1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Globnames
open Misctypes
open Glob_term
(* Untyped intermediate terms, after ASTs and before constr. *)
let cases_pattern_loc = function
PatVar(loc,_) -> loc
| PatCstr(loc,_,_,_) -> loc
let cases_predicate_names tml =
List.flatten (List.map (function
| (tm,(na,None)) -> [na]
| (tm,(na,Some (_,_,nal))) -> na::nal) tml)
let mkGApp loc p t =
match p with
| GApp (loc,f,l) -> GApp (loc,f,l@[t])
| _ -> GApp (loc,p,[t])
let map_glob_decl_left_to_right f (na,k,obd,ty) =
let comp1 = Option.map f obd in
let comp2 = f ty in
(na,k,comp1,comp2)
let binding_kind_eq bk1 bk2 = match bk1, bk2 with
| Decl_kinds.Explicit, Decl_kinds.Explicit -> true
| Decl_kinds.Implicit, Decl_kinds.Implicit -> true
| _ -> false
let case_style_eq s1 s2 = match s1, s2 with
| LetStyle, LetStyle -> true
| IfStyle, IfStyle -> true
| LetPatternStyle, LetPatternStyle -> true
| MatchStyle, MatchStyle -> true
| RegularStyle, RegularStyle -> true
| _ -> false
let rec cases_pattern_eq p1 p2 = match p1, p2 with
| PatVar (_, na1), PatVar (_, na2) -> Name.equal na1 na2
| PatCstr (_, c1, pl1, na1), PatCstr (_, c2, pl2, na2) ->
eq_constructor c1 c2 && List.equal cases_pattern_eq pl1 pl2 &&
Name.equal na1 na2
| _ -> false
let cast_type_eq eq t1 t2 = match t1, t2 with
| CastConv t1, CastConv t2 -> eq t1 t2
| CastVM t1, CastVM t2 -> eq t1 t2
| CastCoerce, CastCoerce -> true
| CastNative t1, CastNative t2 -> eq t1 t2
| _ -> false
let rec glob_constr_eq c1 c2 = match c1, c2 with
| GRef (_, gr1, _), GRef (_, gr2, _) -> eq_gr gr1 gr2
| GVar (_, id1), GVar (_, id2) -> Id.equal id1 id2
| GEvar (_, id1, arg1), GEvar (_, id2, arg2) ->
Id.equal id1 id2 &&
List.equal instance_eq arg1 arg2
| GPatVar (_, (b1, pat1)), GPatVar (_, (b2, pat2)) ->
(b1 : bool) == b2 && Id.equal pat1 pat2
| GApp (_, f1, arg1), GApp (_, f2, arg2) ->
glob_constr_eq f1 f2 && List.equal glob_constr_eq arg1 arg2
| GLambda (_, na1, bk1, t1, c1), GLambda (_, na2, bk2, t2, c2) ->
Name.equal na1 na2 && binding_kind_eq bk1 bk2 &&
glob_constr_eq t1 t2 && glob_constr_eq c1 c2
| GProd (_, na1, bk1, t1, c1), GProd (_, na2, bk2, t2, c2) ->
Name.equal na1 na2 && binding_kind_eq bk1 bk2 &&
glob_constr_eq t1 t2 && glob_constr_eq c1 c2
| GLetIn (_, na1, t1, c1), GLetIn (_, na2, t2, c2) ->
Name.equal na1 na2 && glob_constr_eq t1 t2 && glob_constr_eq c1 c2
| GCases (_, st1, c1, tp1, cl1), GCases (_, st2, c2, tp2, cl2) ->
case_style_eq st1 st2 && Option.equal glob_constr_eq c1 c2 &&
List.equal tomatch_tuple_eq tp1 tp2 &&
List.equal cases_clause_eq cl1 cl2
| GLetTuple (_, na1, (n1, p1), c1, t1), GLetTuple (_, na2, (n2, p2), c2, t2) ->
List.equal Name.equal na1 na2 && Name.equal n1 n2 &&
Option.equal glob_constr_eq p1 p2 && glob_constr_eq c1 c2 &&
glob_constr_eq t1 t2
| GIf (_, m1, (pat1, p1), c1, t1), GIf (_, m2, (pat2, p2), c2, t2) ->
glob_constr_eq m1 m2 && Name.equal pat1 pat2 &&
Option.equal glob_constr_eq p1 p2 && glob_constr_eq c1 c2 &&
glob_constr_eq t1 t2
| GRec (_, kn1, id1, decl1, c1, t1), GRec (_, kn2, id2, decl2, c2, t2) ->
fix_kind_eq kn1 kn2 && Array.equal Id.equal id1 id2 &&
Array.equal (fun l1 l2 -> List.equal glob_decl_eq l1 l2) decl1 decl2 &&
Array.equal glob_constr_eq c1 c2 &&
Array.equal glob_constr_eq t1 t2
| GSort (_, s1), GSort (_, s2) -> Miscops.glob_sort_eq s1 s2
| GHole (_, kn1, nam1, gn1), GHole (_, kn2, nam2, gn2) ->
Option.equal (==) gn1 gn2 (** Only thing sensible *) &&
Miscops.intro_pattern_naming_eq nam1 nam2
| GCast (_, c1, t1), GCast (_, c2, t2) ->
glob_constr_eq c1 c2 && cast_type_eq glob_constr_eq t1 t2
| _ -> false
and tomatch_tuple_eq (c1, p1) (c2, p2) =
let eqp (_, i1, na1) (_, i2, na2) =
eq_ind i1 i2 && List.equal Name.equal na1 na2
in
let eq_pred (n1, o1) (n2, o2) = Name.equal n1 n2 && Option.equal eqp o1 o2 in
glob_constr_eq c1 c2 && eq_pred p1 p2
and cases_clause_eq (_, id1, p1, c1) (_, id2, p2, c2) =
List.equal Id.equal id1 id2 && List.equal cases_pattern_eq p1 p2 &&
glob_constr_eq c1 c2
and glob_decl_eq (na1, bk1, c1, t1) (na2, bk2, c2, t2) =
Name.equal na1 na2 && binding_kind_eq bk1 bk2 &&
Option.equal glob_constr_eq c1 c2 &&
glob_constr_eq t1 t2
and fix_kind_eq k1 k2 = match k1, k2 with
| GFix (a1, i1), GFix (a2, i2) ->
let eq (i1, o1) (i2, o2) =
Option.equal Int.equal i1 i2 && fix_recursion_order_eq o1 o2
in
Int.equal i1 i2 && Array.equal eq a1 a1
| GCoFix i1, GCoFix i2 -> Int.equal i1 i2
| _ -> false
and fix_recursion_order_eq o1 o2 = match o1, o2 with
| GStructRec, GStructRec -> true
| GWfRec c1, GWfRec c2 -> glob_constr_eq c1 c2
| GMeasureRec (c1, o1), GMeasureRec (c2, o2) ->
glob_constr_eq c1 c2 && Option.equal glob_constr_eq o1 o2
| _ -> false
and instance_eq (x1,c1) (x2,c2) =
Id.equal x1 x2 && glob_constr_eq c1 c2
let map_glob_constr_left_to_right f = function
| GApp (loc,g,args) ->
let comp1 = f g in
let comp2 = Util.List.map_left f args in
GApp (loc,comp1,comp2)
| GLambda (loc,na,bk,ty,c) ->
let comp1 = f ty in
let comp2 = f c in
GLambda (loc,na,bk,comp1,comp2)
| GProd (loc,na,bk,ty,c) ->
let comp1 = f ty in
let comp2 = f c in
GProd (loc,na,bk,comp1,comp2)
| GLetIn (loc,na,b,c) ->
let comp1 = f b in
let comp2 = f c in
GLetIn (loc,na,comp1,comp2)
| GCases (loc,sty,rtntypopt,tml,pl) ->
let comp1 = Option.map f rtntypopt in
let comp2 = Util.List.map_left (fun (tm,x) -> (f tm,x)) tml in
let comp3 = Util.List.map_left (fun (loc,idl,p,c) -> (loc,idl,p,f c)) pl in
GCases (loc,sty,comp1,comp2,comp3)
| GLetTuple (loc,nal,(na,po),b,c) ->
let comp1 = Option.map f po in
let comp2 = f b in
let comp3 = f c in
GLetTuple (loc,nal,(na,comp1),comp2,comp3)
| GIf (loc,c,(na,po),b1,b2) ->
let comp1 = Option.map f po in
let comp2 = f b1 in
let comp3 = f b2 in
GIf (loc,f c,(na,comp1),comp2,comp3)
| GRec (loc,fk,idl,bl,tyl,bv) ->
let comp1 = Array.map (Util.List.map_left (map_glob_decl_left_to_right f)) bl in
let comp2 = Array.map f tyl in
let comp3 = Array.map f bv in
GRec (loc,fk,idl,comp1,comp2,comp3)
| GCast (loc,c,k) ->
let comp1 = f c in
let comp2 = Miscops.map_cast_type f k in
GCast (loc,comp1,comp2)
| (GVar _ | GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) as x -> x
let map_glob_constr = map_glob_constr_left_to_right
let fold_glob_constr f acc =
let rec fold acc = function
| GVar _ -> acc
| GApp (_,c,args) -> List.fold_left fold (fold acc c) args
| GLambda (_,_,_,b,c) | GProd (_,_,_,b,c) | GLetIn (_,_,b,c) ->
fold (fold acc b) c
| GCases (_,_,rtntypopt,tml,pl) ->
List.fold_left fold_pattern
(List.fold_left fold (Option.fold_left fold acc rtntypopt) (List.map fst tml))
pl
| GLetTuple (_,_,rtntyp,b,c) ->
fold (fold (fold_return_type acc rtntyp) b) c
| GIf (_,c,rtntyp,b1,b2) ->
fold (fold (fold (fold_return_type acc rtntyp) c) b1) b2
| GRec (_,_,_,bl,tyl,bv) ->
let acc = Array.fold_left
(List.fold_left (fun acc (na,k,bbd,bty) ->
fold (Option.fold_left fold acc bbd) bty)) acc bl in
Array.fold_left fold (Array.fold_left fold acc tyl) bv
| GCast (_,c,k) ->
let r = match k with
| CastConv t | CastVM t | CastNative t -> fold acc t | CastCoerce -> acc
in
fold r c
| (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> acc
and fold_pattern acc (_,idl,p,c) = fold acc c
and fold_return_type acc (na,tyopt) = Option.fold_left fold acc tyopt
in fold acc
let iter_glob_constr f = fold_glob_constr (fun () -> f) ()
let same_id na id = match na with
| Anonymous -> false
| Name id' -> Id.equal id id'
let occur_glob_constr id =
let rec occur = function
| GVar (loc,id') -> Id.equal id id'
| GApp (loc,f,args) -> (occur f) || (List.exists occur args)
| GLambda (loc,na,bk,ty,c) ->
(occur ty) || (not (same_id na id) && (occur c))
| GProd (loc,na,bk,ty,c) ->
(occur ty) || (not (same_id na id) && (occur c))
| GLetIn (loc,na,b,c) ->
(occur b) || (not (same_id na id) && (occur c))
| GCases (loc,sty,rtntypopt,tml,pl) ->
(occur_option rtntypopt)
|| (List.exists (fun (tm,_) -> occur tm) tml)
|| (List.exists occur_pattern pl)
| GLetTuple (loc,nal,rtntyp,b,c) ->
occur_return_type rtntyp id
|| (occur b) || (not (List.mem_f Name.equal (Name id) nal) && (occur c))
| GIf (loc,c,rtntyp,b1,b2) ->
occur_return_type rtntyp id || (occur c) || (occur b1) || (occur b2)
| GRec (loc,fk,idl,bl,tyl,bv) ->
not (Array.for_all4 (fun fid bl ty bd ->
let rec occur_fix = function
[] -> not (occur ty) && (Id.equal fid id || not(occur bd))
| (na,k,bbd,bty)::bl ->
not (occur bty) &&
(match bbd with
Some bd -> not (occur bd)
| _ -> true) &&
(match na with Name id' -> Id.equal id id' | _ -> not (occur_fix bl)) in
occur_fix bl)
idl bl tyl bv)
| GCast (loc,c,k) -> (occur c) || (match k with CastConv t
| CastVM t | CastNative t -> occur t | CastCoerce -> false)
| (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> false
and occur_pattern (loc,idl,p,c) = not (Id.List.mem id idl) && (occur c)
and occur_option = function None -> false | Some p -> occur p
and occur_return_type (na,tyopt) id = not (same_id na id) && occur_option tyopt
in occur
let add_name_to_ids set na =
match na with
| Anonymous -> set
| Name id -> Id.Set.add id set
let free_glob_vars =
let rec vars bounded vs = function
| GVar (loc,id') -> if Id.Set.mem id' bounded then vs else Id.Set.add id' vs
| GApp (loc,f,args) -> List.fold_left (vars bounded) vs (f::args)
| GLambda (loc,na,_,ty,c) | GProd (loc,na,_,ty,c) | GLetIn (loc,na,ty,c) ->
let vs' = vars bounded vs ty in
let bounded' = add_name_to_ids bounded na in
vars bounded' vs' c
| GCases (loc,sty,rtntypopt,tml,pl) ->
let vs1 = vars_option bounded vs rtntypopt in
let vs2 = List.fold_left (fun vs (tm,_) -> vars bounded vs tm) vs1 tml in
List.fold_left (vars_pattern bounded) vs2 pl
| GLetTuple (loc,nal,rtntyp,b,c) ->
let vs1 = vars_return_type bounded vs rtntyp in
let vs2 = vars bounded vs1 b in
let bounded' = List.fold_left add_name_to_ids bounded nal in
vars bounded' vs2 c
| GIf (loc,c,rtntyp,b1,b2) ->
let vs1 = vars_return_type bounded vs rtntyp in
let vs2 = vars bounded vs1 c in
let vs3 = vars bounded vs2 b1 in
vars bounded vs3 b2
| GRec (loc,fk,idl,bl,tyl,bv) ->
let bounded' = Array.fold_right Id.Set.add idl bounded in
let vars_fix i vs fid =
let vs1,bounded1 =
List.fold_left
(fun (vs,bounded) (na,k,bbd,bty) ->
let vs' = vars_option bounded vs bbd in
let vs'' = vars bounded vs' bty in
let bounded' = add_name_to_ids bounded na in
(vs'',bounded')
)
(vs,bounded')
bl.(i)
in
let vs2 = vars bounded1 vs1 tyl.(i) in
vars bounded1 vs2 bv.(i)
in
Array.fold_left_i vars_fix vs idl
| GCast (loc,c,k) -> let v = vars bounded vs c in
(match k with CastConv t | CastVM t | CastNative t -> vars bounded v t | _ -> v)
| (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> vs
and vars_pattern bounded vs (loc,idl,p,c) =
let bounded' = List.fold_right Id.Set.add idl bounded in
vars bounded' vs c
and vars_option bounded vs = function None -> vs | Some p -> vars bounded vs p
and vars_return_type bounded vs (na,tyopt) =
let bounded' = add_name_to_ids bounded na in
vars_option bounded' vs tyopt
in
fun rt ->
let vs = vars Id.Set.empty Id.Set.empty rt in
Id.Set.elements vs
(** Mapping of names in binders *)
(* spiwack: I used a smartmap-style kind of mapping here, because the
operation will be the identity almost all of the time (with any
term outside of Ltac to begin with). But to be honest, there would
probably be no significant penalty in doing reallocation as
pattern-matching expressions are usually rather small. *)
let map_inpattern_binders f ((loc,id,nal) as x) =
let r = CList.smartmap f nal in
if r == nal then x
else loc,id,r
let map_tomatch_binders f ((c,(na,inp)) as x) : tomatch_tuple =
let r = Option.smartmap (fun p -> map_inpattern_binders f p) inp in
if r == inp then x
else c,(f na, r)
let rec map_case_pattern_binders f = function
| PatVar (loc,na) as x ->
let r = f na in
if r == na then x
else PatVar (loc,r)
| PatCstr (loc,c,ps,na) as x ->
let rna = f na in
let rps =
CList.smartmap (fun p -> map_case_pattern_binders f p) ps
in
if rna == na && rps == ps then x
else PatCstr(loc,c,rps,rna)
let map_cases_branch_binders f ((loc,il,cll,rhs) as x) : cases_clause =
(* spiwack: not sure if I must do something with the list of idents.
It is intended to be a superset of the free variable of the
right-hand side, if I understand correctly. But I'm not sure when
or how they are used. *)
let r = List.smartmap (fun cl -> map_case_pattern_binders f cl) cll in
if r == cll then x
else loc,il,r,rhs
let map_pattern_binders f tomatch branches =
CList.smartmap (fun tm -> map_tomatch_binders f tm) tomatch,
CList.smartmap (fun br -> map_cases_branch_binders f br) branches
(** /mapping of names in binders *)
let map_tomatch f (c,pp) : tomatch_tuple = f c , pp
let map_cases_branch f (loc,il,cll,rhs) : cases_clause =
loc , il , cll , f rhs
let map_pattern f tomatch branches =
List.map (fun tm -> map_tomatch f tm) tomatch,
List.map (fun br -> map_cases_branch f br) branches
let loc_of_glob_constr = function
| GRef (loc,_,_) -> loc
| GVar (loc,_) -> loc
| GEvar (loc,_,_) -> loc
| GPatVar (loc,_) -> loc
| GApp (loc,_,_) -> loc
| GLambda (loc,_,_,_,_) -> loc
| GProd (loc,_,_,_,_) -> loc
| GLetIn (loc,_,_,_) -> loc
| GCases (loc,_,_,_,_) -> loc
| GLetTuple (loc,_,_,_,_) -> loc
| GIf (loc,_,_,_,_) -> loc
| GRec (loc,_,_,_,_,_) -> loc
| GSort (loc,_) -> loc
| GHole (loc,_,_,_) -> loc
| GCast (loc,_,_) -> loc
(**********************************************************************)
(* Conversion from glob_constr to cases pattern, if possible *)
let rec cases_pattern_of_glob_constr na = function
| GVar (loc,id) ->
begin match na with
| Name _ ->
(* Unable to manage the presence of both an alias and a variable *)
raise Not_found
| Anonymous -> PatVar (loc,Name id)
end
| GHole (loc,_,_,_) -> PatVar (loc,na)
| GRef (loc,ConstructRef cstr,_) ->
PatCstr (loc,cstr,[],na)
| GApp (loc,GRef (_,ConstructRef cstr,_),l) ->
PatCstr (loc,cstr,List.map (cases_pattern_of_glob_constr Anonymous) l,na)
| _ -> raise Not_found
(* Turn a closed cases pattern into a glob_constr *)
let rec glob_constr_of_closed_cases_pattern_aux = function
| PatCstr (loc,cstr,[],Anonymous) ->
GRef (loc,ConstructRef cstr,None)
| PatCstr (loc,cstr,l,Anonymous) ->
let ref = GRef (loc,ConstructRef cstr,None) in
GApp (loc,ref, List.map glob_constr_of_closed_cases_pattern_aux l)
| _ -> raise Not_found
let glob_constr_of_closed_cases_pattern = function
| PatCstr (loc,cstr,l,na) ->
na,glob_constr_of_closed_cases_pattern_aux (PatCstr (loc,cstr,l,Anonymous))
| _ ->
raise Not_found
|