1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: inductiveops.ml 13323 2010-07-24 15:57:30Z herbelin $ *)
open Util
open Names
open Univ
open Term
open Termops
open Namegen
open Sign
open Declarations
open Environ
open Reductionops
(* The following three functions are similar to the ones defined in
Inductive, but they expect an env *)
let type_of_inductive env ind =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.type_of_inductive env specif
(* Return type as quoted by the user *)
let type_of_constructor env cstr =
let specif =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in
Inductive.type_of_constructor cstr specif
(* Return constructor types in user form *)
let type_of_constructors env ind =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.type_of_constructors ind specif
(* Return constructor types in normal form *)
let arities_of_constructors env ind =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.arities_of_constructors ind specif
(* [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = inductive * constr list
let make_ind_family (mis, params) = (mis,params)
let dest_ind_family (mis,params) = (mis,params)
let map_ind_family f (mis,params) = (mis, List.map f params)
let liftn_inductive_family n d = map_ind_family (liftn n d)
let lift_inductive_family n = liftn_inductive_family n 1
let substnl_ind_family l n = map_ind_family (substnl l n)
type inductive_type = IndType of inductive_family * constr list
let make_ind_type (indf, realargs) = IndType (indf,realargs)
let dest_ind_type (IndType (indf,realargs)) = (indf,realargs)
let map_inductive_type f (IndType (indf, realargs)) =
IndType (map_ind_family f indf, List.map f realargs)
let liftn_inductive_type n d = map_inductive_type (liftn n d)
let lift_inductive_type n = liftn_inductive_type n 1
let substnl_ind_type l n = map_inductive_type (substnl l n)
let mkAppliedInd (IndType ((ind,params), realargs)) =
applist (mkInd ind,params@realargs)
(* Does not consider imbricated or mutually recursive types *)
let mis_is_recursive_subset listind rarg =
let rec one_is_rec rvec =
List.exists
(fun ra ->
match dest_recarg ra with
| Mrec i -> List.mem i listind
| _ -> false) rvec
in
array_exists one_is_rec (dest_subterms rarg)
let mis_is_recursive (ind,mib,mip) =
mis_is_recursive_subset (interval 0 (mib.mind_ntypes-1))
mip.mind_recargs
let mis_nf_constructor_type (ind,mib,mip) j =
let specif = mip.mind_nf_lc
and ntypes = mib.mind_ntypes
and nconstr = Array.length mip.mind_consnames in
let make_Ik k = mkInd ((fst ind),ntypes-k-1) in
if j > nconstr then error "Not enough constructors in the type.";
substl (list_tabulate make_Ik ntypes) specif.(j-1)
(* Arity of constructors excluding parameters and local defs *)
let mis_constr_nargs indsp =
let (mib,mip) = Global.lookup_inductive indsp in
let recargs = dest_subterms mip.mind_recargs in
Array.map List.length recargs
let mis_constr_nargs_env env (kn,i) =
let mib = Environ.lookup_mind kn env in
let mip = mib.mind_packets.(i) in
let recargs = dest_subterms mip.mind_recargs in
Array.map List.length recargs
let mis_constructor_nargs_env env ((kn,i),j) =
let mib = Environ.lookup_mind kn env in
let mip = mib.mind_packets.(i) in
recarg_length mip.mind_recargs j + mib.mind_nparams
let constructor_nrealargs env (ind,j) =
let (_,mip) = Inductive.lookup_mind_specif env ind in
recarg_length mip.mind_recargs j
let constructor_nrealhyps env (ind,j) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls.(j-1)
let get_full_arity_sign env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_arity_ctxt
let nconstructors ind =
let (mib,mip) = Inductive.lookup_mind_specif (Global.env()) ind in
Array.length mip.mind_consnames
(* Length of arity (w/o local defs) *)
let inductive_nargs env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
(rel_context_length (mib.mind_params_ctxt), mip.mind_nrealargs_ctxt)
let allowed_sorts env (kn,i as ind) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_kelim
(* Annotation for cases *)
let make_case_info env ind style =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let print_info = { ind_nargs = mip.mind_nrealargs_ctxt; style = style } in
{ ci_ind = ind;
ci_npar = mib.mind_nparams;
ci_cstr_nargs = mip.mind_consnrealdecls;
ci_pp_info = print_info }
let make_default_case_info env style ind =
make_case_info env ind style
(*s Useful functions *)
type constructor_summary = {
cs_cstr : constructor;
cs_params : constr list;
cs_nargs : int;
cs_args : rel_context;
cs_concl_realargs : constr array
}
let lift_constructor n cs = {
cs_cstr = cs.cs_cstr;
cs_params = List.map (lift n) cs.cs_params;
cs_nargs = cs.cs_nargs;
cs_args = lift_rel_context n cs.cs_args;
cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs
}
(* Accept less parameters than in the signature *)
let instantiate_params t args sign =
let rec inst s t = function
| ((_,None,_)::ctxt,a::args) ->
(match kind_of_term t with
| Prod(_,_,t) -> inst (a::s) t (ctxt,args)
| _ -> anomaly"instantiate_params: type, ctxt and args mismatch")
| ((_,(Some b),_)::ctxt,args) ->
(match kind_of_term t with
| LetIn(_,_,_,t) -> inst ((substl s b)::s) t (ctxt,args)
| _ -> anomaly"instantiate_params: type, ctxt and args mismatch")
| _, [] -> substl s t
| _ -> anomaly"instantiate_params: type, ctxt and args mismatch"
in inst [] t (List.rev sign,args)
let get_constructor (ind,mib,mip,params) j =
assert (j <= Array.length mip.mind_consnames);
let typi = mis_nf_constructor_type (ind,mib,mip) j in
let typi = instantiate_params typi params mib.mind_params_ctxt in
let (args,ccl) = decompose_prod_assum typi in
let (_,allargs) = decompose_app ccl in
let vargs = list_skipn (List.length params) allargs in
{ cs_cstr = ith_constructor_of_inductive ind j;
cs_params = params;
cs_nargs = rel_context_length args;
cs_args = args;
cs_concl_realargs = Array.of_list vargs }
let get_constructors env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Array.init (Array.length mip.mind_consnames)
(fun j -> get_constructor (ind,mib,mip,params) (j+1))
let rec instantiate args c = match kind_of_term c, args with
| Prod (_,_,c), a::args -> instantiate args (subst1 a c)
| LetIn (_,b,_,c), args -> instantiate args (subst1 b c)
| _, [] -> c
| _ -> anomaly "too short arity"
(* substitution in a signature *)
let substnl_rel_context subst n sign =
let rec aux n = function
| d::sign -> substnl_decl subst n d :: aux (n+1) sign
| [] -> []
in List.rev (aux n (List.rev sign))
let substl_rel_context subst = substnl_rel_context subst 0
let rec instantiate_context sign args =
let rec aux subst = function
| (_,None,_)::sign, a::args -> aux (a::subst) (sign,args)
| (_,Some b,_)::sign, args -> aux (substl subst b::subst) (sign,args)
| [], [] -> subst
| _ -> anomaly "Signature/instance mismatch in inductive family"
in aux [] (List.rev sign,args)
let get_arity env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let parsign =
(* Dynamically detect if called with an instance of recursively
uniform parameter only or also of non recursively uniform
parameters *)
let parsign = mib.mind_params_ctxt in
let nnonrecparams = mib.mind_nparams - mib.mind_nparams_rec in
if List.length params = rel_context_nhyps parsign - nnonrecparams then
snd (list_chop nnonrecparams mib.mind_params_ctxt)
else
parsign in
let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in
let arsign,_ = list_chop arproperlength mip.mind_arity_ctxt in
let subst = instantiate_context parsign params in
(substl_rel_context subst arsign, Inductive.inductive_sort_family mip)
(* Functions to build standard types related to inductive *)
let build_dependent_constructor cs =
applist
(mkConstruct cs.cs_cstr,
(List.map (lift cs.cs_nargs) cs.cs_params)
@(extended_rel_list 0 cs.cs_args))
let build_dependent_inductive env ((ind, params) as indf) =
let arsign,_ = get_arity env indf in
let nrealargs = List.length arsign in
applist
(mkInd ind,
(List.map (lift nrealargs) params)@(extended_rel_list 0 arsign))
(* builds the arity of an elimination predicate in sort [s] *)
let make_arity_signature env dep indf =
let (arsign,_) = get_arity env indf in
if dep then
(* We need names everywhere *)
name_context env
((Anonymous,None,build_dependent_inductive env indf)::arsign)
(* Costly: would be better to name once for all at definition time *)
else
(* No need to enforce names *)
arsign
let make_arity env dep indf s = mkArity (make_arity_signature env dep indf, s)
(* [p] is the predicate and [cs] a constructor summary *)
let build_branch_type env dep p cs =
let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in
if dep then
it_mkProd_or_LetIn_name env
(applist (base,[build_dependent_constructor cs]))
cs.cs_args
else
it_mkProd_or_LetIn base cs.cs_args
(**************************************************)
let extract_mrectype t =
let (t, l) = decompose_app t in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_mrectype env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_rectype env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind ->
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let (par,rargs) = list_chop mib.mind_nparams l in
IndType((ind, par),rargs)
| _ -> raise Not_found
let find_inductive env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind
when (fst (Inductive.lookup_mind_specif env ind)).mind_finite ->
(ind, l)
| _ -> raise Not_found
let find_coinductive env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind
when not (fst (Inductive.lookup_mind_specif env ind)).mind_finite ->
(ind, l)
| _ -> raise Not_found
(***********************************************)
(* find appropriate names for pattern variables. Useful in the Case
and Inversion (case_then_using et case_nodep_then_using) tactics. *)
let is_predicate_explicitly_dep env pred arsign =
let rec srec env pval arsign =
let pv' = whd_betadeltaiota env Evd.empty pval in
match kind_of_term pv', arsign with
| Lambda (na,t,b), (_,None,_)::arsign ->
srec (push_rel_assum (na,t) env) b arsign
| Lambda (na,_,_), _ ->
(* The following code has an impact on the introduction names
given by the tactics "case" and "inversion": when the
elimination is not dependent, "case" uses Anonymous for
inductive types in Prop and names created by mkProd_name for
inductive types in Set/Type while "inversion" uses anonymous
for inductive types both in Prop and Set/Type !!
Previously, whether names were created or not relied on
whether the predicate created in Indrec.make_case_com had a
dependent arity or not. To avoid different predicates
printed the same in v8, all predicates built in indrec.ml
got a dependent arity (Aug 2004). The new way to decide
whether names have to be created or not is to use an
Anonymous or Named variable to enforce the expected
dependency status (of course, Anonymous implies non
dependent, but not conversely).
At the end, this is only to preserve the compatibility: a
check whether the predicate is actually dependent or not
would indeed be more natural! *)
na <> Anonymous
| _ -> anomaly "Non eta-expanded dep-expanded \"match\" predicate"
in
srec env pred arsign
let is_elim_predicate_explicitly_dependent env pred indf =
let arsign,_ = get_arity env indf in
is_predicate_explicitly_dep env pred arsign
let set_names env n brty =
let (ctxt,cl) = decompose_prod_n_assum n brty in
it_mkProd_or_LetIn_name env cl ctxt
let set_pattern_names env ind brv =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let arities =
Array.map
(fun c ->
rel_context_length ((prod_assum c)) -
mib.mind_nparams)
mip.mind_nf_lc in
array_map2 (set_names env) arities brv
let type_case_branches_with_names env indspec p c =
let (ind,args) = indspec in
let (mib,mip as specif) = Inductive.lookup_mind_specif env ind in
let nparams = mib.mind_nparams in
let (params,realargs) = list_chop nparams args in
let lbrty = Inductive.build_branches_type ind specif params p in
(* Build case type *)
let conclty = Reduction.beta_appvect p (Array.of_list (realargs@[c])) in
(* Adjust names *)
if is_elim_predicate_explicitly_dependent env p (ind,params) then
(set_pattern_names env ind lbrty, conclty)
else (lbrty, conclty)
(* Type of Case predicates *)
let arity_of_case_predicate env (ind,params) dep k =
let arsign,_ = get_arity env (ind,params) in
let mind = build_dependent_inductive env (ind,params) in
let concl = if dep then mkArrow mind (mkSort k) else mkSort k in
it_mkProd_or_LetIn concl arsign
(***********************************************)
(* Inferring the sort of parameters of a polymorphic inductive type
knowing the sort of the conclusion *)
(* Check if u (sort of a parameter) appears in the sort of the
inductive (is). This is done by trying to enforce u > u' >= is
in the empty univ graph. If an inconsistency appears, then
is depends on u. *)
let is_constrained is u =
try
let u' = fresh_local_univ() in
let _ =
merge_constraints
(enforce_geq u (super u')
(enforce_geq u' is Constraint.empty))
initial_universes in
false
with UniverseInconsistency _ -> true
(* Compute the inductive argument types: replace the sorts
that appear in the type of the inductive by the sort of the
conclusion, and the other ones by fresh universes. *)
let rec instantiate_universes env scl is = function
| (_,Some _,_ as d)::sign, exp ->
d :: instantiate_universes env scl is (sign, exp)
| d::sign, None::exp ->
d :: instantiate_universes env scl is (sign, exp)
| (na,None,ty)::sign, Some u::exp ->
let ctx,_ = Reduction.dest_arity env ty in
let s =
if is_constrained is u then
scl (* constrained sort: replace by scl *)
else
(* unconstriained sort: replace by fresh universe *)
new_Type_sort() in
(na,None,mkArity(ctx,s)):: instantiate_universes env scl is (sign, exp)
| sign, [] -> sign (* Uniform parameters are exhausted *)
| [], _ -> assert false
(* Does not deal with universes, but only with Set/Type distinction *)
let type_of_inductive_knowing_conclusion env mip conclty =
match mip.mind_arity with
| Monomorphic s ->
s.mind_user_arity
| Polymorphic ar ->
let _,scl = Reduction.dest_arity env conclty in
let ctx = List.rev mip.mind_arity_ctxt in
let ctx =
instantiate_universes
env scl ar.poly_level (ctx,ar.poly_param_levels) in
mkArity (List.rev ctx,scl)
(***********************************************)
(* Guard condition *)
(* A function which checks that a term well typed verifies both
syntactic conditions *)
let control_only_guard env c =
let check_fix_cofix e c = match kind_of_term c with
| CoFix (_,(_,_,_) as cofix) ->
Inductive.check_cofix e cofix
| Fix (_,(_,_,_) as fix) ->
Inductive.check_fix e fix
| _ -> ()
in
let rec iter env c =
check_fix_cofix env c;
iter_constr_with_full_binders push_rel iter env c
in
iter env c
let subst_inductive subst (kn,i as ind) =
let kn' = Mod_subst.subst_ind subst kn in
if kn == kn' then ind else (kn',i)
|