evdref scl ar.template_level (ctx,ar.template_param_levels) in
!evdref, EConstr.of_constr (mkArity (List.rev ctx,scl))
let type_of_projection_knowing_arg env sigma p c ty =
let c = EConstr.Unsafe.to_constr c in
let IndType(pars,realargs) =
try find_rectype env sigma ty
with Not_found ->
raise (Invalid_argument "type_of_projection_knowing_arg_type: not an inductive type")
in
let (_,u), pars = dest_ind_family pars in
substl (c :: List.rev pars) (Typeops.type_of_projection_constant env (p,u))
(***********************************************)
(* Guard condition *)
(* A function which checks that a term well typed verifies both
syntactic conditions *)
let control_only_guard env sigma c =
let check_fix_cofix e c =
match kind (EConstr.to_constr sigma c) with
| CoFix (_,(_,_,_) as cofix) ->
Inductive.check_cofix e cofix
| Fix (_,(_,_,_) as fix) ->
Inductive.check_fix e fix
| _ -> ()
in
let rec iter env c =
check_fix_cofix env c;
iter_constr_with_full_binders sigma EConstr.push_rel iter env c
in
iter env c
|