1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: evarconv.ml 13332 2010-07-26 22:12:43Z msozeau $ *)
open Pp
open Util
open Names
open Term
open Closure
open Reduction
open Reductionops
open Termops
open Environ
open Recordops
open Evarutil
open Libnames
open Evd
type flex_kind_of_term =
| Rigid of constr
| MaybeFlexible of constr
| Flexible of existential
let flex_kind_of_term c l =
match kind_of_term c with
| Const _ -> MaybeFlexible c
| Rel n -> MaybeFlexible c
| Var id -> MaybeFlexible c
| Lambda _ when l<>[] -> MaybeFlexible c
| LetIn _ -> MaybeFlexible c
| Evar ev -> Flexible ev
| _ -> Rigid c
let eval_flexible_term env c =
match kind_of_term c with
| Const c -> constant_opt_value env c
| Rel n ->
(try let (_,v,_) = lookup_rel n env in Option.map (lift n) v
with Not_found -> None)
| Var id ->
(try let (_,v,_) = lookup_named id env in v with Not_found -> None)
| LetIn (_,b,_,c) -> Some (subst1 b c)
| Lambda _ -> Some c
| _ -> assert false
let evar_apprec env evd stack c =
let sigma = evd in
let rec aux s =
let (t,stack) = whd_betaiota_deltazeta_for_iota_state env sigma s in
match kind_of_term t with
| Evar (evk,_ as ev) when Evd.is_defined sigma evk ->
aux (Evd.existential_value sigma ev, stack)
| _ -> (t, list_of_stack stack)
in aux (c, append_stack_list stack empty_stack)
let apprec_nohdbeta env evd c =
match kind_of_term (fst (Reductionops.whd_stack evd c)) with
| (Case _ | Fix _) -> applist (evar_apprec env evd [] c)
| _ -> c
let position_problem l2r = function
| CONV -> None
| CUMUL -> Some l2r
(* [check_conv_record (t1,l1) (t2,l2)] tries to decompose the problem
(t1 l1) = (t2 l2) into a problem
l1 = params1@c1::extra_args1
l2 = us2@extra_args2
(t1 params1 c1) = (proji params (c xs))
(t2 us2) = (cstr us)
extra_args1 = extra_args2
by finding a record R and an object c := [xs:bs](Build_R params v1..vn)
with vi = (cstr us), for which we know that the i-th projection proji
satisfies
(proji params (c xs)) = (cstr us)
Rem: such objects, usable for conversion, are defined in the objdef
table; practically, it amounts to "canonically" equip t2 into a
object c in structure R (since, if c1 were not an evar, the
projection would have been reduced) *)
let check_conv_record (t1,l1) (t2,l2) =
try
let proji = global_of_constr t1 in
let canon_s,l2_effective =
try
match kind_of_term t2 with
Prod (_,a,b) -> (* assert (l2=[]); *)
if dependent (mkRel 1) b then raise Not_found
else lookup_canonical_conversion (proji, Prod_cs),[a;pop b]
| Sort s ->
lookup_canonical_conversion
(proji, Sort_cs (family_of_sort s)),[]
| _ ->
let c2 = global_of_constr t2 in
lookup_canonical_conversion (proji, Const_cs c2),l2
with Not_found ->
lookup_canonical_conversion (proji,Default_cs),[]
in
let { o_DEF = c; o_INJ=n; o_TABS = bs;
o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in
let params1, c1, extra_args1 =
match list_chop nparams l1 with
| params1, c1::extra_args1 -> params1, c1, extra_args1
| _ -> raise Not_found in
let us2,extra_args2 = list_chop (List.length us) l2_effective in
c,bs,(params,params1),(us,us2),(extra_args1,extra_args2),c1,
(n,applist(t2,l2))
with Failure _ | Not_found ->
raise Not_found
(* Precondition: one of the terms of the pb is an uninstantiated evar,
* possibly applied to arguments. *)
let rec ise_try evd = function
[] -> assert false
| [f] -> f evd
| f1::l ->
let (evd',b) = f1 evd in
if b then (evd',b) else ise_try evd l
let ise_and evd l =
let rec ise_and i = function
[] -> assert false
| [f] -> f i
| f1::l ->
let (i',b) = f1 i in
if b then ise_and i' l else (evd,false) in
ise_and evd l
let ise_list2 evd f l1 l2 =
let rec ise_list2 i l1 l2 =
match l1,l2 with
[], [] -> (i, true)
| [x], [y] -> f i x y
| x::l1, y::l2 ->
let (i',b) = f i x y in
if b then ise_list2 i' l1 l2 else (evd,false)
| _ -> (evd, false) in
ise_list2 evd l1 l2
let ise_array2 evd f v1 v2 =
let rec allrec i = function
| -1 -> (i,true)
| n ->
let (i',b) = f i v1.(n) v2.(n) in
if b then allrec i' (n-1) else (evd,false)
in
let lv1 = Array.length v1 in
if lv1 = Array.length v2 then allrec evd (pred lv1)
else (evd,false)
let rec evar_conv_x env evd pbty term1 term2 =
let sigma = evd in
let term1 = whd_head_evar sigma term1 in
let term2 = whd_head_evar sigma term2 in
(* Maybe convertible but since reducing can erase evars which [evar_apprec]
could have found, we do it only if the terms are free of evar.
Note: incomplete heuristic... *)
let ground_test =
if is_ground_term evd term1 && is_ground_term evd term2 then
if is_fconv pbty env evd term1 term2 then
Some true
else if is_ground_env evd env then Some false
else None
else None in
match ground_test with
Some b -> (evd,b)
| None ->
let term1 = apprec_nohdbeta env evd term1 in
let term2 = apprec_nohdbeta env evd term2 in
if is_undefined_evar evd term1 then
solve_simple_eqn evar_conv_x env evd
(position_problem true pbty,destEvar term1,term2)
else if is_undefined_evar evd term2 then
solve_simple_eqn evar_conv_x env evd
(position_problem false pbty,destEvar term2,term1)
else
evar_eqappr_x env evd pbty
(decompose_app term1) (decompose_app term2)
and evar_eqappr_x env evd pbty (term1,l1 as appr1) (term2,l2 as appr2) =
(* Evar must be undefined since we have flushed evars *)
match (flex_kind_of_term term1 l1, flex_kind_of_term term2 l2) with
| Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) ->
let f1 i =
if List.length l1 > List.length l2 then
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
ise_and i
[(fun i -> solve_simple_eqn evar_conv_x env i
(position_problem false pbty,ev2,applist(term1,deb1)));
(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) rest1 l2)]
else
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
ise_and i
[(fun i -> solve_simple_eqn evar_conv_x env i
(position_problem true pbty,ev1,applist(term2,deb2)));
(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) l1 rest2)]
and f2 i =
if sp1 = sp2 then
ise_and i
[(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) l1 l2);
(fun i -> solve_refl evar_conv_x env i sp1 al1 al2,
true)]
else (i,false)
in
ise_try evd [f1; f2]
| Flexible ev1, MaybeFlexible flex2 ->
let f1 i =
if
is_unification_pattern_evar env ev1 l1 (applist appr2) &
not (occur_evar (fst ev1) (applist appr2))
then
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t2 = nf_evar evd (applist appr2) in
let t2 = solve_pattern_eqn env l1 t2 in
solve_simple_eqn evar_conv_x env evd
(position_problem true pbty,ev1,t2)
else if
List.length l1 <= List.length l2
then
(* Try first-order unification *)
(* (heuristic that gives acceptable results in practice) *)
let (deb2,rest2) =
list_chop (List.length l2-List.length l1) l2 in
ise_and i
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) l1 rest2);
(fun i -> evar_conv_x env i pbty term1 (applist(term2,deb2)))]
else (i,false)
and f4 i =
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2)
| None -> (i,false)
in
ise_try evd [f1; f4]
| MaybeFlexible flex1, Flexible ev2 ->
let f1 i =
if
is_unification_pattern_evar env ev2 l2 (applist appr1) &
not (occur_evar (fst ev2) (applist appr1))
then
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t1 = nf_evar evd (applist appr1) in
let t1 = solve_pattern_eqn env l2 t1 in
solve_simple_eqn evar_conv_x env evd
(position_problem false pbty,ev2,t1)
else if
List.length l2 <= List.length l1
then
(* Try first-order unification *)
(* (heuristic that gives acceptable results in practice) *)
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
ise_and i
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) rest1 l2);
(fun i -> evar_conv_x env i pbty (applist(term1,deb1)) term2)]
else (i,false)
and f4 i =
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f1; f4]
| MaybeFlexible flex1, MaybeFlexible flex2 ->
let f1 i =
if flex1 = flex2 then
ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2
else
(i,false)
and f2 i =
(try conv_record env i
(try check_conv_record appr1 appr2
with Not_found -> check_conv_record appr2 appr1)
with Not_found -> (i,false))
and f3 i =
(* heuristic: unfold second argument first, exception made
if the first argument is a beta-redex (expand a constant
only if necessary) or the second argument is potentially
usable as a canonical projection *)
if isLambda flex1 or is_open_canonical_projection i appr2
then
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2
| None ->
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2)
| None -> (i,false)
else
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2)
| None ->
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
| Flexible ev1, Rigid _ ->
if
is_unification_pattern_evar env ev1 l1 (applist appr2) &
not (occur_evar (fst ev1) (applist appr2))
then
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t2 = nf_evar evd (applist appr2) in
let t2 = solve_pattern_eqn env l1 t2 in
solve_simple_eqn evar_conv_x env evd
(position_problem true pbty,ev1,t2)
else
(* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,applist appr1,applist appr2) evd,
true
| Rigid _, Flexible ev2 ->
if
is_unification_pattern_evar env ev2 l2 (applist appr1) &
not (occur_evar (fst ev2) (applist appr1))
then
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t1 = nf_evar evd (applist appr1) in
let t1 = solve_pattern_eqn env l2 t1 in
solve_simple_eqn evar_conv_x env evd
(position_problem false pbty,ev2,t1)
else
(* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,applist appr1,applist appr2) evd,
true
| MaybeFlexible flex1, Rigid _ ->
let f3 i =
(try conv_record env i (check_conv_record appr1 appr2)
with Not_found -> (i,false))
and f4 i =
match eval_flexible_term env flex1 with
| Some v1 ->
evar_eqappr_x env i pbty (evar_apprec env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f3; f4]
| Rigid _ , MaybeFlexible flex2 ->
let f3 i =
(try conv_record env i (check_conv_record appr2 appr1)
with Not_found -> (i,false))
and f4 i =
match eval_flexible_term env flex2 with
| Some v2 ->
evar_eqappr_x env i pbty appr1 (evar_apprec env i l2 v2)
| None -> (i,false)
in
ise_try evd [f3; f4]
| Rigid c1, Rigid c2 -> match kind_of_term c1, kind_of_term c2 with
| Cast (c1,_,_), _ -> evar_eqappr_x env evd pbty (c1,l1) appr2
| _, Cast (c2,_,_) -> evar_eqappr_x env evd pbty appr1 (c2,l2)
| Sort s1, Sort s2 when l1=[] & l2=[] ->
(evd,base_sort_cmp pbty s1 s2)
| Lambda (na,c1,c'1), Lambda (_,c2,c'2) when l1=[] & l2=[] ->
ise_and evd
[(fun i -> evar_conv_x env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x (push_rel (na,None,c) env) i CONV c'1 c'2)]
| LetIn (na,b1,t1,c'1), LetIn (_,b2,_,c'2) ->
let f1 i =
ise_and i
[(fun i -> evar_conv_x env i CONV b1 b2);
(fun i ->
let b = nf_evar i b1 in
let t = nf_evar i t1 in
evar_conv_x (push_rel (na,Some b,t) env) i pbty c'1 c'2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) l1 l2)]
and f2 i =
let appr1 = evar_apprec env i l1 (subst1 b1 c'1)
and appr2 = evar_apprec env i l2 (subst1 b2 c'2)
in evar_eqappr_x env i pbty appr1 appr2
in
ise_try evd [f1; f2]
| LetIn (_,b1,_,c'1), _ ->(* On fait commuter les args avec le Let *)
let appr1 = evar_apprec env evd l1 (subst1 b1 c'1)
in evar_eqappr_x env evd pbty appr1 appr2
| _, LetIn (_,b2,_,c'2) ->
let appr2 = evar_apprec env evd l2 (subst1 b2 c'2)
in evar_eqappr_x env evd pbty appr1 appr2
| Prod (n,c1,c'1), Prod (_,c2,c'2) when l1=[] & l2=[] ->
ise_and evd
[(fun i -> evar_conv_x env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x (push_rel (n,None,c) env) i pbty c'1 c'2)]
| Ind sp1, Ind sp2 ->
if eq_ind sp1 sp2 then
ise_list2 evd (fun i -> evar_conv_x env i CONV) l1 l2
else (evd, false)
| Construct sp1, Construct sp2 ->
if eq_constructor sp1 sp2 then
ise_list2 evd (fun i -> evar_conv_x env i CONV) l1 l2
else (evd, false)
| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
ise_and evd
[(fun i -> evar_conv_x env i CONV p1 p2);
(fun i -> evar_conv_x env i CONV c1 c2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x env i CONV) cl1 cl2);
(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) l1 l2)]
| Fix (li1,(_,tys1,bds1 as recdef1)), Fix (li2,(_,tys2,bds2)) ->
if li1=li2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) l1 l2)]
else (evd,false)
| CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) ->
if i1=i2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x env i CONV) l1 l2)]
else (evd,false)
| (Meta _ | Lambda _), _ -> (evd,false)
| _, (Meta _ | Lambda _) -> (evd,false)
| (Ind _ | Construct _ | Sort _ | Prod _), _ -> (evd,false)
| _, (Ind _ | Construct _ | Sort _ | Prod _) -> (evd,false)
| (App _ | Case _ | Fix _ | CoFix _),
(App _ | Case _ | Fix _ | CoFix _) -> (evd,false)
| (Rel _ | Var _ | Const _ | Evar _), _ -> assert false
| _, (Rel _ | Var _ | Const _ | Evar _) -> assert false
and conv_record env evd (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) =
let (evd',ks,_) =
List.fold_left
(fun (i,ks,m) b ->
if m=n then (i,t2::ks, m-1) else
let dloc = (dummy_loc,InternalHole) in
let (i',ev) = new_evar i env ~src:dloc (substl ks b) in
(i', ev :: ks, m - 1))
(evd,[],List.length bs - 1) bs
in
ise_and evd'
[(fun i ->
ise_list2 i
(fun i x1 x -> evar_conv_x env i CONV x1 (substl ks x))
params1 params);
(fun i ->
ise_list2 i
(fun i u1 u -> evar_conv_x env i CONV u1 (substl ks u))
us2 us);
(fun i -> evar_conv_x env i CONV c1 (applist (c,(List.rev ks))));
(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) ts ts1)]
(* We assume here |l1| <= |l2| *)
let first_order_unification env evd (ev1,l1) (term2,l2) =
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
ise_and evd
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i (fun i -> evar_conv_x env i CONV) rest2 l1);
(fun i ->
(* Then instantiate evar unless already done by unifying args *)
let t2 = applist(term2,deb2) in
if is_defined_evar i ev1 then
evar_conv_x env i CONV t2 (mkEvar ev1)
else
solve_simple_eqn ~choose:true evar_conv_x env i (None,ev1,t2))]
let choose_less_dependent_instance evk evd term args =
let evi = Evd.find evd evk in
let subst = make_pure_subst evi args in
let subst' = List.filter (fun (id,c) -> c = term) subst in
if subst' = [] then error "Too complex unification problem." else
Evd.define evk (mkVar (fst (List.hd subst'))) evd
let apply_conversion_problem_heuristic env evd pbty t1 t2 =
let t1 = apprec_nohdbeta env evd (whd_head_evar evd t1) in
let t2 = apprec_nohdbeta env evd (whd_head_evar evd t2) in
let (term1,l1 as appr1) = decompose_app t1 in
let (term2,l2 as appr2) = decompose_app t2 in
match kind_of_term term1, kind_of_term term2 with
| Evar (evk1,args1), (Rel _|Var _) when l1 = [] & l2 = []
& array_for_all (fun a -> a = term2 or isEvar a) args1 ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
choose_less_dependent_instance evk1 evd term2 args1, true
| (Rel _|Var _), Evar (evk2,args2) when l1 = [] & l2 = []
& array_for_all (fun a -> a = term1 or isEvar a) args2 ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
choose_less_dependent_instance evk2 evd term1 args2, true
| Evar ev1,_ when List.length l1 <= List.length l2 ->
(* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *)
first_order_unification env evd (ev1,l1) appr2
| _,Evar ev2 when List.length l2 <= List.length l1 ->
(* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *)
first_order_unification env evd (ev2,l2) appr1
| _ ->
(* Some head evar have been instantiated, or unknown kind of problem *)
evar_conv_x env evd pbty t1 t2
let consider_remaining_unif_problems env evd =
let (evd,pbs) = extract_all_conv_pbs evd in
List.fold_left
(fun evd (pbty,env,t1,t2) ->
let evd', b = apply_conversion_problem_heuristic env evd pbty t1 t2 in
if b then evd' else Pretype_errors.error_cannot_unify env evd (t1, t2))
evd pbs
(* Main entry points *)
let the_conv_x env t1 t2 evd =
match evar_conv_x env evd CONV t1 t2 with
(evd',true) -> evd'
| _ -> raise Reduction.NotConvertible
let the_conv_x_leq env t1 t2 evd =
match evar_conv_x env evd CUMUL t1 t2 with
(evd', true) -> evd'
| _ -> raise Reduction.NotConvertible
let e_conv env evd t1 t2 =
match evar_conv_x env !evd CONV t1 t2 with
(evd',true) -> evd := evd'; true
| _ -> false
let e_cumul env evd t1 t2 =
match evar_conv_x env !evd CUMUL t1 t2 with
(evd',true) -> evd := evd'; true
| _ -> false
|