1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Names
open Term
open Closure
open Reduction
open Reductionops
open Termops
open Environ
open Recordops
open Evarutil
open Libnames
open Evd
type flex_kind_of_term =
| Rigid of constr
| PseudoRigid of constr (* approximated as rigid but not necessarily so *)
| MaybeFlexible of constr (* approx'ed as reducible but not necessarily so *)
| Flexible of existential
let flex_kind_of_term c l =
match kind_of_term c with
| Rel _ | Const _ | Var _ -> MaybeFlexible c
| Lambda _ when l<>[] -> MaybeFlexible c
| LetIn _ -> MaybeFlexible c
| Evar ev -> Flexible ev
| Lambda _ | Prod _ | Sort _ | Ind _ | Construct _ | CoFix _ -> Rigid c
| Meta _ | Case _ | Fix _ -> PseudoRigid c
| Cast _ | App _ -> assert false
let eval_flexible_term ts env c =
match kind_of_term c with
| Const c ->
if is_transparent_constant ts c
then constant_opt_value env c
else None
| Rel n ->
(try let (_,v,_) = lookup_rel n env in Option.map (lift n) v
with Not_found -> None)
| Var id ->
(try
if is_transparent_variable ts id then
let (_,v,_) = lookup_named id env in v
else None
with Not_found -> None)
| LetIn (_,b,_,c) -> Some (subst1 b c)
| Lambda _ -> Some c
| _ -> assert false
let evar_apprec ts env evd stack c =
let sigma = evd in
let rec aux s =
let (t,stack) = whd_betaiota_deltazeta_for_iota_state ts env sigma s in
match kind_of_term t with
| Evar (evk,_ as ev) when Evd.is_defined sigma evk ->
aux (Evd.existential_value sigma ev, stack)
| _ -> (t, list_of_stack stack)
in aux (c, append_stack_list stack empty_stack)
let apprec_nohdbeta ts env evd c =
match kind_of_term (fst (Reductionops.whd_stack evd c)) with
| (Case _ | Fix _) -> applist (evar_apprec ts env evd [] c)
| _ -> c
let position_problem l2r = function
| CONV -> None
| CUMUL -> Some l2r
(* [check_conv_record (t1,l1) (t2,l2)] tries to decompose the problem
(t1 l1) = (t2 l2) into a problem
l1 = params1@c1::extra_args1
l2 = us2@extra_args2
(t1 params1 c1) = (proji params (c xs))
(t2 us2) = (cstr us)
extra_args1 = extra_args2
by finding a record R and an object c := [xs:bs](Build_R params v1..vn)
with vi = (cstr us), for which we know that the i-th projection proji
satisfies
(proji params (c xs)) = (cstr us)
Rem: such objects, usable for conversion, are defined in the objdef
table; practically, it amounts to "canonically" equip t2 into a
object c in structure R (since, if c1 were not an evar, the
projection would have been reduced) *)
let check_conv_record (t1,l1) (t2,l2) =
try
let proji = global_of_constr t1 in
let canon_s,l2_effective =
try
match kind_of_term t2 with
Prod (_,a,b) -> (* assert (l2=[]); *)
if dependent (mkRel 1) b then raise Not_found
else lookup_canonical_conversion (proji, Prod_cs),[a;pop b]
| Sort s ->
lookup_canonical_conversion
(proji, Sort_cs (family_of_sort s)),[]
| _ ->
let c2 = global_of_constr t2 in
lookup_canonical_conversion (proji, Const_cs c2),l2
with Not_found ->
lookup_canonical_conversion (proji,Default_cs),[]
in
let { o_DEF = c; o_INJ=n; o_TABS = bs;
o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in
let params1, c1, extra_args1 =
match list_chop nparams l1 with
| params1, c1::extra_args1 -> params1, c1, extra_args1
| _ -> raise Not_found in
let us2,extra_args2 = list_chop (List.length us) l2_effective in
c,bs,(params,params1),(us,us2),(extra_args1,extra_args2),c1,
(n,applist(t2,l2))
with Failure _ | Not_found ->
raise Not_found
(* Precondition: one of the terms of the pb is an uninstantiated evar,
* possibly applied to arguments. *)
let rec ise_try evd = function
[] -> assert false
| [f] -> f evd
| f1::l ->
let (evd',b) = f1 evd in
if b then (evd',b) else ise_try evd l
let ise_and evd l =
let rec ise_and i = function
[] -> assert false
| [f] -> f i
| f1::l ->
let (i',b) = f1 i in
if b then ise_and i' l else (evd,false) in
ise_and evd l
let ise_list2 evd f l1 l2 =
let rec ise_list2 i l1 l2 =
match l1,l2 with
[], [] -> (i, true)
| [x], [y] -> f i x y
| x::l1, y::l2 ->
let (i',b) = f i x y in
if b then ise_list2 i' l1 l2 else (evd,false)
| _ -> (evd, false) in
ise_list2 evd l1 l2
let ise_array2 evd f v1 v2 =
let rec allrec i = function
| -1 -> (i,true)
| n ->
let (i',b) = f i v1.(n) v2.(n) in
if b then allrec i' (n-1) else (evd,false)
in
let lv1 = Array.length v1 in
if lv1 = Array.length v2 then allrec evd (pred lv1)
else (evd,false)
let rec evar_conv_x ts env evd pbty term1 term2 =
let term1 = whd_head_evar evd term1 in
let term2 = whd_head_evar evd term2 in
(* Maybe convertible but since reducing can erase evars which [evar_apprec]
could have found, we do it only if the terms are free of evar.
Note: incomplete heuristic... *)
let ground_test =
if is_ground_term evd term1 && is_ground_term evd term2 then
if is_trans_fconv pbty ts env evd term1 term2 then
Some true
else if is_ground_env evd env then Some false
else None
else None in
match ground_test with
Some b -> (evd,b)
| None ->
(* Until pattern-unification is used consistently, use nohdbeta to not
destroy beta-redexes that can be used for 1st-order unification *)
let term1 = apprec_nohdbeta ts env evd term1 in
let term2 = apprec_nohdbeta ts env evd term2 in
if is_undefined_evar evd term1 then
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,destEvar term1,term2)
else if is_undefined_evar evd term2 then
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,destEvar term2,term1)
else
evar_eqappr_x ts env evd pbty
(decompose_app term1) (decompose_app term2)
and evar_eqappr_x ?(rhs_is_stuck_proj = false)
ts env evd pbty (term1,l1 as appr1) (term2,l2 as appr2) =
(* Evar must be undefined since we have flushed evars *)
match (flex_kind_of_term term1 l1, flex_kind_of_term term2 l2) with
| Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) ->
let f1 i =
if List.length l1 > List.length l2 then
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
ise_and i
[(fun i -> solve_simple_eqn (evar_conv_x ts) env i
(position_problem false pbty,ev2,applist(term1,deb1)));
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) rest1 l2)]
else
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
ise_and i
[(fun i -> solve_simple_eqn (evar_conv_x ts) env i
(position_problem true pbty,ev1,applist(term2,deb2)));
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 rest2)]
and f2 i =
if sp1 = sp2 then
ise_and i
[(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 l2);
(fun i -> solve_refl (evar_conv_x ts) env i sp1 al1 al2,
true)]
else (i,false)
in
ise_try evd [f1; f2]
| Flexible ev1, MaybeFlexible flex2 ->
let f1 i =
match is_unification_pattern_evar env evd ev1 l1 (applist appr2) with
| Some l1' ->
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t2 = nf_evar evd (applist appr2) in
let t2 = solve_pattern_eqn env l1' t2 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,ev1,t2)
| None -> (i,false)
and f2 i =
if
List.length l1 <= List.length l2
then
(* Try first-order unification *)
(* (heuristic that gives acceptable results in practice) *)
let (deb2,rest2) =
list_chop (List.length l2-List.length l1) l2 in
ise_and i
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 rest2);
(fun i -> evar_conv_x ts env i pbty term1 (applist(term2,deb2)))]
else (i,false)
and f3 i =
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
| MaybeFlexible flex1, Flexible ev2 ->
let f1 i =
match is_unification_pattern_evar env evd ev2 l2 (applist appr1) with
| Some l1' ->
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t1 = nf_evar evd (applist appr1) in
let t1 = solve_pattern_eqn env l2 t1 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,ev2,t1)
| None -> (i,false)
and f2 i =
if
List.length l2 <= List.length l1
then
(* Try first-order unification *)
(* (heuristic that gives acceptable results in practice) *)
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
ise_and i
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) rest1 l2);
(fun i -> evar_conv_x ts env i pbty (applist(term1,deb1)) term2)]
else (i,false)
and f3 i =
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
| MaybeFlexible flex1, MaybeFlexible flex2 -> begin
match kind_of_term flex1, kind_of_term flex2 with
| LetIn (na,b1,t1,c'1), LetIn (_,b2,_,c'2) ->
let f1 i =
ise_and i
[(fun i -> evar_conv_x ts env i CONV b1 b2);
(fun i ->
let b = nf_evar i b1 in
let t = nf_evar i t1 in
evar_conv_x ts (push_rel (na,Some b,t) env) i pbty c'1 c'2);
(fun i -> ise_list2 i (fun i -> evar_conv_x ts env i CONV) l1 l2)]
and f2 i =
let appr1 = evar_apprec ts env i l1 (subst1 b1 c'1)
and appr2 = evar_apprec ts env i l2 (subst1 b2 c'2)
in evar_eqappr_x ts env i pbty appr1 appr2
in
ise_try evd [f1; f2]
| _, _ ->
let f1 i =
if eq_constr flex1 flex2 then
ise_list2 i (fun i -> evar_conv_x ts env i CONV) l1 l2
else
(i,false)
and f2 i =
(try conv_record ts env i
(try check_conv_record appr1 appr2
with Not_found -> check_conv_record appr2 appr1)
with Not_found -> (i,false))
and f3 i =
(* heuristic: unfold second argument first, exception made
if the first argument is a beta-redex (expand a constant
only if necessary) or the second argument is potentially
usable as a canonical projection *)
let rhs_is_stuck_proj =
rhs_is_stuck_proj || is_open_canonical_projection env i appr2 in
if isLambda flex1 || rhs_is_stuck_proj then
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ~rhs_is_stuck_proj
ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None ->
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None -> (i,false)
else
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None ->
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
end
| Rigid c1, Rigid c2 when isLambda c1 & isLambda c2 ->
let (na,c1,c'1) = destLambda c1 in
let (_,c2,c'2) = destLambda c2 in
assert (l1=[] & l2=[]);
ise_and evd
[(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x ts (push_rel (na,None,c) env) i CONV c'1 c'2)]
| Flexible ev1, (Rigid _ | PseudoRigid _) ->
(match is_unification_pattern_evar env evd ev1 l1 (applist appr2) with
| Some l1 ->
(* Miller-Pfenning's pattern unification *)
(* Preserve generality thanks to eta-conversion) *)
let t2 = nf_evar evd (applist appr2) in
let t2 = solve_pattern_eqn env l1 t2 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,ev1,t2)
| None ->
(* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,applist appr1,applist appr2) evd,
true)
| (Rigid _ | PseudoRigid _), Flexible ev2 ->
(match is_unification_pattern_evar env evd ev2 l2 (applist appr1) with
| Some l2 ->
(* Miller-Pfenning's pattern unification *)
(* Preserve generality thanks to eta-conversion) *)
let t1 = nf_evar evd (applist appr1) in
let t1 = solve_pattern_eqn env l2 t1 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,ev2,t1)
| None ->
(* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,applist appr1,applist appr2) evd,
true)
| MaybeFlexible flex1, (Rigid _ | PseudoRigid _) ->
let f3 i =
(try conv_record ts env i (check_conv_record appr1 appr2)
with Not_found -> (i,false))
and f4 i =
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f3; f4]
| (Rigid _ | PseudoRigid _), MaybeFlexible flex2 ->
let f3 i =
(try conv_record ts env i (check_conv_record appr2 appr1)
with Not_found -> (i,false))
and f4 i =
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None -> (i,false)
in
ise_try evd [f3; f4]
(* Eta-expansion *)
| Rigid c1, _ when isLambda c1 ->
assert (l1 = []);
let (na,c1,c'1) = destLambda c1 in
let c = nf_evar evd c1 in
let env' = push_rel (na,None,c) env in
let appr1 = evar_apprec ts env' evd [] c'1 in
let appr2 = (lift 1 term2, List.map (lift 1) l2 @ [mkRel 1]) in
evar_eqappr_x ts env' evd CONV appr1 appr2
| _, Rigid c2 when isLambda c2 ->
assert (l2 = []);
let (na,c2,c'2) = destLambda c2 in
let c = nf_evar evd c2 in
let env' = push_rel (na,None,c) env in
let appr1 = (lift 1 term1, List.map (lift 1) l1 @ [mkRel 1]) in
let appr2 = evar_apprec ts env' evd [] c'2 in
evar_eqappr_x ts env' evd CONV appr1 appr2
| Rigid c1, Rigid c2 -> begin
match kind_of_term c1, kind_of_term c2 with
| Sort s1, Sort s2 when l1=[] & l2=[] ->
(try
let evd' =
if pbty = CONV
then Evd.set_eq_sort evd s1 s2
else Evd.set_leq_sort evd s1 s2
in (evd', true)
with Univ.UniverseInconsistency _ -> (evd, false)
| _ -> (evd, false))
| Prod (n,c1,c'1), Prod (_,c2,c'2) when l1=[] & l2=[] ->
ise_and evd
[(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x ts (push_rel (n,None,c) env) i pbty c'1 c'2)]
| Ind sp1, Ind sp2 ->
if eq_ind sp1 sp2 then
ise_list2 evd (fun i -> evar_conv_x ts env i CONV) l1 l2
else (evd, false)
| Construct sp1, Construct sp2 ->
if eq_constructor sp1 sp2 then
ise_list2 evd (fun i -> evar_conv_x ts env i CONV) l1 l2
else (evd, false)
| CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) ->
if i1=i2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 l2)]
else (evd,false)
| (Ind _ | Construct _ | Sort _ | Prod _ | CoFix _), _ -> (evd,false)
| _, (Ind _ | Construct _ | Sort _ | Prod _ | CoFix _) -> (evd,false)
| (App _ | Meta _ | Cast _ | Case _ | Fix _), _ -> assert false
| (LetIn _ | Rel _ | Var _ | Const _ | Evar _), _ -> assert false
| (Lambda _), _ -> assert false
end
| PseudoRigid c1, PseudoRigid c2 -> begin
match kind_of_term c1, kind_of_term c2 with
| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
ise_and evd
[(fun i -> evar_conv_x ts env i CONV p1 p2);
(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) cl1 cl2);
(fun i -> ise_list2 i (fun i -> evar_conv_x ts env i CONV) l1 l2)]
| Fix (li1,(_,tys1,bds1 as recdef1)), Fix (li2,(_,tys2,bds2)) ->
if li1=li2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 l2)]
else (evd,false)
| (Meta _ | Case _ | Fix _ | CoFix _),
(Meta _ | Case _ | Fix _ | CoFix _) -> (evd,false)
| (App _ | Ind _ | Construct _ | Sort _ | Prod _), _ -> assert false
| _, (App _ | Ind _ | Construct _ | Sort _ | Prod _) -> assert false
| (LetIn _ | Cast _), _ -> assert false
| _, (LetIn _ | Cast _) -> assert false
| (Lambda _ | Rel _ | Var _ | Const _ | Evar _), _ -> assert false
| _, (Lambda _ | Rel _ | Var _ | Const _ | Evar _) -> assert false
end
| PseudoRigid _, Rigid _ -> (evd,false)
| Rigid _, PseudoRigid _ -> (evd,false)
and conv_record trs env evd (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) =
let (evd',ks,_) =
List.fold_left
(fun (i,ks,m) b ->
if m=n then (i,t2::ks, m-1) else
let dloc = (dummy_loc,InternalHole) in
let (i',ev) = new_evar i env ~src:dloc (substl ks b) in
(i', ev :: ks, m - 1))
(evd,[],List.length bs - 1) bs
in
ise_and evd'
[(fun i ->
ise_list2 i
(fun i x1 x -> evar_conv_x trs env i CONV x1 (substl ks x))
params1 params);
(fun i ->
ise_list2 i
(fun i u1 u -> evar_conv_x trs env i CONV u1 (substl ks u))
us2 us);
(fun i -> evar_conv_x trs env i CONV c1 (applist (c,(List.rev ks))));
(fun i -> ise_list2 i (fun i -> evar_conv_x trs env i CONV) ts ts1)]
(* getting rid of the optional argument rhs_is_stuck_proj *)
let evar_eqappr_x ts env evd pbty appr1 appr2 =
evar_eqappr_x ts env evd pbty appr1 appr2
(* We assume here |l1| <= |l2| *)
let first_order_unification ts env evd (ev1,l1) (term2,l2) =
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
ise_and evd
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i (fun i -> evar_conv_x ts env i CONV) rest2 l1);
(fun i ->
(* Then instantiate evar unless already done by unifying args *)
let t2 = applist(term2,deb2) in
if is_defined_evar i ev1 then
evar_conv_x ts env i CONV t2 (mkEvar ev1)
else
solve_simple_eqn ~choose:true (evar_conv_x ts) env i (None,ev1,t2))]
let choose_less_dependent_instance evk evd term args =
let evi = Evd.find_undefined evd evk in
let subst = make_pure_subst evi args in
let subst' = List.filter (fun (id,c) -> eq_constr c term) subst in
if subst' = [] then error "Too complex unification problem." else
Evd.define evk (mkVar (fst (List.hd subst'))) evd
let apply_on_subterm f c t =
let rec applyrec (k,c as kc) t =
(* By using eq_constr, we make an approximation, for instance, we *)
(* could also be interested in finding a term u convertible to t *)
(* such that c occurs in u *)
if eq_constr c t then f k
else
map_constr_with_binders_left_to_right (fun d (k,c) -> (k+1,lift 1 c))
applyrec kc t
in
applyrec (0,c) t
let filter_possible_projections c args =
let fv1 = free_rels c in
let fv2 = collect_vars c in
List.map (fun a ->
a == c ||
(* Here we make an approximation, for instance, we could also be *)
(* interested in finding a term u convertible to c such that a occurs *)
(* in u *)
isRel a && Intset.mem (destRel a) fv1 ||
isVar a && Idset.mem (destVar a) fv2)
args
let initial_evar_data evi =
let ids = List.map pi1 (evar_context evi) in
(evar_filter evi, List.map mkVar ids)
let solve_evars = ref (fun _ -> failwith "solve_evars not installed")
let set_solve_evars f = solve_evars := f
(* We solve the problem env_rhs |- ?e[u1..un] = rhs knowing
* x1:T1 .. xn:Tn |- ev : ty
* by looking for a maximal well-typed abtraction over u1..un in rhs
*
* We first build C[e11..e1p1,..,en1..enpn] obtained from rhs by replacing
* all occurrences of u1..un by evars eij of type Ti' where itself Ti' has
* been obtained from the type of ui by also replacing all occurrences of
* u1..ui-1 by evars.
*
* Then, we use typing to infer the relations between the different
* occurrences. If some occurrence is still unconstrained after typing,
* we instantiate successively the unresolved occurrences of un by xn,
* of un-1 by xn-1, etc [the idea comes from Chung-Kil Hur, that he
* used for his Heq plugin; extensions to several arguments based on a
* proposition from Dan Grayson]
*)
let second_order_matching ts env_rhs evd (evk,args) argoccs rhs =
try
let args = Array.to_list args in
let evi = Evd.find_undefined evd evk in
let env_evar = evar_env evi in
let sign = named_context_val env_evar in
let ctxt = evar_filtered_context evi in
let filter = evar_filter evi in
let instance = List.map mkVar (List.map pi1 ctxt) in
let rec make_subst = function
| (id,_,t)::ctxt, c::l, occs::occsl when isVarId id c ->
if occs<>None then
error "Cannot force abstraction on identity instance."
else
make_subst (ctxt,l,occsl)
| (id,_,t)::ctxt, c::l, occs::occsl ->
let evs = ref [] in
let filter = List.map2 (&&) filter (filter_possible_projections c args) in
let ty = Retyping.get_type_of env_rhs evd c in
(id,t,c,ty,evs,filter,occs) :: make_subst (ctxt,l,occsl)
| [], [], [] -> []
| _ -> anomaly "Signature, instance and occurrences list do not match" in
let rec set_holes evdref rhs = function
| (id,_,c,cty,evsref,filter,occs)::subst ->
let set_var k =
match occs with
| Some (false,[]) -> mkVar id
| Some _ -> error "Selection of specific occurrences not supported"
| None ->
let evty = set_holes evdref cty subst in
let instance = snd (list_filter2 (fun b c -> b) (filter,instance)) in
let evd,ev = new_evar_instance sign !evdref evty ~filter instance in
evdref := evd;
evsref := (fst (destEvar ev),evty)::!evsref;
ev in
set_holes evdref (apply_on_subterm set_var c rhs) subst
| [] -> rhs in
let subst = make_subst (ctxt,args,argoccs) in
let evdref = ref evd in
let rhs = set_holes evdref rhs subst in
let evd = !evdref in
(* We instantiate the evars of which the value is forced by typing *)
let evd,rhs =
try !solve_evars env_evar evd rhs
with e when Pretype_errors.precatchable_exception e ->
(* Could not revert all subterms *)
raise Exit in
let rec abstract_free_holes evd = function
| (id,idty,c,_,evsref,_,_)::l ->
let rec force_instantiation evd = function
| (evk,evty)::evs ->
let evd =
if is_undefined evd evk then
(* We force abstraction over this unconstrained occurrence *)
(* and we use typing to propagate this instantiation *)
(* This is an arbitrary choice *)
let evd = Evd.define evk (mkVar id) evd in
let evd,b = evar_conv_x ts env_evar evd CUMUL idty evty in
if not b then error "Cannot find an instance";
let evd,b = reconsider_conv_pbs (evar_conv_x ts) evd in
if not b then error "Cannot find an instance";
evd
else
evd
in
force_instantiation evd evs
| [] ->
abstract_free_holes evd l
in
force_instantiation evd !evsref
| [] ->
Evd.define evk rhs evd in
abstract_free_holes evd subst, true
with Exit -> evd, false
let second_order_matching_with_args ts env evd ev l t =
(*
let evd,ev = evar_absorb_arguments env evd ev l in
let argoccs = array_map_to_list (fun _ -> None) (snd ev) in
second_order_matching ts env evd ev argoccs t
*)
(evd,false)
let apply_conversion_problem_heuristic ts env evd pbty t1 t2 =
let t1 = apprec_nohdbeta ts env evd (whd_head_evar evd t1) in
let t2 = apprec_nohdbeta ts env evd (whd_head_evar evd t2) in
let (term1,l1 as appr1) = decompose_app t1 in
let (term2,l2 as appr2) = decompose_app t2 in
match kind_of_term term1, kind_of_term term2 with
| Evar (evk1,args1), (Rel _|Var _) when l1 = [] & l2 = []
& array_for_all (fun a -> eq_constr a term2 or isEvar a) args1 ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
choose_less_dependent_instance evk1 evd term2 args1, true
| (Rel _|Var _), Evar (evk2,args2) when l1 = [] & l2 = []
& array_for_all (fun a -> eq_constr a term1 or isEvar a) args2 ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
choose_less_dependent_instance evk2 evd term1 args2, true
| Evar ev1,_ when List.length l1 <= List.length l2 ->
(* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *)
(* and otherwise second-order matching *)
ise_try evd
[(fun evd -> first_order_unification ts env evd (ev1,l1) appr2);
(fun evd ->
second_order_matching_with_args ts env evd ev1 l1 (applist appr2))]
| _,Evar ev2 when List.length l2 <= List.length l1 ->
(* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *)
(* and otherwise second-order matching *)
ise_try evd
[(fun evd -> first_order_unification ts env evd (ev2,l2) appr1);
(fun evd ->
second_order_matching_with_args ts env evd ev2 l2 (applist appr1))]
| Evar ev1,_ ->
(* Try second-order pattern-matching *)
second_order_matching_with_args ts env evd ev1 l1 (applist appr2)
| _,Evar ev2 ->
(* Try second-order pattern-matching *)
second_order_matching_with_args ts env evd ev2 l2 (applist appr1)
| _ ->
(* Some head evar have been instantiated, or unknown kind of problem *)
evar_conv_x ts env evd pbty t1 t2
let check_problems_are_solved env evd =
match snd (extract_all_conv_pbs evd) with
| (pbty,env,t1,t2)::_ -> Pretype_errors.error_cannot_unify env evd (t1, t2)
| _ -> ()
let consider_remaining_unif_problems ?(ts=full_transparent_state) env evd =
let (evd,pbs) = extract_all_conv_pbs evd in
let heuristic_solved_evd = List.fold_left
(fun evd (pbty,env,t1,t2) ->
let evd', b = apply_conversion_problem_heuristic ts env evd pbty t1 t2 in
if b then evd' else Pretype_errors.error_cannot_unify env evd (t1, t2))
evd pbs in
check_problems_are_solved env heuristic_solved_evd;
Evd.fold_undefined (fun ev ev_info evd' -> match ev_info.evar_source with
|_,ImpossibleCase ->
Evd.define ev (j_type (coq_unit_judge ())) evd'
|_ ->
match ev_info.evar_candidates with
| Some (a::l) -> Evd.define ev a evd'
| Some [] -> error "Unsolvable existential variables"
| None -> evd') heuristic_solved_evd heuristic_solved_evd
(* Main entry points *)
let the_conv_x ?(ts=full_transparent_state) env t1 t2 evd =
match evar_conv_x ts env evd CONV t1 t2 with
(evd',true) -> evd'
| _ -> raise Reduction.NotConvertible
let the_conv_x_leq ?(ts=full_transparent_state) env t1 t2 evd =
match evar_conv_x ts env evd CUMUL t1 t2 with
(evd', true) -> evd'
| _ -> raise Reduction.NotConvertible
let e_conv ?(ts=full_transparent_state) env evd t1 t2 =
match evar_conv_x ts env !evd CONV t1 t2 with
(evd',true) -> evd := evd'; true
| _ -> false
let e_cumul ?(ts=full_transparent_state) env evd t1 t2 =
match evar_conv_x ts env !evd CUMUL t1 t2 with
(evd',true) -> evd := evd'; true
| _ -> false
|