1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: evd.ml 8688 2006-04-07 15:08:12Z msozeau $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Environ
open Libnames
open Mod_subst
(* The type of mappings for existential variables *)
type evar = existential_key
type evar_body =
| Evar_empty
| Evar_defined of constr
type evar_info = {
evar_concl : constr;
evar_hyps : named_context_val;
evar_body : evar_body}
let evar_context evi = named_context_of_val evi.evar_hyps
let eq_evar_info ei1 ei2 =
ei1 == ei2 ||
eq_constr ei1.evar_concl ei2.evar_concl &&
eq_named_context_val (ei1.evar_hyps) (ei2.evar_hyps) &&
ei1.evar_body = ei2.evar_body
module Evarmap = Intmap
type evar_map1 = evar_info Evarmap.t
let empty = Evarmap.empty
let to_list evc = Evarmap.fold (fun ev x acc -> (ev,x)::acc) evc []
let dom evc = Evarmap.fold (fun ev _ acc -> ev::acc) evc []
let map evc k = Evarmap.find k evc
let rmv evc k = Evarmap.remove k evc
let remap evc k i = Evarmap.add k i evc
let in_dom evc k = Evarmap.mem k evc
let fold = Evarmap.fold
let add evd ev newinfo = Evarmap.add ev newinfo evd
let define evd ev body =
let oldinfo =
try map evd ev
with Not_found -> error "Evd.define: cannot define undeclared evar" in
let newinfo =
{ evar_concl = oldinfo.evar_concl;
evar_hyps = oldinfo.evar_hyps;
evar_body = Evar_defined body} in
match oldinfo.evar_body with
| Evar_empty -> Evarmap.add ev newinfo evd
| _ -> anomaly "Evd.define: cannot define an isevar twice"
let is_evar sigma ev = in_dom sigma ev
let is_defined sigma ev =
let info = map sigma ev in
not (info.evar_body = Evar_empty)
let evar_body ev = ev.evar_body
let evar_env evd = Global.env_of_context evd.evar_hyps
let string_of_existential ev = "?" ^ string_of_int ev
let existential_of_int ev = ev
(*******************************************************************)
(* Formerly Instantiate module *)
let is_id_inst inst =
let is_id (id,c) = match kind_of_term c with
| Var id' -> id = id'
| _ -> false
in
List.for_all is_id inst
(* Vérifier que les instances des let-in sont compatibles ?? *)
let instantiate_sign_including_let sign args =
let rec instrec = function
| ((id,b,_) :: sign, c::args) -> (id,c) :: (instrec (sign,args))
| ([],[]) -> []
| ([],_) | (_,[]) ->
anomaly "Signature and its instance do not match"
in
instrec (sign,args)
let instantiate_evar sign c args =
let inst = instantiate_sign_including_let sign args in
if is_id_inst inst then
c
else
replace_vars inst c
(* Existentials. *)
let existential_type sigma (n,args) =
let info =
try map sigma n
with Not_found ->
anomaly ("Evar "^(string_of_existential n)^" was not declared") in
let hyps = evar_context info in
instantiate_evar hyps info.evar_concl (Array.to_list args)
exception NotInstantiatedEvar
let existential_value sigma (n,args) =
let info = map sigma n in
let hyps = evar_context info in
match evar_body info with
| Evar_defined c ->
instantiate_evar hyps c (Array.to_list args)
| Evar_empty ->
raise NotInstantiatedEvar
let existential_opt_value sigma ev =
try Some (existential_value sigma ev)
with NotInstantiatedEvar -> None
(*******************************************************************)
(* Constraints for sort variables *)
(*******************************************************************)
type sort_var = Univ.universe
type sort_constraint =
| DefinedSort of sorts (* instantiated sort var *)
| SortVar of sort_var list * sort_var list (* (leq,geq) *)
| EqSort of sort_var
module UniverseOrdered = struct
type t = Univ.universe
let compare = Pervasives.compare
end
module UniverseMap = Map.Make(UniverseOrdered)
type sort_constraints = sort_constraint UniverseMap.t
let rec canonical_find u scstr =
match UniverseMap.find u scstr with
EqSort u' -> canonical_find u' scstr
| c -> (u,c)
let whd_sort_var scstr t =
match kind_of_term t with
Sort(Type u) ->
(try
match canonical_find u scstr with
_, DefinedSort s -> mkSort s
| _ -> t
with Not_found -> t)
| _ -> t
let rec set_impredicative u s scstr =
match UniverseMap.find u scstr with
| DefinedSort s' ->
if family_of_sort s = family_of_sort s' then scstr
else failwith "sort constraint inconsistency"
| EqSort u' ->
UniverseMap.add u (DefinedSort s) (set_impredicative u' s scstr)
| SortVar(_,ul) ->
(* also set sorts lower than u as impredicative *)
UniverseMap.add u (DefinedSort s)
(List.fold_left (fun g u' -> set_impredicative u' s g) scstr ul)
let rec set_predicative u s scstr =
match UniverseMap.find u scstr with
| DefinedSort s' ->
if family_of_sort s = family_of_sort s' then scstr
else failwith "sort constraint inconsistency"
| EqSort u' ->
UniverseMap.add u (DefinedSort s) (set_predicative u' s scstr)
| SortVar(ul,_) ->
UniverseMap.add u (DefinedSort s)
(List.fold_left (fun g u' -> set_impredicative u' s g) scstr ul)
let var_of_sort = function
Type u -> u
| _ -> assert false
let is_sort_var s scstr =
match s with
Type u ->
(try
match canonical_find u scstr with
_, DefinedSort _ -> false
| _ -> true
with Not_found -> false)
| _ -> false
let new_sort_var cstr =
let u = Termops.new_univ() in
(u, UniverseMap.add u (SortVar([],[])) cstr)
let set_leq_sort (u1,(leq1,geq1)) (u2,(leq2,geq2)) scstr =
let rec search_rec (is_b, betw, not_betw) u1 =
if List.mem u1 betw then (true, betw, not_betw)
else if List.mem u1 not_betw then (is_b, betw, not_betw)
else if u1 = u2 then (true, u1::betw,not_betw) else
match UniverseMap.find u1 scstr with
EqSort u1' -> search_rec (is_b,betw,not_betw) u1'
| SortVar(leq,_) ->
let (is_b',betw',not_betw') =
List.fold_left search_rec (false,betw,not_betw) leq in
if is_b' then (true, u1::betw', not_betw')
else (false, betw', not_betw')
| DefinedSort _ -> (false,betw,u1::not_betw) in
let (is_betw,betw,_) = search_rec (false, [], []) u1 in
if is_betw then
UniverseMap.add u1 (SortVar(leq1@leq2,geq1@geq2))
(List.fold_left
(fun g u -> UniverseMap.add u (EqSort u1) g) scstr betw)
else
UniverseMap.add u1 (SortVar(u2::leq1,geq1))
(UniverseMap.add u2 (SortVar(leq2, u1::geq2)) scstr)
let set_leq s1 s2 scstr =
let u1 = var_of_sort s1 in
let u2 = var_of_sort s2 in
let (cu1,c1) = canonical_find u1 scstr in
let (cu2,c2) = canonical_find u2 scstr in
if cu1=cu2 then scstr
else
match c1,c2 with
(EqSort _, _ | _, EqSort _) -> assert false
| SortVar(leq1,geq1), SortVar(leq2,geq2) ->
set_leq_sort (cu1,(leq1,geq1)) (cu2,(leq2,geq2)) scstr
| _, DefinedSort(Prop _ as s) -> set_impredicative u1 s scstr
| _, DefinedSort(Type _) -> scstr
| DefinedSort(Type _ as s), _ -> set_predicative u2 s scstr
| DefinedSort(Prop _), _ -> scstr
let set_sort_variable s1 s2 scstr =
let u = var_of_sort s1 in
match s2 with
Prop _ -> set_impredicative u s2 scstr
| Type _ -> set_predicative u s2 scstr
let pr_sort_cstrs g =
let l = UniverseMap.fold (fun u c l -> (u,c)::l) g [] in
str "SORT CONSTRAINTS:" ++ fnl() ++
prlist_with_sep fnl (fun (u,c) ->
match c with
EqSort u' -> Univ.pr_uni u ++ str" == " ++ Univ.pr_uni u'
| DefinedSort s -> Univ.pr_uni u ++ str " := " ++ print_sort s
| SortVar(leq,geq) ->
str"[" ++ hov 0 (prlist_with_sep spc Univ.pr_uni geq) ++
str"] <= "++ Univ.pr_uni u ++ brk(0,0) ++ str"<= [" ++
hov 0 (prlist_with_sep spc Univ.pr_uni leq) ++ str"]")
l
type evar_map = evar_map1 * sort_constraints
let empty = empty, UniverseMap.empty
let add (sigma,sm) k v = (add sigma k v, sm)
let dom (sigma,_) = dom sigma
let map (sigma,_) = map sigma
let rmv (sigma,sm) k = (rmv sigma k, sm)
let remap (sigma,sm) k v = (remap sigma k v, sm)
let in_dom (sigma,_) = in_dom sigma
let to_list (sigma,_) = to_list sigma
let fold f (sigma,_) = fold f sigma
let define (sigma,sm) k v = (define sigma k v, sm)
let is_evar (sigma,_) = is_evar sigma
let is_defined (sigma,_) = is_defined sigma
let existential_value (sigma,_) = existential_value sigma
let existential_type (sigma,_) = existential_type sigma
let existential_opt_value (sigma,_) = existential_opt_value sigma
(*******************************************************************)
type open_constr = evar_map * constr
(*******************************************************************)
(* The type constructor ['a sigma] adds an evar map to an object of
type ['a] *)
type 'a sigma = {
it : 'a ;
sigma : evar_map}
let sig_it x = x.it
let sig_sig x = x.sigma
(*******************************************************************)
(* Metamaps *)
(*******************************************************************)
(* Constraints for existential variables *)
(*******************************************************************)
type 'a freelisted = {
rebus : 'a;
freemetas : Intset.t }
(* Collects all metavars appearing in a constr *)
let metavars_of c =
let rec collrec acc c =
match kind_of_term c with
| Meta mv -> Intset.add mv acc
| _ -> fold_constr collrec acc c
in
collrec Intset.empty c
let mk_freelisted c =
{ rebus = c; freemetas = metavars_of c }
let map_fl f cfl = { cfl with rebus=f cfl.rebus }
(* Clausal environments *)
type clbinding =
| Cltyp of name * constr freelisted
| Clval of name * constr freelisted * constr freelisted
let map_clb f = function
| Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl)
| Clval (na,cfl1,cfl2) -> Clval (na,map_fl f cfl1,map_fl f cfl2)
(* name of defined is erased (but it is pretty-printed) *)
let clb_name = function
Cltyp(na,_) -> (na,false)
| Clval (na,_,_) -> (na,true)
(***********************)
module Metaset = Intset
let meta_exists p s = Metaset.fold (fun x b -> b || (p x)) s false
module Metamap = Intmap
let metamap_to_list m =
Metamap.fold (fun n v l -> (n,v)::l) m []
(*************************)
(* Unification state *)
type hole_kind =
| ImplicitArg of global_reference * (int * identifier option)
| BinderType of name
| QuestionMark
| CasesType
| InternalHole
| TomatchTypeParameter of inductive * int
type conv_pb = Reduction.conv_pb
type evar_constraint = conv_pb * constr * constr
type evar_defs =
{ evars : evar_map;
conv_pbs : evar_constraint list;
history : (existential_key * (loc * hole_kind)) list;
metas : clbinding Metamap.t }
let subst_evar_defs sub evd =
{ evd with
conv_pbs =
List.map (fun (k,t1,t2) ->(k,subst_mps sub t1,subst_mps sub t2))
evd.conv_pbs;
metas = Metamap.map (map_clb (subst_mps sub)) evd.metas }
let create_evar_defs sigma =
{ evars=sigma; conv_pbs=[]; history=[]; metas=Metamap.empty }
let evars_of d = d.evars
let evars_reset_evd evd d = {d with evars = evd}
let reset_evd (sigma,mmap) d = {d with evars = sigma; metas=mmap}
let add_conv_pb pb d =
(* let (pbty,c1,c2) = pb in
pperrnl
(Termops.print_constr c1 ++
(if pbty=Reduction.CUMUL then str " <="++ spc()
else str" =="++spc()) ++
Termops.print_constr c2);*)
{d with conv_pbs = pb::d.conv_pbs}
let evar_source ev d =
try List.assoc ev d.history
with Not_found -> (dummy_loc, InternalHole)
(* define the existential of section path sp as the constr body *)
let evar_define sp body isevars =
{isevars with evars = define isevars.evars sp body}
let evar_declare hyps evn ty ?(src=(dummy_loc,InternalHole)) evd =
{ evd with
evars = add evd.evars evn
{evar_hyps=hyps; evar_concl=ty; evar_body=Evar_empty};
history = (evn,src)::evd.history }
let is_defined_evar isevars (n,_) = is_defined isevars.evars n
(* Does k corresponds to an (un)defined existential ? *)
let is_undefined_evar isevars c = match kind_of_term c with
| Evar ev -> not (is_defined_evar isevars ev)
| _ -> false
let undefined_evars isevars =
let evd =
fold (fun ev evi sigma -> if evi.evar_body = Evar_empty then
add sigma ev evi else sigma)
isevars.evars empty
in
{ isevars with evars = evd }
(* extracts conversion problems that satisfy predicate p *)
(* Note: conv_pbs not satisying p are stored back in reverse order *)
let get_conv_pbs isevars p =
let (pbs,pbs1) =
List.fold_left
(fun (pbs,pbs1) pb ->
if p pb then
(pb::pbs,pbs1)
else
(pbs,pb::pbs1))
([],[])
isevars.conv_pbs
in
{isevars with conv_pbs = pbs1},
pbs
(**********************************************************)
(* Sort variables *)
let new_sort_variable (sigma,sm) =
let (u,scstr) = new_sort_var sm in
(Type u,(sigma,scstr))
let is_sort_variable (_,sm) s =
is_sort_var s sm
let whd_sort_variable (_,sm) t = whd_sort_var sm t
let set_leq_sort_variable (sigma,sm) u1 u2 =
(sigma, set_leq u1 u2 sm)
let define_sort_variable (sigma,sm) u s =
(sigma, set_sort_variable u s sm)
let pr_sort_constraints (_,sm) = pr_sort_cstrs sm
(**********************************************************)
(* Accessing metas *)
let meta_list evd = metamap_to_list evd.metas
let meta_defined evd mv =
match Metamap.find mv evd.metas with
| Clval _ -> true
| Cltyp _ -> false
let meta_fvalue evd mv =
match Metamap.find mv evd.metas with
| Clval(_,b,_) -> b
| Cltyp _ -> anomaly "meta_fvalue: meta has no value"
let meta_ftype evd mv =
match Metamap.find mv evd.metas with
| Cltyp (_,b) -> b
| Clval(_,_,b) -> b
let meta_declare mv v ?(name=Anonymous) evd =
{ evd with metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas }
let meta_assign mv v evd =
match Metamap.find mv evd.metas with
Cltyp(na,ty) ->
{ evd with
metas = Metamap.add mv (Clval(na,mk_freelisted v, ty)) evd.metas }
| _ -> anomaly "meta_assign: already defined"
(* If the meta is defined then forget its name *)
let meta_name evd mv =
try
let (na,def) = clb_name (Metamap.find mv evd.metas) in
if def then Anonymous else na
with Not_found -> Anonymous
let meta_with_name evd id =
let na = Name id in
let (mvl,mvnodef) =
Metamap.fold
(fun n clb (l1,l2 as l) ->
let (na',def) = clb_name clb in
if na = na' then if def then (n::l1,l2) else (n::l1,n::l2)
else l)
evd.metas ([],[]) in
match mvnodef, mvl with
| _,[] ->
errorlabstrm "Evd.meta_with_name"
(str"No such bound variable " ++ pr_id id)
| ([n],_|_,[n]) ->
n
| _ ->
errorlabstrm "Evd.meta_with_name"
(str "Binder name \"" ++ pr_id id ++
str"\" occurs more than once in clause")
let meta_merge evd1 evd2 =
{evd2 with
metas = List.fold_left (fun m (n,v) -> Metamap.add n v m)
evd2.metas (metamap_to_list evd1.metas) }
(**********************************************************)
(* Pretty-printing *)
let pr_meta_map mmap =
let pr_name = function
Name id -> str"[" ++ pr_id id ++ str"]"
| _ -> mt() in
let pr_meta_binding = function
| (mv,Cltyp (na,b)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " : " ++
print_constr b.rebus ++ fnl ())
| (mv,Clval(na,b,_)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " := " ++
print_constr b.rebus ++ fnl ())
in
prlist pr_meta_binding (metamap_to_list mmap)
let pr_idl idl = prlist_with_sep pr_spc pr_id idl
let pr_evar_info evi =
let phyps = pr_idl (List.rev (ids_of_named_context (evar_context evi))) in
let pty = print_constr evi.evar_concl in
let pb =
match evi.evar_body with
| Evar_empty -> mt ()
| Evar_defined c -> spc() ++ str"=> " ++ print_constr c
in
hov 2 (str"[" ++ phyps ++ spc () ++ str"|- " ++ pty ++ pb ++ str"]")
let pr_evar_map sigma =
h 0
(prlist_with_sep pr_fnl
(fun (ev,evi) ->
h 0 (str(string_of_existential ev)++str"=="++ pr_evar_info evi))
(to_list sigma))
let pr_evar_defs evd =
let pp_evm =
if evd.evars = empty then mt() else
str"EVARS:"++brk(0,1)++pr_evar_map evd.evars++fnl() in
let n = List.length evd.conv_pbs in
let cstrs =
if n=0 then mt() else
str"=> " ++ int n ++ str" constraints" ++ fnl() ++ fnl() in
let pp_met =
if evd.metas = Metamap.empty then mt() else
str"METAS:"++brk(0,1)++pr_meta_map evd.metas in
v 0 (pp_evm ++ cstrs ++ pp_met)
|