1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: evarutil.ml 9573 2007-01-31 20:18:18Z notin $ *)
open Util
open Pp
open Names
open Nameops
open Univ
open Term
open Termops
open Sign
open Environ
open Evd
open Reductionops
open Pretype_errors
(* Expanding existential variables (pretyping.ml) *)
(* 1- whd_ise fails if an existential is undefined *)
exception Uninstantiated_evar of existential_key
let rec whd_ise sigma c =
match kind_of_term c with
| Evar (ev,args) when Evd.mem sigma ev ->
if Evd.is_defined sigma ev then
whd_ise sigma (existential_value sigma (ev,args))
else raise (Uninstantiated_evar ev)
| _ -> c
(* Expand evars, possibly in the head of an application *)
let whd_castappevar_stack sigma c =
let rec whrec (c, l as s) =
match kind_of_term c with
| Evar (ev,args) when Evd.mem sigma ev & Evd.is_defined sigma ev ->
whrec (existential_value sigma (ev,args), l)
| Cast (c,_,_) -> whrec (c, l)
| App (f,args) -> whrec (f, Array.fold_right (fun a l -> a::l) args l)
| _ -> s
in
whrec (c, [])
let whd_castappevar sigma c = applist (whd_castappevar_stack sigma c)
let nf_evar = Pretype_errors.nf_evar
let j_nf_evar = Pretype_errors.j_nf_evar
let jl_nf_evar = Pretype_errors.jl_nf_evar
let jv_nf_evar = Pretype_errors.jv_nf_evar
let tj_nf_evar = Pretype_errors.tj_nf_evar
let nf_evar_info evc info =
{ info with
evar_concl = Reductionops.nf_evar evc info.evar_concl;
evar_hyps = map_named_val (Reductionops.nf_evar evc) info.evar_hyps}
let nf_evars evm = Evd.fold (fun ev evi evm' -> Evd.add evm' ev (nf_evar_info evm evi))
evm Evd.empty
let nf_evar_defs isevars = Evd.evars_reset_evd (nf_evars (Evd.evars_of isevars)) isevars
let nf_isevar isevars = nf_evar (Evd.evars_of isevars)
let j_nf_isevar isevars = j_nf_evar (Evd.evars_of isevars)
let jl_nf_isevar isevars = jl_nf_evar (Evd.evars_of isevars)
let jv_nf_isevar isevars = jv_nf_evar (Evd.evars_of isevars)
let tj_nf_isevar isevars = tj_nf_evar (Evd.evars_of isevars)
(**********************)
(* Creating new metas *)
(**********************)
(* Generator of metavariables *)
let new_meta =
let meta_ctr = ref 0 in
fun () -> incr meta_ctr; !meta_ctr
let mk_new_meta () = mkMeta(new_meta())
let collect_evars emap c =
let rec collrec acc c =
match kind_of_term c with
| Evar (k,_) ->
if Evd.mem emap k & not (Evd.is_defined emap k) then k::acc
else (* No recursion on the evar instantiation *) acc
| _ ->
fold_constr collrec acc c in
list_uniquize (collrec [] c)
let push_dependent_evars sigma emap =
Evd.fold (fun ev {evar_concl = ccl} (sigma',emap') ->
List.fold_left
(fun (sigma',emap') ev ->
(Evd.add sigma' ev (Evd.find emap' ev),Evd.remove emap' ev))
(sigma',emap') (collect_evars emap' ccl))
emap (sigma,emap)
(* replaces a mapping of existentials into a mapping of metas.
Problem if an evar appears in the type of another one (pops anomaly) *)
let evars_to_metas sigma (emap, c) =
let emap = nf_evars emap in
let sigma',emap' = push_dependent_evars sigma emap in
let change_exist evar =
let ty = nf_betaiota (nf_evar emap (existential_type emap evar)) in
let n = new_meta() in
mkCast (mkMeta n, DEFAULTcast, ty) in
let rec replace c =
match kind_of_term c with
Evar (k,_ as ev) when Evd.mem emap' k -> change_exist ev
| _ -> map_constr replace c in
(sigma', replace c)
(* The list of non-instantiated existential declarations *)
let non_instantiated sigma =
let listev = to_list sigma in
List.fold_left
(fun l (ev,evd) ->
if evd.evar_body = Evar_empty then
((ev,nf_evar_info sigma evd)::l) else l)
[] listev
(*************************************)
(* Metas *)
let meta_value evd mv =
let rec valrec mv =
try
let b = meta_fvalue evd mv in
instance
(List.map (fun mv' -> (mv',valrec mv')) (Metaset.elements b.freemetas))
b.rebus
with Anomaly _ | Not_found ->
mkMeta mv
in
valrec mv
let meta_instance env b =
let c_sigma =
List.map
(fun mv -> (mv,meta_value env mv)) (Metaset.elements b.freemetas)
in
instance c_sigma b.rebus
let nf_meta env c = meta_instance env (mk_freelisted c)
(**********************)
(* Creating new evars *)
(**********************)
(* Generator of existential names *)
let new_untyped_evar =
let evar_ctr = ref 0 in
fun () -> incr evar_ctr; existential_of_int !evar_ctr
(*------------------------------------*
* functional operations on evar sets *
*------------------------------------*)
(* All ids of sign must be distincts! *)
let new_evar_instance sign evd typ ?(src=(dummy_loc,InternalHole)) instance =
let ctxt = named_context_of_val sign in
assert (List.length instance = named_context_length ctxt);
if not (list_distinct (ids_of_named_context ctxt)) then
anomaly "new_evar_instance: two vars have the same name";
let newev = new_untyped_evar() in
(evar_declare sign newev typ ~src:src evd,
mkEvar (newev,Array.of_list instance))
let make_evar_instance_with_rel env =
let n = rel_context_length (rel_context env) in
let vars =
fold_named_context
(fun env (id,b,_) l -> (* if b=None then *) mkVar id :: l (*else l*))
env ~init:[] in
snd (fold_rel_context
(fun env (_,b,_) (i,l) ->
(i-1, (*if b=None then *) mkRel i :: l (*else l*)))
env ~init:(n,vars))
let make_subst env args =
snd (fold_named_context
(fun env (id,b,c) (args,l) ->
match b, args with
| (* None *) _ , a::rest -> (rest, (id,a)::l)
(* | Some _, _ -> g*)
| _ -> anomaly "Instance does not match its signature")
env ~init:(List.rev args,[]))
(* [new_isevar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)
let push_rel_context_to_named_context env =
let (subst,_,env) =
Sign.fold_rel_context
(fun (na,c,t) (subst,avoid,env) ->
let id = next_name_away na avoid in
((mkVar id)::subst,
id::avoid,
push_named (id,option_map (substl subst) c,
type_app (substl subst) t)
env))
(rel_context env) ~init:([],ids_of_named_context (named_context env),env)
in (subst, (named_context_val env))
let new_evar evd env ?(src=(dummy_loc,InternalHole)) typ =
let subst,sign = push_rel_context_to_named_context env in
let typ' = substl subst typ in
let instance = make_evar_instance_with_rel env in
new_evar_instance sign evd typ' ~src:src instance
(* The same using side-effect *)
let e_new_evar evd env ?(src=(dummy_loc,InternalHole)) ty =
let (evd',ev) = new_evar !evd env ~src:src ty in
evd := evd';
ev
(*------------------------------------*
* operations on the evar constraints *
*------------------------------------*)
(* Pb: defined Rels and Vars should not be considered as a pattern... *)
let is_pattern inst =
let rec is_hopat l = function
[] -> true
| t :: tl ->
(isRel t or isVar t) && not (List.mem t l) && is_hopat (t::l) tl in
is_hopat [] (Array.to_list inst)
let evar_well_typed_body evd ev evi body =
try
let env = evar_env evi in
let ty = evi.evar_concl in
Typing.check env (evars_of evd) body ty;
true
with e ->
pperrnl
(str "Ill-typed evar instantiation: " ++ fnl() ++
pr_evar_defs evd ++ fnl() ++
str "----> " ++ int ev ++ str " := " ++
print_constr body);
false
let strict_inverse = false
let inverse_instance env isevars ev evi inst rhs =
let subst = make_subst (evar_env evi) (Array.to_list inst) in
let subst = List.map (fun (x,y) -> (y,mkVar x)) subst in
let evd = ref isevars in
let error () =
error_not_clean env (evars_of !evd) ev rhs (evar_source ev !evd) in
let rec subs rigid k t =
match kind_of_term t with
| Rel i ->
if i<=k then t
else
(try List.assoc (mkRel (i-k)) subst
with Not_found ->
if rigid then error()
else if strict_inverse then
failwith "cannot solve pb yet"
else t)
| Var id ->
(try List.assoc t subst
with Not_found ->
if rigid then error()
else if
not strict_inverse &&
List.exists (fun (id',_,_) -> id=id') (evar_context evi)
then
failwith "cannot solve pb yet"
else t)
| Evar (ev,args) ->
if Evd.is_defined_evar !evd (ev,args) then
subs rigid k (existential_value (evars_of !evd) (ev,args))
else
let args' = Array.map (subs false k) args in
mkEvar (ev,args')
| _ -> map_constr_with_binders succ (subs rigid) k t in
let body = subs true 0 (nf_evar (evars_of isevars) rhs) in
(!evd,body)
let is_defined_equation env evd (ev,inst) rhs =
is_pattern inst &&
not (occur_evar ev rhs) &&
try
let evi = Evd.find (evars_of evd) ev in
let (evd',body) = inverse_instance env evd ev evi inst rhs in
evar_well_typed_body evd' ev evi body
with Failure _ -> false
(* Redefines an evar with a smaller context (i.e. it may depend on less
* variables) such that c becomes closed.
* Example: in [x:?1; y:(list ?2)] <?3>x=y /\ x=(nil bool)
* ?3 <-- ?1 no pb: env of ?3 is larger than ?1's
* ?1 <-- (list ?2) pb: ?2 may depend on x, but not ?1.
* What we do is that ?2 is defined by a new evar ?4 whose context will be
* a prefix of ?2's env, included in ?1's env.
Concretely, the assumptions are "env |- ev : T" and "Gamma |-
ev[hyps:=args]" for some Gamma whose de Bruijn context has length k.
We create "env' |- ev' : T" for some env' <= env and define ev:=ev'
*)
let do_restrict_hyps env k evd ev args =
let args = Array.to_list args in
let evi = Evd.find (evars_of !evd) ev in
let hyps = evar_context evi in
let (hyps',ncargs) = list_filter2 (fun _ a -> closedn k a) (hyps,args) in
(* No care is taken in case the evar type uses vars filtered out!
Assuming that the restriction comes from a well-typed Flex/Flex
unification problem (see real_clean), the type of the evar cannot
depend on variables that are not in the scope of the other evar,
since this other evar has the same type (up to unification).
Since moreover, the evar contexts uses names only, the
restriction raise no de Bruijn reallocation problem *)
let env' =
Sign.fold_named_context push_named hyps' ~init:(reset_context env) in
let nc = e_new_evar evd env' ~src:(evar_source ev !evd) evi.evar_concl in
evd := Evd.evar_define ev nc !evd;
let (evn,_) = destEvar nc in
mkEvar(evn,Array.of_list ncargs)
exception Dependency_error of identifier
let rec check_and_clear_in_constr evd c ids =
(* returns a new constr where all the evars have been 'cleaned'
(ie the hypotheses ids have been removed from the contexts of
evars *)
let check id' =
if List.mem id' ids then
raise (Dependency_error id')
in
match kind_of_term c with
| ( Rel _ | Meta _ | Sort _ ) -> c
| ( Const _ | Ind _ | Construct _ ) ->
let vars = Environ.vars_of_global (Global.env()) c in
List.iter check vars; c
| Var id' ->
check id'; mkVar id'
| Evar (e,l) ->
if Evd.is_defined_evar !evd (e,l) then
(* If e is already defined we replace it by its definition *)
let nc = nf_evar (evars_of !evd) c in
(check_and_clear_in_constr evd nc ids)
else
(* We check for dependencies to elements of ids in the
evar_info corresponding to e and in the instance of
arguments. Concurrently, we build a new evar
corresponding to e where hypotheses of ids have been
removed *)
let evi = Evd.find (evars_of !evd) e in
let nconcl = check_and_clear_in_constr evd (evar_concl evi) ids in
let (nhyps,nargs) =
List.fold_right2
(fun (id,ob,c) i (hy,ar) ->
if List.mem id ids then
(hy,ar)
else
let d' = (id,
(match ob with
None -> None
| Some b -> Some (check_and_clear_in_constr evd b ids)),
check_and_clear_in_constr evd c ids) in
let i' = check_and_clear_in_constr evd i ids in
(d'::hy, i'::ar)
)
(evar_context evi) (Array.to_list l) ([],[]) in
let env = Sign.fold_named_context push_named nhyps ~init:(empty_env) in
let ev'= e_new_evar evd env ~src:(evar_source e !evd) nconcl in
evd := Evd.evar_define e ev' !evd;
let (e',_) = destEvar ev' in
mkEvar(e', Array.of_list nargs)
| _ -> map_constr (fun c -> check_and_clear_in_constr evd c ids) c
and clear_hyps_in_evi evd evi ids =
(* clear_evar_hyps erases hypotheses ids in evi, checking if some
hypothesis does not depend on a element of ids, and erases ids in
the contexts of the evars occuring in evi *)
let nconcl = try check_and_clear_in_constr evd (evar_concl evi) ids
with Dependency_error id' -> error (string_of_id id' ^ " is used in conclusion") in
let (nhyps,_) =
let aux (id,ob,c) =
try
(id,
(match ob with
None -> None
| Some b -> Some (check_and_clear_in_constr evd b ids)),
check_and_clear_in_constr evd c ids)
with Dependency_error id' -> error (string_of_id id' ^ " is used in hypothesis "
^ string_of_id id)
in
remove_hyps ids aux (evar_hyps evi)
in
{ evi with
evar_concl = nconcl;
evar_hyps = nhyps}
let need_restriction k args = not (array_for_all (closedn k) args)
(* We try to instantiate the evar assuming the body won't depend
* on arguments that are not Rels or Vars, or appearing several times
* (i.e. we tackle only Miller-Pfenning patterns unification)
* 1) Let a unification problem "env |- ev[hyps:=args] = rhs"
* 2) We limit it to a patterns unification problem "env |- ev[subst] = rhs"
* where only Rel's and Var's are relevant in subst
* 3) We recur on rhs, "imitating" the term failing if some Rel/Var not in scope
* Note: we don't assume rhs in normal form, it may fail while it would
* have succeeded after some reductions
*)
(* Note: error_not_clean should not be an error: it simply means that the
* conversion test that lead to the faulty call to [real_clean] should return
* false. The problem is that we won't get the right error message.
*)
let real_clean env isevars ev evi args rhs =
let evd = ref isevars in
let subst = List.map (fun (x,y) -> (y,mkVar x)) (list_uniquize args) in
let rec subs rigid k t =
match kind_of_term t with
| Rel i ->
if i<=k then t
else
(* Flex/Rel problem: unifiable as a pattern iff Rel in ev scope *)
(try List.assoc (mkRel (i-k)) subst
with Not_found -> if rigid then raise Exit else t)
| Evar (ev,args) ->
if Evd.is_defined_evar !evd (ev,args) then
subs rigid k (existential_value (evars_of !evd) (ev,args))
else
(* Flex/Flex problem: restriction to a common scope *)
let args' = Array.map (subs false k) args in
if need_restriction k args' then
do_restrict_hyps (reset_context env) k evd ev args'
else
mkEvar (ev,args')
| Var id ->
(* Flex/Var problem: unifiable as a pattern iff Var in scope of ev *)
(try List.assoc t subst
with Not_found ->
if
not rigid
(* I don't understand this line: vars from evar_context evi
are private (especially some of them are freshly
generated in push_rel_context_to_named_context). They
have a priori nothing to do with the vars in env. I
remove the test [HH 25/8/06]
or List.exists (fun (id',_,_) -> id=id') (evar_context evi)
*)
then t
else raise Exit)
| _ ->
(* Flex/Rigid problem (or assimilated if not normal): we "imitate" *)
map_constr_with_binders succ (subs rigid) k t
in
let rhs = nf_evar (evars_of isevars) rhs in
let rhs = whd_beta rhs (* heuristic *) in
let body =
try subs true 0 rhs
with Exit ->
error_not_clean env (evars_of !evd) ev rhs (evar_source ev !evd) in
(!evd,body)
(* [evar_define] solves the problem lhs = rhs when lhs is an uninstantiated
* evar, i.e. tries to find the body ?sp for lhs=mkEvar (sp,args)
* ?sp [ sp.hyps \ args ] unifies to rhs
* ?sp must be a closed term, not referring to itself.
* Not so trivial because some terms of args may be terms that are not
* variables. In this case, the non-var-or-Rels arguments are replaced
* by <implicit>. [clean_rhs] will ignore this part of the subtitution.
* This leads to incompleteness (we don't deal with pbs that require
* inference of dependent types), but it seems sensible.
*
* If after cleaning, some free vars still occur, the function [restrict_hyps]
* tries to narrow the env of the evars that depend on Rels.
*
* If after that free Rels still occur it means that the instantiation
* cannot be done, as in [x:?1; y:nat; z:(le y y)] x=z
* ?1 would be instantiated by (le y y) but y is not in the scope of ?1
*)
(* env needed for error messages... *)
let evar_define env (ev,argsv) rhs isevars =
if occur_evar ev rhs
then error_occur_check env (evars_of isevars) ev rhs;
let args = Array.to_list argsv in
let evi = Evd.find (evars_of isevars) ev in
(* the bindings to invert *)
let worklist = make_subst (evar_env evi) args in
let (isevars',body) = real_clean env isevars ev evi worklist rhs in
if occur_meta body then error "Meta cannot occur in evar body"
else
(* needed only if an inferred type *)
let body = refresh_universes body in
(* Cannot strictly type instantiations since the unification algorithm
* does not unifies applications from left to right.
* e.g problem f x == g y yields x==y and f==g (in that order)
* Another problem is that type variables are evars of type Type
let _ =
try
let env = evar_env evi in
let ty = evi.evar_concl in
Typing.check env (evars_of isevars') body ty
with e ->
pperrnl
(str "Ill-typed evar instantiation: " ++ fnl() ++
pr_evar_defs isevars' ++ fnl() ++
str "----> " ++ int ev ++ str " := " ++
print_constr body);
raise e in*)
let isevars'' = Evd.evar_define ev body isevars' in
isevars'',[ev]
(*-------------------*)
(* Auxiliary functions for the conversion algorithms modulo evars
*)
let has_undefined_evars isevars t =
try let _ = local_strong (whd_ise (evars_of isevars)) t in false
with Uninstantiated_evar _ -> true
let is_ground_term isevars t =
not (has_undefined_evars isevars t)
let head_is_evar isevars =
let rec hrec k = match kind_of_term k with
| Evar n -> not (Evd.is_defined_evar isevars n)
| App (f,_) -> hrec f
| Cast (c,_,_) -> hrec c
| _ -> false
in
hrec
let rec is_eliminator c = match kind_of_term c with
| App _ -> true
| Case _ -> true
| Cast (c,_,_) -> is_eliminator c
| _ -> false
let head_is_embedded_evar isevars c =
(head_is_evar isevars c) & (is_eliminator c)
let head_evar =
let rec hrec c = match kind_of_term c with
| Evar (ev,_) -> ev
| Case (_,_,c,_) -> hrec c
| App (c,_) -> hrec c
| Cast (c,_,_) -> hrec c
| _ -> failwith "headconstant"
in
hrec
(* Check if an applied evar "?X[args] l" is a Miller's pattern; note
that we don't care whether args itself contains Rel's or even Rel's
distinct from the ones in l *)
let is_unification_pattern_evar (_,args) l =
let l' = Array.to_list args @ l in
List.for_all (fun a -> isRel a or isVar a) l' & list_distinct l'
let is_unification_pattern f l =
match kind_of_term f with
| Meta _ -> array_for_all isRel l & array_distinct l
| Evar ev -> is_unification_pattern_evar ev (Array.to_list l)
| _ -> false
(* From a unification problem "?X l1 = term1 l2" such that l1 is made
of distinct rel's, build "\x1...xn.(term1 l2)" (patterns unification) *)
let solve_pattern_eqn env l1 c =
let c' = List.fold_right (fun a c ->
let c' = subst_term (lift 1 a) (lift 1 c) in
match kind_of_term a with
(* Rem: if [a] links to a let-in, do as if it were an assumption *)
| Rel n -> let (na,_,t) = lookup_rel n env in mkLambda (na,lift n t,c')
| Var id -> let (id,_,t) = lookup_named id env in mkNamedLambda id t c'
| _ -> assert false)
l1 c in
whd_eta c'
(* This code (i.e. solve_pb, etc.) takes a unification
* problem, and tries to solve it. If it solves it, then it removes
* all the conversion problems, and re-runs conversion on each one, in
* the hopes that the new solution will aid in solving them.
*
* The kinds of problems it knows how to solve are those in which
* the usable arguments of an existential var are all themselves
* universal variables.
* The solution to this problem is to do renaming for the Var's,
* to make them match up with the Var's which are found in the
* hyps of the existential, to do a "pop" for each Rel which is
* not an argument of the existential, and a subst1 for each which
* is, again, with the corresponding variable. This is done by
* evar_define
*
* Thus, we take the arguments of the existential which we are about
* to assign, and zip them with the identifiers in the hypotheses.
* Then, we process all the Var's in the arguments, and sort the
* Rel's into ascending order. Then, we just march up, doing
* subst1's and pop's.
*
* NOTE: We can do this more efficiently for the relative arguments,
* by building a long substituend by hand, but this is a pain in the
* ass.
*)
let status_changed lev (pbty,t1,t2) =
try
List.mem (head_evar t1) lev or List.mem (head_evar t2) lev
with Failure _ ->
try List.mem (head_evar t2) lev with Failure _ -> false
(* Solve pbs (?i x1..xn) = (?i y1..yn) which arises often in fixpoint
* definitions. We try to unify the xi with the yi pairwise. The pairs
* that don't unify are discarded (i.e. ?i is redefined so that it does not
* depend on these args). *)
let solve_refl conv_algo env isevars ev argsv1 argsv2 =
if argsv1 = argsv2 then (isevars,[]) else
let evd = Evd.find (evars_of isevars) ev in
let hyps = evar_context evd in
let (isevars',_,rsign) =
array_fold_left2
(fun (isevars,sgn,rsgn) a1 a2 ->
let (isevars',b) = conv_algo env isevars Reduction.CONV a1 a2 in
if b then
(isevars',List.tl sgn, add_named_decl (List.hd sgn) rsgn)
else
(isevars,List.tl sgn, rsgn))
(isevars,hyps,[]) argsv1 argsv2
in
let nsign = List.rev rsign in
let (evd',newev) =
let env =
Sign.fold_named_context push_named nsign ~init:(reset_context env) in
new_evar isevars env ~src:(evar_source ev isevars) evd.evar_concl in
let evd'' = Evd.evar_define ev newev evd' in
evd'', [ev]
(* Tries to solve problem t1 = t2.
* Precondition: t1 is an uninstantiated evar
* Returns an optional list of evars that were instantiated, or None
* if the problem couldn't be solved. *)
(* Rq: uncomplete algorithm if pbty = CONV_X_LEQ ! *)
let solve_simple_eqn conv_algo env isevars (pbty,(n1,args1 as ev1),t2) =
try
let t2 = nf_evar (evars_of isevars) t2 in
let (isevars,lsp) = match kind_of_term t2 with
| Evar (n2,args2 as ev2) ->
if n1 = n2 then
solve_refl conv_algo env isevars n1 args1 args2
else
(try evar_define env ev1 t2 isevars
with e when precatchable_exception e ->
evar_define env ev2 (mkEvar ev1) isevars)
(* if Array.length args1 < Array.length args2 then
evar_define env ev2 (mkEvar ev1) isevars
else
evar_define env ev1 t2 isevars*)
| _ ->
evar_define env ev1 t2 isevars in
let (isevars,pbs) = get_conv_pbs isevars (status_changed lsp) in
List.fold_left
(fun (isevars,b as p) (pbty,t1,t2) ->
if b then conv_algo env isevars pbty t1 t2 else p) (isevars,true)
pbs
with e when precatchable_exception e ->
(isevars,false)
(* [check_evars] fails if some unresolved evar remains *)
(* it assumes that the defined existentials have already been substituted *)
let check_evars env initial_sigma isevars c =
let sigma = evars_of isevars in
let c = nf_evar sigma c in
let rec proc_rec c =
match kind_of_term c with
| Evar (ev,args) ->
assert (Evd.mem sigma ev);
if not (Evd.mem initial_sigma ev) then
let (loc,k) = evar_source ev isevars in
error_unsolvable_implicit loc env sigma k
| _ -> iter_constr proc_rec c
in proc_rec c
(* Operations on value/type constraints *)
type type_constraint_type = (int * int) option * constr
type type_constraint = type_constraint_type option
type val_constraint = constr option
(* Old comment...
* Basically, we have the following kind of constraints (in increasing
* strength order):
* (false,(None,None)) -> no constraint at all
* (true,(None,None)) -> we must build a judgement which _TYPE is a kind
* (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty
* (_,(Some v,_)) -> we must build a judgement which _VAL is v
* Maybe a concrete datatype would be easier to understand.
* We differentiate (true,(None,None)) from (_,(None,Some Type))
* because otherwise Case(s) would be misled, as in
* (n:nat) Case n of bool [_]nat end would infer the predicate Type instead
* of Set.
*)
(* The empty type constraint *)
let empty_tycon = None
let mk_tycon_type c = (None, c)
let mk_abstr_tycon_type n c = (Some (n, n), c) (* First component is initial abstraction, second
is current abstraction *)
(* Builds a type constraint *)
let mk_tycon ty = Some (mk_tycon_type ty)
let mk_abstr_tycon n ty = Some (mk_abstr_tycon_type n ty)
(* Constrains the value of a type *)
let empty_valcon = None
(* Builds a value constraint *)
let mk_valcon c = Some c
(* Refining an evar to a product or a sort *)
(* Declaring any type to be in the sort Type shouldn't be harmful since
cumulativity now includes Prop and Set in Type...
It is, but that's not too bad *)
let define_evar_as_abstraction abs evd (ev,args) =
let evi = Evd.find (evars_of evd) ev in
let evenv = evar_env evi in
let (evd1,dom) = new_evar evd evenv (new_Type()) in
let nvar =
next_ident_away (id_of_string "x")
(ids_of_named_context (evar_context evi)) in
let newenv = push_named (nvar, None, dom) evenv in
let (evd2,rng) =
new_evar evd1 newenv ~src:(evar_source ev evd1) (new_Type()) in
let prod = abs (Name nvar, dom, subst_var nvar rng) in
let evd3 = Evd.evar_define ev prod evd2 in
let evdom = fst (destEvar dom), args in
let evrng =
fst (destEvar rng), array_cons (mkRel 1) (Array.map (lift 1) args) in
let prod' = abs (Name nvar, mkEvar evdom, mkEvar evrng) in
(evd3,prod')
let define_evar_as_arrow evd (ev,args) =
define_evar_as_abstraction (fun t -> mkProd t) evd (ev,args)
let define_evar_as_lambda evd (ev,args) =
define_evar_as_abstraction (fun t -> mkLambda t) evd (ev,args)
let define_evar_as_sort isevars (ev,args) =
let s = new_Type () in
Evd.evar_define ev s isevars, destSort s
(* We don't try to guess in which sort the type should be defined, since
any type has type Type. May cause some trouble, but not so far... *)
let judge_of_new_Type () = Typeops.judge_of_type (new_univ ())
(* Propagation of constraints through application and abstraction:
Given a type constraint on a functional term, returns the type
constraint on its domain and codomain. If the input constraint is
an evar instantiate it with the product of 2 new evars. *)
let split_tycon loc env isevars tycon =
let rec real_split c =
let sigma = evars_of isevars in
let t = whd_betadeltaiota env sigma c in
match kind_of_term t with
| Prod (na,dom,rng) -> isevars, (na, dom, rng)
| Evar ev when not (Evd.is_defined_evar isevars ev) ->
let (isevars',prod) = define_evar_as_arrow isevars ev in
let (_,dom,rng) = destProd prod in
isevars',(Anonymous, dom, rng)
| _ -> error_not_product_loc loc env sigma c
in
match tycon with
| None -> isevars,(Anonymous,None,None)
| Some (abs, c) ->
(match abs with
None ->
let isevars', (n, dom, rng) = real_split c in
isevars', (n, mk_tycon dom, mk_tycon rng)
| Some (init, cur) ->
if cur = 0 then
let isevars', (x, dom, rng) = real_split c in
isevars, (Anonymous,
Some (Some (init, 0), dom),
Some (Some (init, 0), rng))
else
isevars, (Anonymous, None, Some (Some (init, pred cur), c)))
let valcon_of_tycon x =
match x with
| Some (None, t) -> Some t
| _ -> None
let lift_abstr_tycon_type n (abs, t) =
match abs with
None -> raise (Invalid_argument "lift_abstr_tycon_type: not an abstraction")
| Some (init, abs) ->
let abs' = abs + n in
if abs' < 0 then raise (Invalid_argument "lift_abstr_tycon_type")
else (Some (init, abs'), t)
let lift_tycon_type n (abs, t) = (abs, lift n t)
let lift_tycon n = option_map (lift_tycon_type n)
let pr_tycon_type env (abs, t) =
match abs with
None -> Termops.print_constr_env env t
| Some (init, cur) -> str "Abstract (" ++ int init ++ str "," ++ int cur ++ str ") " ++ Termops.print_constr_env env t
let pr_tycon env = function
None -> str "None"
| Some t -> pr_tycon_type env t
|