1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: cases.ml 11708 2008-12-20 10:50:20Z msozeau $ *)
open Util
open Names
open Nameops
open Term
open Termops
open Declarations
open Inductiveops
open Environ
open Sign
open Reductionops
open Typeops
open Type_errors
open Rawterm
open Retyping
open Pretype_errors
open Evarutil
open Evarconv
open Evd
(* Pattern-matching errors *)
type pattern_matching_error =
| BadPattern of constructor * constr
| BadConstructor of constructor * inductive
| WrongNumargConstructor of constructor * int
| WrongNumargInductive of inductive * int
| WrongPredicateArity of constr * constr * constr
| NeedsInversion of constr * constr
| UnusedClause of cases_pattern list
| NonExhaustive of cases_pattern list
| CannotInferPredicate of (constr * types) array
exception PatternMatchingError of env * pattern_matching_error
let raise_pattern_matching_error (loc,ctx,te) =
Stdpp.raise_with_loc loc (PatternMatchingError(ctx,te))
let error_bad_pattern_loc loc cstr ind =
raise_pattern_matching_error (loc, Global.env(), BadPattern (cstr,ind))
let error_bad_constructor_loc loc cstr ind =
raise_pattern_matching_error (loc, Global.env(), BadConstructor (cstr,ind))
let error_wrong_numarg_constructor_loc loc env c n =
raise_pattern_matching_error (loc, env, WrongNumargConstructor(c,n))
let error_wrong_numarg_inductive_loc loc env c n =
raise_pattern_matching_error (loc, env, WrongNumargInductive(c,n))
let error_wrong_predicate_arity_loc loc env c n1 n2 =
raise_pattern_matching_error (loc, env, WrongPredicateArity (c,n1,n2))
let error_needs_inversion env x t =
raise (PatternMatchingError (env, NeedsInversion (x,t)))
(**********************************************************************)
(* Functions to deal with impossible cases *)
let impossible_default_case = ref None
let set_impossible_default_clause c = impossible_default_case := Some c
let coq_unit_judge =
let na1 = Name (id_of_string "A") in
let na2 = Name (id_of_string "H") in
fun () ->
match !impossible_default_case with
| Some (id,type_of_id) ->
make_judge id type_of_id
| None ->
(* In case the constants id/ID are not defined *)
make_judge (mkLambda (na1,mkProp,mkLambda(na2,mkRel 1,mkRel 1)))
(mkProd (na1,mkProp,mkArrow (mkRel 1) (mkRel 2)))
(**********************************************************************)
module type S = sig
val compile_cases :
loc -> case_style ->
(type_constraint -> env -> evar_defs ref -> rawconstr -> unsafe_judgment) * evar_defs ref ->
type_constraint ->
env -> rawconstr option * tomatch_tuples * cases_clauses ->
unsafe_judgment
end
let rec list_try_compile f = function
| [a] -> f a
| [] -> anomaly "try_find_f"
| h::t ->
try f h
with UserError _ | TypeError _ | PretypeError _
| Stdpp.Exc_located (_,(UserError _ | TypeError _ | PretypeError _)) ->
list_try_compile f t
let force_name =
let nx = Name (id_of_string "x") in function Anonymous -> nx | na -> na
(************************************************************************)
(* Pattern-matching compilation (Cases) *)
(************************************************************************)
(************************************************************************)
(* Configuration, errors and warnings *)
open Pp
let msg_may_need_inversion () =
strbrk "Found a matching with no clauses on a term unknown to have an empty inductive type."
(* Utils *)
let make_anonymous_patvars n =
list_make n (PatVar (dummy_loc,Anonymous))
(* Environment management *)
let push_rels vars env = List.fold_right push_rel vars env
let push_rel_defs =
List.fold_right (fun (x,d,t) e -> push_rel (x,Some d,t) e)
(* We have x1:t1...xn:tn,xi':ti,y1..yk |- c and re-generalize
over xi:ti to get x1:t1...xn:tn,xi':ti,y1..yk |- c[xi:=xi'] *)
let regeneralize_rel i k j = if j = i+k then k else if j < i+k then j else j
let rec regeneralize_index i k t = match kind_of_term t with
| Rel j when j = i+k -> mkRel (k+1)
| Rel j when j < i+k -> t
| Rel j when j > i+k -> t
| _ -> map_constr_with_binders succ (regeneralize_index i) k t
type alias_constr =
| DepAlias
| NonDepAlias
let mkSpecialLetInJudge j (na,(deppat,nondeppat,d,t)) =
{ uj_val =
if
isRel deppat or not (dependent (mkRel 1) j.uj_val) or
d = NonDepAlias & not (dependent (mkRel 1) j.uj_type)
then
(* The body of pat is not needed to type j - see *)
(* insert_aliases - and both deppat and nondeppat have the *)
(* same type, then one can freely substitute one by the other. *)
(* We use nondeppat only if it's a Rel to preserve sharing. *)
if isRel nondeppat then
subst1 nondeppat j.uj_val
else subst1 deppat j.uj_val
else
(* The body of pat is not needed to type j but its value *)
(* is dependent in the type of j; our choice is to *)
(* enforce this dependency *)
mkLetIn (na,deppat,t,j.uj_val);
uj_type = subst1 deppat j.uj_type }
(**********************************************************************)
(* Structures used in compiling pattern-matching *)
type 'a rhs =
{ rhs_env : env;
rhs_vars : identifier list;
avoid_ids : identifier list;
it : 'a option}
type 'a equation =
{ patterns : cases_pattern list;
rhs : 'a rhs;
alias_stack : name list;
eqn_loc : loc;
used : bool ref }
type 'a matrix = 'a equation list
type dep_status = KnownDep | KnownNotDep | DepUnknown
(* 1st argument of IsInd is the original ind before extracting the summary *)
type tomatch_type =
| IsInd of types * inductive_type * name list
| NotInd of constr option * types
type tomatch_status =
| Pushed of ((constr * tomatch_type) * int list * (name * dep_status))
| Alias of (constr * constr * alias_constr * constr)
| Abstract of rel_declaration
type tomatch_stack = tomatch_status list
(* We keep a constr for aliases and a cases_pattern for error message *)
type alias_builder =
| AliasLeaf
| AliasConstructor of constructor
type pattern_history =
| Top
| MakeAlias of alias_builder * pattern_continuation
and pattern_continuation =
| Continuation of int * cases_pattern list * pattern_history
| Result of cases_pattern list
let start_history n = Continuation (n, [], Top)
let initial_history = function Continuation (_,[],Top) -> true | _ -> false
let feed_history arg = function
| Continuation (n, l, h) when n>=1 ->
Continuation (n-1, arg :: l, h)
| Continuation (n, _, _) ->
anomaly ("Bad number of expected remaining patterns: "^(string_of_int n))
| Result _ ->
anomaly "Exhausted pattern history"
(* This is for non exhaustive error message *)
let rec rawpattern_of_partial_history args2 = function
| Continuation (n, args1, h) ->
let args3 = make_anonymous_patvars (n - (List.length args2)) in
build_rawpattern (List.rev_append args1 (args2@args3)) h
| Result pl -> pl
and build_rawpattern args = function
| Top -> args
| MakeAlias (AliasLeaf, rh) ->
assert (args = []);
rawpattern_of_partial_history [PatVar (dummy_loc, Anonymous)] rh
| MakeAlias (AliasConstructor pci, rh) ->
rawpattern_of_partial_history
[PatCstr (dummy_loc, pci, args, Anonymous)] rh
let complete_history = rawpattern_of_partial_history []
(* This is to build glued pattern-matching history and alias bodies *)
let rec simplify_history = function
| Continuation (0, l, Top) -> Result (List.rev l)
| Continuation (0, l, MakeAlias (f, rh)) ->
let pargs = List.rev l in
let pat = match f with
| AliasConstructor pci ->
PatCstr (dummy_loc,pci,pargs,Anonymous)
| AliasLeaf ->
assert (l = []);
PatVar (dummy_loc, Anonymous) in
feed_history pat rh
| h -> h
(* Builds a continuation expecting [n] arguments and building [ci] applied
to this [n] arguments *)
let push_history_pattern n current cont =
Continuation (n, [], MakeAlias (current, cont))
(* A pattern-matching problem has the following form:
env, evd |- <pred> Cases tomatch of mat end
where tomatch is some sequence of "instructions" (t1 ... tn)
and mat is some matrix
(p11 ... p1n -> rhs1)
( ... )
(pm1 ... pmn -> rhsm)
Terms to match: there are 3 kinds of instructions
- "Pushed" terms to match are typed in [env]; these are usually just
Rel(n) except for the initial terms given by user and typed in [env]
- "Abstract" instructions means an abstraction has to be inserted in the
current branch to build (this means a pattern has been detected dependent
in another one and generalisation is necessary to ensure well-typing)
- "Alias" instructions means an alias has to be inserted (this alias
is usually removed at the end, except when its type is not the
same as the type of the matched term from which it comes -
typically because the inductive types are "real" parameters)
Right-hand-sides:
They consist of a raw term to type in an environment specific to the
clause they belong to: the names of declarations are those of the
variables present in the patterns. Therefore, they come with their
own [rhs_env] (actually it is the same as [env] except for the names
of variables).
*)
type 'a pattern_matching_problem =
{ env : env;
evdref : evar_defs ref;
pred : constr;
tomatch : tomatch_stack;
history : pattern_continuation;
mat : 'a matrix;
caseloc : loc;
casestyle : case_style;
typing_function: type_constraint -> env -> evar_defs ref -> 'a option -> unsafe_judgment }
(*--------------------------------------------------------------------------*
* A few functions to infer the inductive type from the patterns instead of *
* checking that the patterns correspond to the ind. type of the *
* destructurated object. Allows type inference of examples like *
* match n with O => true | _ => false end *
* match x in I with C => true | _ => false end *
*--------------------------------------------------------------------------*)
(* Computing the inductive type from the matrix of patterns *)
(* We use the "in I" clause to coerce the terms to match and otherwise
use the constructor to know in which type is the matching problem
Note that insertion of coercions inside nested patterns is done
each time the matrix is expanded *)
let rec find_row_ind = function
[] -> None
| PatVar _ :: l -> find_row_ind l
| PatCstr(loc,c,_,_) :: _ -> Some (loc,c)
let inductive_template evdref env tmloc ind =
let arsign = get_full_arity_sign env ind in
let hole_source = match tmloc with
| Some loc -> fun i -> (loc, TomatchTypeParameter (ind,i))
| None -> fun _ -> (dummy_loc, InternalHole) in
let (_,evarl,_) =
List.fold_right
(fun (na,b,ty) (subst,evarl,n) ->
match b with
| None ->
let ty' = substl subst ty in
let e = e_new_evar evdref env ~src:(hole_source n) ty' in
(e::subst,e::evarl,n+1)
| Some b ->
(b::subst,evarl,n+1))
arsign ([],[],1) in
applist (mkInd ind,List.rev evarl)
let try_find_ind env sigma typ realnames =
let (IndType(_,realargs) as ind) = find_rectype env sigma typ in
let names =
match realnames with
| Some names -> names
| None -> list_make (List.length realargs) Anonymous in
IsInd (typ,ind,names)
let inh_coerce_to_ind evdref env ty tyi =
let expected_typ = inductive_template evdref env None tyi in
(* devrait être indifférent d'exiger leq ou pas puisque pour
un inductif cela doit être égal *)
let _ = e_cumul env evdref expected_typ ty in ()
let unify_tomatch_with_patterns evdref env loc typ pats realnames =
match find_row_ind pats with
| None -> NotInd (None,typ)
| Some (_,(ind,_)) ->
inh_coerce_to_ind evdref env typ ind;
try try_find_ind env (evars_of !evdref) typ realnames
with Not_found -> NotInd (None,typ)
let find_tomatch_tycon evdref env loc = function
(* Try if some 'in I ...' is present and can be used as a constraint *)
| Some (_,ind,_,realnal) ->
mk_tycon (inductive_template evdref env loc ind),Some (List.rev realnal)
| None ->
empty_tycon,None
let coerce_row typing_fun evdref env pats (tomatch,(_,indopt)) =
let loc = Some (loc_of_rawconstr tomatch) in
let tycon,realnames = find_tomatch_tycon evdref env loc indopt in
let j = typing_fun tycon env evdref tomatch in
let typ = nf_evar (evars_of !evdref) j.uj_type in
let t =
try try_find_ind env (evars_of !evdref) typ realnames
with Not_found ->
unify_tomatch_with_patterns evdref env loc typ pats realnames in
(j.uj_val,t)
let coerce_to_indtype typing_fun evdref env matx tomatchl =
let pats = List.map (fun r -> r.patterns) matx in
let matx' = match matrix_transpose pats with
| [] -> List.map (fun _ -> []) tomatchl (* no patterns at all *)
| m -> m in
List.map2 (coerce_row typing_fun evdref env) matx' tomatchl
(************************************************************************)
(* Utils *)
let mkExistential env ?(src=(dummy_loc,InternalHole)) evdref =
e_new_evar evdref env ~src:src (new_Type ())
let evd_comb2 f evdref x y =
let (evd',y) = f !evdref x y in
evdref := evd';
y
module Cases_F(Coercion : Coercion.S) : S = struct
let adjust_tomatch_to_pattern pb ((current,typ),deps,dep) =
(* Ideally, we could find a common inductive type to which both the
term to match and the patterns coerce *)
(* In practice, we coerce the term to match if it is not already an
inductive type and it is not dependent; moreover, we use only
the first pattern type and forget about the others *)
let typ,names =
match typ with IsInd(t,_,names) -> t,Some names | NotInd(_,t) -> t,None in
let typ =
try try_find_ind pb.env (evars_of !(pb.evdref)) typ names
with Not_found -> NotInd (None,typ) in
let tomatch = ((current,typ),deps,dep) in
match typ with
| NotInd (None,typ) ->
let tm1 = List.map (fun eqn -> List.hd eqn.patterns) pb.mat in
(match find_row_ind tm1 with
| None -> tomatch
| Some (_,(ind,_)) ->
let indt = inductive_template pb.evdref pb.env None ind in
let current =
if deps = [] & isEvar typ then
(* Don't insert coercions if dependent; only solve evars *)
let _ = e_cumul pb.env pb.evdref indt typ in
current
else
(evd_comb2 (Coercion.inh_conv_coerce_to dummy_loc pb.env)
pb.evdref (make_judge current typ) (mk_tycon_type indt)).uj_val in
let sigma = evars_of !(pb.evdref) in
let typ = try_find_ind pb.env sigma indt names in
((current,typ),deps,dep))
| _ -> tomatch
let type_of_tomatch = function
| IsInd (t,_,_) -> t
| NotInd (_,t) -> t
let mkDeclTomatch na = function
| IsInd (t,_,_) -> (na,None,t)
| NotInd (c,t) -> (na,c,t)
let map_tomatch_type f = function
| IsInd (t,ind,names) -> IsInd (f t,map_inductive_type f ind,names)
| NotInd (c,t) -> NotInd (Option.map f c, f t)
let liftn_tomatch_type n depth = map_tomatch_type (liftn n depth)
let lift_tomatch_type n = liftn_tomatch_type n 1
let lift_tomatch n ((current,typ),info) =
((lift n current,lift_tomatch_type n typ),info)
(**********************************************************************)
(* Utilities on patterns *)
let current_pattern eqn =
match eqn.patterns with
| pat::_ -> pat
| [] -> anomaly "Empty list of patterns"
let alias_of_pat = function
| PatVar (_,name) -> name
| PatCstr(_,_,_,name) -> name
let unalias_pat = function
| PatVar (c,name) as p ->
if name = Anonymous then p else PatVar (c,Anonymous)
| PatCstr(a,b,c,name) as p ->
if name = Anonymous then p else PatCstr (a,b,c,Anonymous)
let remove_current_pattern eqn =
match eqn.patterns with
| pat::pats ->
{ eqn with
patterns = pats;
alias_stack = alias_of_pat pat :: eqn.alias_stack }
| [] -> anomaly "Empty list of patterns"
let prepend_pattern tms eqn = {eqn with patterns = tms@eqn.patterns }
(**********************************************************************)
(* Well-formedness tests *)
(* Partial check on patterns *)
exception NotAdjustable
let rec adjust_local_defs loc = function
| (pat :: pats, (_,None,_) :: decls) ->
pat :: adjust_local_defs loc (pats,decls)
| (pats, (_,Some _,_) :: decls) ->
PatVar (loc, Anonymous) :: adjust_local_defs loc (pats,decls)
| [], [] -> []
| _ -> raise NotAdjustable
let check_and_adjust_constructor env ind cstrs = function
| PatVar _ as pat -> pat
| PatCstr (loc,((_,i) as cstr),args,alias) as pat ->
(* Check it is constructor of the right type *)
let ind' = inductive_of_constructor cstr in
if Closure.mind_equiv env ind' ind then
(* Check the constructor has the right number of args *)
let ci = cstrs.(i-1) in
let nb_args_constr = ci.cs_nargs in
if List.length args = nb_args_constr then pat
else
try
let args' = adjust_local_defs loc (args, List.rev ci.cs_args)
in PatCstr (loc, cstr, args', alias)
with NotAdjustable ->
error_wrong_numarg_constructor_loc loc (Global.env())
cstr nb_args_constr
else
(* Try to insert a coercion *)
try
Coercion.inh_pattern_coerce_to loc pat ind' ind
with Not_found ->
error_bad_constructor_loc loc cstr ind
let check_all_variables typ mat =
List.iter
(fun eqn -> match current_pattern eqn with
| PatVar (_,id) -> ()
| PatCstr (loc,cstr_sp,_,_) ->
error_bad_pattern_loc loc cstr_sp typ)
mat
let check_unused_pattern env eqn =
if not !(eqn.used) then
raise_pattern_matching_error
(eqn.eqn_loc, env, UnusedClause eqn.patterns)
let set_used_pattern eqn = eqn.used := true
let extract_rhs pb =
match pb.mat with
| [] -> errorlabstrm "build_leaf" (msg_may_need_inversion())
| eqn::_ ->
set_used_pattern eqn;
eqn.rhs
(**********************************************************************)
(* Functions to deal with matrix factorization *)
let occur_in_rhs na rhs =
match na with
| Anonymous -> false
| Name id -> List.mem id rhs.rhs_vars
let is_dep_patt_in eqn = function
| PatVar (_,name) -> occur_in_rhs name eqn.rhs
| PatCstr _ -> true
let mk_dep_patt_row (pats,eqn) =
List.map (is_dep_patt_in eqn) pats
let dependencies_in_pure_rhs nargs eqns =
if eqns = [] then list_make nargs false (* Only "_" patts *) else
let deps_rows = List.map mk_dep_patt_row eqns in
let deps_columns = matrix_transpose deps_rows in
List.map (List.exists ((=) true)) deps_columns
let dependent_decl a = function
| (na,None,t) -> dependent a t
| (na,Some c,t) -> dependent a t || dependent a c
let rec dep_in_tomatch n = function
| (Pushed _ | Alias _) :: l -> dep_in_tomatch n l
| Abstract d :: l -> dependent_decl (mkRel n) d or dep_in_tomatch (n+1) l
| [] -> false
let dependencies_in_rhs nargs current tms eqns =
match kind_of_term current with
| Rel n when dep_in_tomatch n tms -> list_make nargs true
| _ -> dependencies_in_pure_rhs nargs eqns
(* Computing the matrix of dependencies *)
(* We are in context d1...dn |- and [find_dependencies k 1 nextlist]
computes for declaration [k+1] in which of declarations in
[nextlist] (which corresponds to d(k+2)...dn) it depends;
declarations are expressed by index, e.g. in dependency list
[n-2;1], [1] points to [dn] and [n-2] to [d3] *)
let rec find_dependency_list k n = function
| [] -> []
| (used,tdeps,d)::rest ->
let deps = find_dependency_list k (n+1) rest in
if used && dependent_decl (mkRel n) d
then list_add_set (List.length rest + 1) (list_union deps tdeps)
else deps
let find_dependencies is_dep_or_cstr_in_rhs d (k,nextlist) =
let deps = find_dependency_list k 1 nextlist in
if is_dep_or_cstr_in_rhs || deps <> []
then (k-1,(true ,deps,d)::nextlist)
else (k-1,(false,[] ,d)::nextlist)
let find_dependencies_signature deps_in_rhs typs =
let k = List.length deps_in_rhs in
let _,l = List.fold_right2 find_dependencies deps_in_rhs typs (k,[]) in
List.map (fun (_,deps,_) -> deps) l
(******)
(* A Pushed term to match has just been substituted by some
constructor t = (ci x1...xn) and the terms x1 ... xn have been added to
match
- all terms to match and to push (dependent on t by definition)
must have (Rel depth) substituted by t and Rel's>depth lifted by n
- all pushed terms to match (non dependent on t by definition) must
be lifted by n
We start with depth=1
*)
let regeneralize_index_tomatch n =
let rec genrec depth = function
| [] ->
[]
| Pushed ((c,tm),l,dep) :: rest ->
let c = regeneralize_index n depth c in
let tm = map_tomatch_type (regeneralize_index n depth) tm in
let l = List.map (regeneralize_rel n depth) l in
Pushed ((c,tm),l,dep) :: genrec depth rest
| Alias (c1,c2,d,t) :: rest ->
Alias (regeneralize_index n depth c1,c2,d,t) :: genrec depth rest
| Abstract d :: rest ->
Abstract (map_rel_declaration (regeneralize_index n depth) d)
:: genrec (depth+1) rest in
genrec 0
let rec replace_term n c k t =
if t = mkRel (n+k) then lift k c
else map_constr_with_binders succ (replace_term n c) k t
let length_of_tomatch_type_sign (dep,_) = function
| NotInd _ -> if dep<>Anonymous then 1 else 0
| IsInd (_,_,names) -> List.length names + if dep<>Anonymous then 1 else 0
let replace_tomatch n c =
let rec replrec depth = function
| [] -> []
| Pushed ((b,tm),l,dep) :: rest ->
let b = replace_term n c depth b in
let tm = map_tomatch_type (replace_term n c depth) tm in
List.iter (fun i -> if i=n+depth then anomaly "replace_tomatch") l;
Pushed ((b,tm),l,dep) :: replrec depth rest
| Alias (c1,c2,d,t) :: rest ->
Alias (replace_term n c depth c1,c2,d,t) :: replrec depth rest
| Abstract d :: rest ->
Abstract (map_rel_declaration (replace_term n c depth) d)
:: replrec (depth+1) rest in
replrec 0
let liftn_rel_declaration n k = map_rel_declaration (liftn n k)
let substnl_rel_declaration sigma k = map_rel_declaration (substnl sigma k)
let rec liftn_tomatch_stack n depth = function
| [] -> []
| Pushed ((c,tm),l,dep)::rest ->
let c = liftn n depth c in
let tm = liftn_tomatch_type n depth tm in
let l = List.map (fun i -> if i<depth then i else i+n) l in
Pushed ((c,tm),l,dep)::(liftn_tomatch_stack n depth rest)
| Alias (c1,c2,d,t)::rest ->
Alias (liftn n depth c1,liftn n depth c2,d,liftn n depth t)
::(liftn_tomatch_stack n depth rest)
| Abstract d::rest ->
Abstract (map_rel_declaration (liftn n depth) d)
::(liftn_tomatch_stack n (depth+1) rest)
let lift_tomatch_stack n = liftn_tomatch_stack n 1
(* if [current] has type [I(p1...pn u1...um)] and we consider the case
of constructor [ci] of type [I(p1...pn u'1...u'm)], then the
default variable [name] is expected to have which type?
Rem: [current] is [(Rel i)] except perhaps for initial terms to match *)
(************************************************************************)
(* Some heuristics to get names for variables pushed in pb environment *)
(* Typical requirement:
[match y with (S (S x)) => x | x => x end] should be compiled into
[match y with O => y | (S n) => match n with O => y | (S x) => x end end]
and [match y with (S (S n)) => n | n => n end] into
[match y with O => y | (S n0) => match n0 with O => y | (S n) => n end end]
i.e. user names should be preserved and created names should not
interfere with user names *)
let merge_name get_name obj = function
| Anonymous -> get_name obj
| na -> na
let merge_names get_name = List.map2 (merge_name get_name)
let get_names env sign eqns =
let names1 = list_make (List.length sign) Anonymous in
(* If any, we prefer names used in pats, from top to bottom *)
let names2 =
List.fold_right
(fun (pats,eqn) names -> merge_names alias_of_pat pats names)
eqns names1 in
(* Otherwise, we take names from the parameters of the constructor but
avoiding conflicts with user ids *)
let allvars =
List.fold_left (fun l (_,eqn) -> list_union l eqn.rhs.avoid_ids) [] eqns in
let names4,_ =
List.fold_left2
(fun (l,avoid) d na ->
let na =
merge_name
(fun (na,_,t) -> Name (next_name_away (named_hd env t na) avoid))
d na
in
(na::l,(out_name na)::avoid))
([],allvars) (List.rev sign) names2 in
names4
(************************************************************************)
(* Recovering names for variables pushed to the rhs' environment *)
let recover_alias_names get_name = List.map2 (fun x (_,c,t) ->(get_name x,c,t))
let push_rels_eqn sign eqn =
{eqn with rhs = {eqn.rhs with rhs_env = push_rels sign eqn.rhs.rhs_env} }
let push_rels_eqn_with_names sign eqn =
let pats = List.rev (list_firstn (List.length sign) eqn.patterns) in
let sign = recover_alias_names alias_of_pat pats sign in
push_rels_eqn sign eqn
let build_aliases_context env sigma names allpats pats =
(* pats is the list of bodies to push as an alias *)
(* They all are defined in env and we turn them into a sign *)
(* cuts in sign need to be done in allpats *)
let rec insert env sign1 sign2 n newallpats oldallpats = function
| (deppat,_,_,_)::pats, Anonymous::names when not (isRel deppat) ->
(* Anonymous leaves must be considered named and treated in the *)
(* next clause because they may occur in implicit arguments *)
insert env sign1 sign2
n newallpats (List.map List.tl oldallpats) (pats,names)
| (deppat,nondeppat,d,t)::pats, na::names ->
let nondeppat = lift n nondeppat in
let deppat = lift n deppat in
let newallpats =
List.map2 (fun l1 l2 -> List.hd l2::l1) newallpats oldallpats in
let oldallpats = List.map List.tl oldallpats in
let decl = (na,Some deppat,t) in
let a = (deppat,nondeppat,d,t) in
insert (push_rel decl env) (decl::sign1) ((na,a)::sign2) (n+1)
newallpats oldallpats (pats,names)
| [], [] -> newallpats, sign1, sign2, env
| _ -> anomaly "Inconsistent alias and name lists" in
let allpats = List.map (fun x -> [x]) allpats
in insert env [] [] 0 (List.map (fun _ -> []) allpats) allpats (pats, names)
let insert_aliases_eqn sign eqnnames alias_rest eqn =
let thissign = List.map2 (fun na (_,c,t) -> (na,c,t)) eqnnames sign in
{ eqn with
alias_stack = alias_rest;
rhs = {eqn.rhs with rhs_env = push_rels thissign eqn.rhs.rhs_env } }
let insert_aliases env sigma alias eqns =
(* Là, y a une faiblesse, si un alias est utilisé dans un cas par *)
(* défaut présent mais inutile, ce qui est le cas général, l'alias *)
(* est introduit même s'il n'est pas utilisé dans les cas réguliers *)
let eqnsnames = List.map (fun eqn -> List.hd eqn.alias_stack) eqns in
let alias_rests = List.map (fun eqn -> List.tl eqn.alias_stack) eqns in
(* name2 takes the meet of all needed aliases *)
let name2 =
List.fold_right (merge_name (fun x -> x)) eqnsnames Anonymous in
(* Only needed aliases are kept by build_aliases_context *)
let eqnsnames, sign1, sign2, env =
build_aliases_context env sigma [name2] eqnsnames [alias] in
let eqns = list_map3 (insert_aliases_eqn sign1) eqnsnames alias_rests eqns in
sign2, env, eqns
(**********************************************************************)
(* Functions to deal with elimination predicate *)
exception Occur
let noccur_between_without_evar n m term =
let rec occur_rec n c = match kind_of_term c with
| Rel p -> if n<=p && p<n+m then raise Occur
| Evar (_,cl) -> ()
| _ -> iter_constr_with_binders succ occur_rec n c
in
(m = 0) or (try occur_rec n term; true with Occur -> false)
(* Infering the predicate *)
(*
The problem to solve is the following:
We match Gamma |- t : I(u01..u0q) against the following constructors:
Gamma, x11...x1p1 |- C1(x11..x1p1) : I(u11..u1q)
...
Gamma, xn1...xnpn |- Cn(xn1..xnp1) : I(un1..unq)
Assume the types in the branches are the following
Gamma, x11...x1p1 |- branch1 : T1
...
Gamma, xn1...xnpn |- branchn : Tn
Assume the type of the global case expression is Gamma |- T
The predicate has the form phi = [y1..yq][z:I(y1..yq)]? and must satisfy
the following n+1 equations:
Gamma, x11...x1p1 |- (phi u11..u1q (C1 x11..x1p1)) = T1
...
Gamma, xn1...xnpn |- (phi un1..unq (Cn xn1..xnpn)) = Tn
Gamma |- (phi u01..u0q t) = T
Some hints:
- Clearly, if xij occurs in Ti, then, a "match z with (Ci xi1..xipi)
=> ..." or a "psi(yk)", with psi extracting xij from uik, should be
inserted somewhere in Ti.
- If T is undefined, an easy solution is to insert a "match z with (Ci
xi1..xipi) => ..." in front of each Ti
- Otherwise, T1..Tn and T must be step by step unified, if some of them
diverge, then try to replace the diverging subterm by one of y1..yq or z.
- The main problem is what to do when an existential variables is encountered
*)
(* Propagation of user-provided predicate through compilation steps *)
let rec map_predicate f k ccl = function
| [] -> f k ccl
| Pushed ((_,tm),_,dep) :: rest ->
let k' = length_of_tomatch_type_sign dep tm in
map_predicate f (k+k') ccl rest
| Alias _ :: rest ->
map_predicate f k ccl rest
| Abstract _ :: rest ->
map_predicate f (k+1) ccl rest
let noccurn_predicate = map_predicate noccurn
let liftn_predicate n = map_predicate (liftn n)
let lift_predicate n = liftn_predicate n 1
let regeneralize_index_predicate n = map_predicate (regeneralize_index n) 0
let substnl_predicate sigma = map_predicate (substnl sigma)
(* This is parallel bindings *)
let subst_predicate (args,copt) ccl tms =
let sigma = match copt with
| None -> List.rev args
| Some c -> c::(List.rev args) in
substnl_predicate sigma 0 ccl tms
let specialize_predicate_var (cur,typ,dep) tms ccl =
let c = if dep<>Anonymous then Some cur else None in
let l =
match typ with
| IsInd (_,IndType(_,realargs),names) -> if names<>[] then realargs else []
| NotInd _ -> [] in
subst_predicate (l,c) ccl tms
(*****************************************************************************)
(* We have pred = [X:=realargs;x:=c]P typed in Gamma1, x:I(realargs), Gamma2 *)
(* and we want to abstract P over y:t(x) typed in the same context to get *)
(* *)
(* pred' = [X:=realargs;x':=c](y':t(x'))P[y:=y'] *)
(* *)
(* We first need to lift t(x) s.t. it is typed in Gamma, X:=rargs, x' *)
(* then we have to replace x by x' in t(x) and y by y' in P *)
(*****************************************************************************)
let generalize_predicate (names,(nadep,_)) ny d tms ccl =
if nadep=Anonymous then anomaly "Undetected dependency";
let p = List.length names + 1 in
let ccl = lift_predicate 1 ccl tms in
regeneralize_index_predicate (ny+p+1) ccl tms
let rec extract_predicate l ccl = function
| Alias (deppat,nondeppat,_,_)::tms ->
let tms' = match kind_of_term nondeppat with
| Rel i -> replace_tomatch i deppat tms
| _ -> (* initial terms are not dependent *) tms in
extract_predicate l ccl tms'
| Abstract d'::tms ->
let d' = map_rel_declaration (lift (List.length l)) d' in
substl l (mkProd_or_LetIn d' (extract_predicate [] ccl tms))
| Pushed ((cur,NotInd _),_,(dep,_))::tms ->
extract_predicate (if dep<>Anonymous then cur::l else l) ccl tms
| Pushed ((cur,IsInd (_,IndType(_,realargs),_)),_,(dep,_))::tms ->
let l = List.rev realargs@l in
extract_predicate (if dep<>Anonymous then cur::l else l) ccl tms
| [] ->
substl l ccl
let abstract_predicate env sigma indf cur (names,(nadep,_)) tms ccl =
let sign = make_arity_signature env true indf in
(* n is the number of real args + 1 *)
let n = List.length sign in
let tms = lift_tomatch_stack n tms in
let tms =
match kind_of_term cur with
| Rel i -> regeneralize_index_tomatch (i+n) tms
| _ -> (* Initial case *) tms in
let sign = List.map2 (fun na (_,c,t) -> (na,c,t)) (nadep::names) sign in
let ccl = if nadep <> Anonymous then ccl else lift_predicate 1 ccl tms in
let pred = extract_predicate [] ccl tms in
it_mkLambda_or_LetIn_name env pred sign
let known_dependent (_,dep) = (dep = KnownDep)
(* [expand_arg] is used by [specialize_predicate]
it replaces gamma, x1...xn, x1...xk |- pred
by gamma, x1...xn, x1...xk-1 |- [X=realargs,xk=xk]pred (if dep) or
by gamma, x1...xn, x1...xk-1 |- [X=realargs]pred (if not dep) *)
let expand_arg tms ccl ((_,t),_,na) =
let k = length_of_tomatch_type_sign na t in
lift_predicate (k-1) ccl tms
let adjust_impossible_cases pb pred tomatch submat =
if submat = [] then
match kind_of_term (whd_evar (evars_of !(pb.evdref)) pred) with
| Evar (evk,_) when snd (evar_source evk !(pb.evdref)) = ImpossibleCase ->
let default = (coq_unit_judge ()).uj_type in
pb.evdref := Evd.evar_define evk default !(pb.evdref);
(* we add an "assert false" case *)
let pats = List.map (fun _ -> PatVar (dummy_loc,Anonymous)) tomatch in
let aliasnames =
map_succeed (function Alias _ -> Anonymous | _ -> failwith"") tomatch
in
[ { patterns = pats;
rhs = { rhs_env = pb.env;
rhs_vars = [];
avoid_ids = [];
it = None };
alias_stack = Anonymous::aliasnames;
eqn_loc = dummy_loc;
used = ref false } ]
| _ ->
submat
else
submat
(*****************************************************************************)
(* pred = [X:=realargs;x:=c]P types the following problem: *)
(* *)
(* Gamma |- match Pushed(c:I(realargs)) rest with...end: pred *)
(* *)
(* where the branch with constructor Ci:(x1:T1)...(xn:Tn)->I(realargsi) *)
(* is considered. Assume each Ti is some Ii(argsi). *)
(* We let e=Ci(x1,...,xn) and replace pred by *)
(* *)
(* pred' = [X1:=rargs1,x1:=x1']...[Xn:=rargsn,xn:=xn'](P[X:=realargsi;x:=e]) *)
(* *)
(* s.t Gamma,x1'..xn' |- match Pushed(x1')..Pushed(xn') rest with..end :pred'*)
(* *)
(*****************************************************************************)
let specialize_predicate newtomatchs (names,(depna,_)) cs tms ccl =
(* Assume some gamma st: gamma, (X,x:=realargs,copt), tms |- ccl *)
let nrealargs = List.length names in
let k = nrealargs + (if depna<>Anonymous then 1 else 0) in
(* We adjust pred st: gamma, x1..xn, (X,x:=realargs,copt), tms |- ccl' *)
let n = cs.cs_nargs in
let ccl' = liftn_predicate n (k+1) ccl tms in
let argsi = if nrealargs <> 0 then Array.to_list cs.cs_concl_realargs else [] in
let copti = if depna<>Anonymous then Some (build_dependent_constructor cs) else None in
(* The substituends argsi, copti are all defined in gamma, x1...xn *)
(* We need _parallel_ bindings to get gamma, x1...xn, tms |- ccl'' *)
let ccl'' = whd_betaiota (subst_predicate (argsi, copti) ccl' tms) in
(* We adjust ccl st: gamma, x1..xn, x1..xn, tms |- ccl'' *)
let ccl''' = liftn_predicate n (n+1) ccl'' tms in
(* We finally get gamma,x1..xn |- [X1,x1:=R1,x1]..[Xn,xn:=Rn,xn]pred'''*)
List.fold_left (expand_arg tms) ccl''' newtomatchs
let find_predicate loc env evdref p current (IndType (indf,realargs)) dep tms =
let pred= abstract_predicate env (evars_of !evdref) indf current dep tms p in
(pred, whd_betaiota (applist (pred, realargs@[current])), new_Type ())
let adjust_predicate_from_tomatch ((_,oldtyp),_,(nadep,_)) typ pb =
match typ, oldtyp with
| IsInd (_,_,names), NotInd _ ->
let k = if nadep <> Anonymous then 2 else 1 in
let n = List.length names in
{ pb with pred = liftn_predicate n k pb.pred pb.tomatch }
| _ ->
pb
(************************************************************************)
(* Sorting equations by constructor *)
type inversion_problem =
(* the discriminating arg in some Ind and its order in Ind *)
| Incompatible of int * (int * int)
| Constraints of (int * constr) list
let solve_constraints constr_info indt =
(* TODO *)
Constraints []
let rec irrefutable env = function
| PatVar (_,name) -> true
| PatCstr (_,cstr,args,_) ->
let ind = inductive_of_constructor cstr in
let (_,mip) = Inductive.lookup_mind_specif env ind in
let one_constr = Array.length mip.mind_user_lc = 1 in
one_constr & List.for_all (irrefutable env) args
let first_clause_irrefutable env = function
| eqn::mat -> List.for_all (irrefutable env) eqn.patterns
| _ -> false
let group_equations pb ind current cstrs mat =
let mat =
if first_clause_irrefutable pb.env mat then [List.hd mat] else mat in
let brs = Array.create (Array.length cstrs) [] in
let only_default = ref true in
let _ =
List.fold_right (* To be sure it's from bottom to top *)
(fun eqn () ->
let rest = remove_current_pattern eqn in
let pat = current_pattern eqn in
match check_and_adjust_constructor pb.env ind cstrs pat with
| PatVar (_,name) ->
(* This is a default clause that we expand *)
for i=1 to Array.length cstrs do
let args = make_anonymous_patvars cstrs.(i-1).cs_nargs in
brs.(i-1) <- (args, rest) :: brs.(i-1)
done
| PatCstr (loc,((_,i)),args,_) ->
(* This is a regular clause *)
only_default := false;
brs.(i-1) <- (args,rest) :: brs.(i-1)) mat () in
(brs,!only_default)
(************************************************************************)
(* Here starts the pattern-matching compilation algorithm *)
(* Abstracting over dependent subterms to match *)
let rec generalize_problem names pb = function
| [] -> pb
| i::l ->
let d = map_rel_declaration (lift i) (Environ.lookup_rel i pb.env) in
let pb' = generalize_problem names pb l in
let tomatch = lift_tomatch_stack 1 pb'.tomatch in
let tomatch = regeneralize_index_tomatch (i+1) tomatch in
{ pb' with
tomatch = Abstract d :: tomatch;
pred = generalize_predicate names i d pb.tomatch pb'.pred }
(* No more patterns: typing the right-hand-side of equations *)
let build_leaf pb =
let rhs = extract_rhs pb in
let j = pb.typing_function (mk_tycon pb.pred) rhs.rhs_env pb.evdref rhs.it in
j_nf_evar (evars_of !(pb.evdref)) j
(* Building the sub-problem when all patterns are variables *)
let shift_problem ((current,t),_,(nadep,_)) pb =
{pb with
tomatch = Alias (current,current,NonDepAlias,type_of_tomatch t)::pb.tomatch;
pred = specialize_predicate_var (current,t,nadep) pb.tomatch pb.pred;
history = push_history_pattern 0 AliasLeaf pb.history;
mat = List.map remove_current_pattern pb.mat }
(* Building the sub-pattern-matching problem for a given branch *)
let build_branch current deps (realnames,dep) pb eqns const_info =
(* We remember that we descend through a constructor *)
let alias_type =
if Array.length const_info.cs_concl_realargs = 0
& not (known_dependent dep) & deps = []
then
NonDepAlias
else
DepAlias
in
let history =
push_history_pattern const_info.cs_nargs
(AliasConstructor const_info.cs_cstr)
pb.history in
(* We find matching clauses *)
let cs_args = const_info.cs_args in
let names = get_names pb.env cs_args eqns in
let submat = List.map (fun (tms,eqn) -> prepend_pattern tms eqn) eqns in
let typs = List.map2 (fun (_,c,t) na -> (na,c,t)) cs_args names in
let _,typs',_ =
List.fold_right
(fun (na,c,t as d) (env,typs,tms) ->
let tms = List.map List.tl tms in
(push_rel d env, (na,NotInd(c,t))::typs,tms))
typs (pb.env,[],List.map fst eqns) in
let dep_sign =
find_dependencies_signature
(dependencies_in_rhs const_info.cs_nargs current pb.tomatch eqns)
(List.rev typs) in
(* The dependent term to subst in the types of the remaining UnPushed
terms is relative to the current context enriched by topushs *)
let ci = build_dependent_constructor const_info in
(* We replace [(mkRel 1)] by its expansion [ci] *)
(* and context "Gamma = Gamma1, current, Gamma2" by "Gamma;typs;curalias" *)
(* This is done in two steps : first from "Gamma |- tms" *)
(* into "Gamma; typs; curalias |- tms" *)
let tomatch = lift_tomatch_stack const_info.cs_nargs pb.tomatch in
let typs'' =
list_map2_i
(fun i (na,t) deps ->
let dep = match dep with
| Name _ as na',k -> (if na <> Anonymous then na else na'),k
| Anonymous,KnownNotDep ->
if deps = [] && noccurn_predicate 1 pb.pred tomatch then
(Anonymous,KnownNotDep)
else
(force_name na,KnownDep)
| _,_ -> anomaly "Inconsistent dependency" in
((mkRel i, lift_tomatch_type i t),deps,dep))
1 typs' (List.rev dep_sign) in
let pred =
specialize_predicate typs'' (realnames,dep) const_info tomatch pb.pred in
let currents = List.map (fun x -> Pushed x) typs'' in
let sign = List.map (fun (na,t) -> mkDeclTomatch na t) typs' in
let ind =
appvect (
applist (mkInd (inductive_of_constructor const_info.cs_cstr),
List.map (lift const_info.cs_nargs) const_info.cs_params),
const_info.cs_concl_realargs) in
let cur_alias = lift (List.length sign) current in
let currents = Alias (ci,cur_alias,alias_type,ind) :: currents in
let tomatch = List.rev_append currents tomatch in
let submat = adjust_impossible_cases pb pred tomatch submat in
if submat = [] then
raise_pattern_matching_error
(dummy_loc, pb.env, NonExhaustive (complete_history history));
sign,
{ pb with
env = push_rels sign pb.env;
tomatch = tomatch;
pred = pred;
history = history;
mat = List.map (push_rels_eqn_with_names sign) submat }
(**********************************************************************
INVARIANT:
pb = { env, subst, tomatch, mat, ...}
tomatch = list of Pushed (c:T) or Abstract (na:T) or Alias (c:T)
"Pushed" terms and types are relative to env
"Abstract" types are relative to env enriched by the previous terms to match
*)
(**********************************************************************)
(* Main compiling descent *)
let rec compile pb =
match pb.tomatch with
| (Pushed cur)::rest -> match_current { pb with tomatch = rest } cur
| (Alias x)::rest -> compile_alias pb x rest
| (Abstract d)::rest -> compile_generalization pb d rest
| [] -> build_leaf pb
and match_current pb tomatch =
let ((current,typ),deps,dep as ct) = adjust_tomatch_to_pattern pb tomatch in
let pb = adjust_predicate_from_tomatch tomatch typ pb in
match typ with
| NotInd (_,typ) ->
check_all_variables typ pb.mat;
compile (shift_problem ct pb)
| IsInd (_,(IndType(indf,realargs) as indt),names) ->
let mind,_ = dest_ind_family indf in
let cstrs = get_constructors pb.env indf in
let eqns,onlydflt = group_equations pb mind current cstrs pb.mat in
if (Array.length cstrs <> 0 or pb.mat <> []) & onlydflt then
compile (shift_problem ct pb)
else
let _constraints = Array.map (solve_constraints indt) cstrs in
(* We generalize over terms depending on current term to match *)
let pb = generalize_problem (names,dep) pb deps in
(* We compile branches *)
let brs = array_map2 (compile_branch current (names,dep) deps pb) eqns cstrs in
(* We build the (elementary) case analysis *)
let brvals = Array.map (fun (v,_) -> v) brs in
let (pred,typ,s) =
find_predicate pb.caseloc pb.env pb.evdref
pb.pred current indt (names,dep) pb.tomatch in
let ci = make_case_info pb.env mind pb.casestyle in
let case = mkCase (ci,nf_betaiota pred,current,brvals) in
let inst = List.map mkRel deps in
{ uj_val = applist (case, inst);
uj_type = substl inst typ }
and compile_branch current names deps pb eqn cstr =
let sign, pb = build_branch current deps names pb eqn cstr in
let j = compile pb in
(it_mkLambda_or_LetIn j.uj_val sign, j.uj_type)
and compile_generalization pb d rest =
let pb =
{ pb with
env = push_rel d pb.env;
tomatch = rest;
mat = List.map (push_rels_eqn [d]) pb.mat } in
let j = compile pb in
{ uj_val = mkLambda_or_LetIn d j.uj_val;
uj_type = mkProd_or_LetIn d j.uj_type }
and compile_alias pb (deppat,nondeppat,d,t) rest =
let history = simplify_history pb.history in
let sign, newenv, mat =
insert_aliases pb.env (evars_of !(pb.evdref)) (deppat,nondeppat,d,t) pb.mat in
let n = List.length sign in
(* We had Gamma1; x:current; Gamma2 |- tomatch(x) and we rebind x to get *)
(* Gamma1; x:current; Gamma2; typs; x':=curalias |- tomatch(x') *)
let tomatch = lift_tomatch_stack n rest in
let tomatch = match kind_of_term nondeppat with
| Rel i ->
if n = 1 then regeneralize_index_tomatch (i+n) tomatch
else replace_tomatch i deppat tomatch
| _ -> (* initial terms are not dependent *) tomatch in
let pb =
{pb with
env = newenv;
tomatch = tomatch;
pred = lift_predicate n pb.pred tomatch;
history = history;
mat = mat } in
let j = compile pb in
List.fold_left mkSpecialLetInJudge j sign
(* pour les alias des initiaux, enrichir les env de ce qu'il faut et
substituer après par les initiaux *)
(**************************************************************************)
(* Preparation of the pattern-matching problem *)
(* builds the matrix of equations testing that each eqn has n patterns
* and linearizing the _ patterns.
* Syntactic correctness has already been done in astterm *)
let matx_of_eqns env tomatchl eqns =
let build_eqn (loc,ids,lpat,rhs) =
let initial_lpat,initial_rhs = lpat,rhs in
let initial_rhs = rhs in
let rhs =
{ rhs_env = env;
rhs_vars = free_rawvars initial_rhs;
avoid_ids = ids@(ids_of_named_context (named_context env));
it = Some initial_rhs } in
{ patterns = initial_lpat;
alias_stack = [];
eqn_loc = loc;
used = ref false;
rhs = rhs }
in List.map build_eqn eqns
(************************************************************************)
(* preparing the elimination predicate if any *)
let build_expected_arity env evdref isdep tomatchl =
let cook n = function
| _,IsInd (_,IndType(indf,_),_) ->
let indf' = lift_inductive_family n indf in
Some (build_dependent_inductive env indf', fst (get_arity env indf'))
| _,NotInd _ -> None
in
let rec buildrec n env = function
| [] -> new_Type ()
| tm::ltm ->
match cook n tm with
| None -> buildrec n env ltm
| Some (ty1,aritysign) ->
let rec follow n env = function
| d::sign ->
mkProd_or_LetIn_name env
(follow (n+1) (push_rel d env) sign) d
| [] ->
if isdep then
mkProd (Anonymous, ty1,
buildrec (n+1)
(push_rel_assum (Anonymous, ty1) env)
ltm)
else buildrec n env ltm
in follow n env (List.rev aritysign)
in buildrec 0 env tomatchl
let extract_predicate_conclusion isdep tomatchl pred =
let cook = function
| _,IsInd (_,IndType(_,args),_) -> Some (List.length args)
| _,NotInd _ -> None in
let rec decomp_lam_force n l p =
if n=0 then (l,p) else
match kind_of_term p with
| Lambda (na,_,c) -> decomp_lam_force (n-1) (na::l) c
| _ -> (* eta-expansion *)
let na = Name (id_of_string "x") in
decomp_lam_force (n-1) (na::l) (applist (lift 1 p, [mkRel 1])) in
let rec buildrec allnames p = function
| [] -> (List.rev allnames,p)
| tm::ltm ->
match cook tm with
| None ->
let p =
(* adjust to a sign containing the NotInd's *)
if isdep then lift 1 p else p in
let names = if isdep then [Anonymous] else [] in
buildrec (names::allnames) p ltm
| Some n ->
let n = if isdep then n+1 else n in
let names,p = decomp_lam_force n [] p in
buildrec (names::allnames) p ltm
in buildrec [] pred tomatchl
let set_arity_signature dep n arsign tomatchl pred x =
(* avoid is not exhaustive ! *)
let rec decomp_lam_force n avoid l p =
if n = 0 then (List.rev l,p,avoid) else
match p with
| RLambda (_,(Name id as na),_,_,c) ->
decomp_lam_force (n-1) (id::avoid) (na::l) c
| RLambda (_,(Anonymous as na),_,_,c) -> decomp_lam_force (n-1) avoid (na::l) c
| _ ->
let x = next_ident_away (id_of_string "x") avoid in
decomp_lam_force (n-1) (x::avoid) (Name x :: l)
(* eta-expansion *)
(let a = RVar (dummy_loc,x) in
match p with
| RApp (loc,p,l) -> RApp (loc,p,l@[a])
| _ -> (RApp (dummy_loc,p,[a]))) in
let rec decomp_block avoid p = function
| ([], _) -> x := Some p
| ((_,IsInd (_,IndType(indf,realargs),_))::l),(y::l') ->
let (ind,params) = dest_ind_family indf in
let (nal,p,avoid') = decomp_lam_force (List.length realargs) avoid [] p
in
let na,p,avoid' =
if dep then decomp_lam_force 1 avoid' [] p else [Anonymous],p,avoid'
in
y :=
(List.hd na,
if List.for_all ((=) Anonymous) nal then
None
else
Some (dummy_loc, ind, (List.map (fun _ -> Anonymous) params)@nal));
decomp_block avoid' p (l,l')
| (_::l),(y::l') ->
y := (Anonymous,None);
decomp_block avoid p (l,l')
| _ -> anomaly "set_arity_signature"
in
decomp_block [] pred (tomatchl,arsign)
(***************** Building an inversion predicate ************************)
(* Let "match t1 in I1 u11..u1n_1 ... tm in Im um1..umn_m with ... end : T"
be a pattern-matching problem. We assume that the each uij can be
decomposed under the form pij(vij1..vijq_ij) where pij(aij1..aijq_ij)
is a pattern depending on some variables aijk and the vijk are
instances of these variables. We also assume that each ti has the
form of a pattern qi(wi1..wiq_i) where qi(bi1..biq_i) is a pattern
depending on some variables bik and the wik are instances of these
variables (in practice, there is no reason that ti is already
constructed and the qi will be degenerated).
We then look for a type U(..a1jk..b1 .. ..amjk..bm) so that
T = U(..v1jk..t1 .. ..vmjk..tm). This a higher-order matching
problem with a priori different solution (one of them if T itself!).
We finally invert the uij and the ti and build the return clause
phi(x11..x1n_1y1..xm1..xmn_mym) =
match x11..x1n_1 y1 .. xm1..xmn_m ym with
| p11..p1n_1 q1 .. pm1..pmn_m qm => U(..a1jk..b1 .. ..amjk..bm)
| _ .. _ _ .. _ .. _ _ => True
end
so that "phi(u11..u1n_1t1..um1..umn_mtm) = T" (note that the clause
returning True never happens and any inhabited type can be put instead).
*)
let adjust_to_extended_env_and_remove_deps env extenv subst t =
let n = rel_context_length (rel_context env) in
let n' = rel_context_length (rel_context extenv) in
(* We first remove the bindings that are dependently typed (they are
difficult to manage and it is not sure these are so useful in practice);
Notes:
- [subst] is made of pairs [(id,u)] where id is a name in [extenv] and
[u] a term typed in [env];
- [subst0] is made of items [(p,u,(u,ty))] where [ty] is the type of [u]
and both are adjusted to [extenv] while [p] is the index of [id] in
[extenv] (after expansion of the aliases) *)
let subst0 = map_succeed (fun (x,u) ->
(* d1 ... dn dn+1 ... dn'-p+1 ... dn' *)
(* \--env-/ (= x:ty) *)
(* \--------------extenv------------/ *)
let (p,_) = lookup_rel_id x (rel_context extenv) in
let rec aux n (_,b,ty) =
match b with
| Some c ->
assert (isRel c);
let p = n + destRel c in aux p (lookup_rel p (rel_context extenv))
| None ->
(n,ty) in
let (p,ty) = aux p (lookup_rel p (rel_context extenv)) in
if noccur_between_without_evar 1 (n'-p-n+1) ty
then
let u = lift (n'-n) u in
(p,u,(expand_vars_in_term extenv u,lift p ty))
else
failwith "") subst in
let t0 = lift (n'-n) t in
(subst0,t0)
(* Let vijk and ti be a set of dependent terms and T a type, all
* defined in some environment env. The vijk and ti are supposed to be
* instances for variables aijk and bi.
*
* [abstract_tycon Gamma0 Sigma subst T Gamma] looks for U(..v1jk..t1 .. ..vmjk..tm)
* defined in some extended context
* "Gamma0, ..a1jk:V1jk.. b1:W1 .. ..amjk:Vmjk.. bm:Wm"
* such that env |- T = U(..v1jk..t1 .. ..vmjk..tm). To not commit to
* a particular solution, we replace each subterm t in T that unifies with
* a subset u1..ul of the vijk and ti by a special evar
* ?id(x=t;c1:=c1,..,cl=cl) defined in context Gamma0,x,c1,...,cl |- ?id
* (where the c1..cl are the aijk and bi matching the u1..ul), and
* similarly for each ti.
*)
let abstract_tycon loc env evdref subst _tycon extenv t =
let t = nf_betaiota t in (* it helps in some cases to remove K-redex... *)
let sigma = evars_of !evdref in
let subst0,t0 = adjust_to_extended_env_and_remove_deps env extenv subst t in
(* We traverse the type T of the original problem Xi looking for subterms
that match the non-constructor part of the constraints (this part
is in subst); these subterms are the "good" subterms and we replace them
by an evar that may depend (and only depend) on the corresponding
convertible subterms of the substitution *)
let rec aux (k,env,subst as x) t =
let good = List.filter (fun (_,u,_) -> is_conv_leq env sigma t u) subst in
if good <> [] then
let (u,ty) = pi3 (List.hd good) in
let vl = List.map pi1 good in
let inst =
list_map_i
(fun i _ -> if List.mem i vl then u else mkRel i) 1
(rel_context extenv) in
let rel_filter =
List.map (fun a -> not (isRel a) or dependent a u) inst in
let named_filter =
List.map (fun (id,_,_) -> dependent (mkVar id) u)
(named_context extenv) in
let filter = rel_filter@named_filter in
let ev =
e_new_evar evdref extenv ~src:(loc, CasesType) ~filter:filter ty in
evdref := add_conv_pb (Reduction.CONV,extenv,substl inst ev,u) !evdref;
lift k ev
else
map_constr_with_full_binders
(fun d (k,env,subst) ->
k+1,
push_rel d env,
List.map (fun (na,u,d) -> (na,lift 1 u,d)) subst)
aux x t in
aux (0,extenv,subst0) t0
let build_tycon loc env tycon_env subst tycon extenv evdref t =
let t = match t with
| None ->
(* This is the situation we are building a return predicate and
we are in an impossible branch *)
let n = rel_context_length (rel_context env) in
let n' = rel_context_length (rel_context tycon_env) in
let impossible_case_type =
e_new_evar evdref env ~src:(loc,ImpossibleCase) (new_Type ()) in
lift (n'-n) impossible_case_type
| Some t -> abstract_tycon loc tycon_env evdref subst tycon extenv t in
get_judgment_of extenv (evars_of !evdref) t
(* For a multiple pattern-matching problem Xi on t1..tn with return
* type T, [build_inversion_problem Gamma Sigma (t1..tn) T] builds a return
* predicate for Xi that is itself made by an auxiliary
* pattern-matching problem of which the first clause reveals the
* pattern structure of the constraints on the inductive types of the t1..tn,
* and the second clause is a wildcard clause for catching the
* impossible cases. See above "Building an inversion predicate" for
* further explanations
*)
let build_inversion_problem loc env evdref tms t =
let sigma = evars_of !evdref in
let make_patvar t (subst,avoid) =
let id = next_name_away (named_hd env t Anonymous) avoid in
PatVar (dummy_loc,Name id), ((id,t)::subst, id::avoid) in
let rec reveal_pattern t (subst,avoid as acc) =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Construct cstr -> PatCstr (dummy_loc,cstr,[],Anonymous), acc
| App (f,v) when isConstruct f ->
let cstr = destConstruct f in
let n = constructor_nrealargs env cstr in
let l = list_lastn n (Array.to_list v) in
let l,acc = list_fold_map' reveal_pattern l acc in
PatCstr (dummy_loc,cstr,l,Anonymous), acc
| _ -> make_patvar t acc in
let rec aux n env acc_sign tms acc =
match tms with
| [] -> [], acc_sign, acc
| (t, IsInd (_,IndType(indf,realargs),_)) :: tms ->
let patl,acc = list_fold_map' reveal_pattern realargs acc in
let pat,acc = make_patvar t acc in
let indf' = lift_inductive_family n indf in
let sign = make_arity_signature env true indf' in
let p = List.length realargs in
let env' = push_rels sign env in
let patl',acc_sign,acc = aux (n+p+1) env' (sign@acc_sign) tms acc in
patl@pat::patl',acc_sign,acc
| (t, NotInd (bo,typ)) :: tms ->
aux n env acc_sign tms acc in
let avoid0 = ids_of_context env in
(* [patl] is a list of patterns revealing the substructure of
constructors present in the constraints on the type of the
multiple terms t1..tn that are matched in the original problem;
[subst] is the substitution of the free pattern variables in
[patl] that returns the non-constructor parts of the constraints.
Especially, if the ti has type I ui1..uin_i, and the patterns associated
to ti are pi1..pin_i, then subst(pij) is uij; the substitution is
useful to recognize which subterms of the whole type T of the original
problem have to be abstracted *)
let patl,sign,(subst,avoid) = aux 0 env [] tms ([],avoid0) in
let n = List.length sign in
let (pb_env,_),sub_tms =
list_fold_map (fun (env,i) (na,b,t as d) ->
let typ =
if b<>None then NotInd(None,t) else
try try_find_ind env sigma t None
with Not_found -> NotInd (None,t) in
let ty = lift_tomatch_type (n-i) typ in
let tm = Pushed ((mkRel (n-i),ty),[],(Anonymous,KnownNotDep)) in
((push_rel d env,i+1),tm))
(env,0) (List.rev sign) in
let subst = List.map (fun (na,t) -> (na,lift n t)) subst in
(* [eqn1] is the first clause of the auxiliary pattern-matching that
serves as skeleton for the return type: [patl] is the
substructure of constructors extracted from the list of
constraints on the inductive types of the multiple terms matched
in the original pattern-matching problem Xi *)
let eqn1 =
{ patterns = patl;
alias_stack = [];
eqn_loc = dummy_loc;
used = ref false;
rhs = { rhs_env = pb_env;
(* we assume all vars are used; in practice we discard dependent
vars so that the field rhs_vars is normally not used *)
rhs_vars = List.map fst subst;
avoid_ids = avoid;
it = Some (lift n t) } } in
(* [eqn2] is the default clause of the auxiliary pattern-matching: it will
catch the clauses of the original pattern-matching problem Xi whose
type constraints are incompatible with the constraints on the
inductive types of the multiple terms matched in Xi *)
let eqn2 =
{ patterns = List.map (fun _ -> PatVar (dummy_loc,Anonymous)) patl;
alias_stack = [];
eqn_loc = dummy_loc;
used = ref false;
rhs = { rhs_env = pb_env;
rhs_vars = [];
avoid_ids = avoid0;
it = None } } in
(* [pb] is the auxiliary pattern-matching serving as skeleton for the
return type of the original problem Xi *)
let pb =
{ env = pb_env;
evdref = evdref;
pred = new_Type();
tomatch = sub_tms;
history = start_history n;
mat = [eqn1;eqn2];
caseloc = loc;
casestyle = RegularStyle;
typing_function = build_tycon loc env pb_env subst} in
(compile pb).uj_val
let prepare_predicate_from_tycon loc dep env evdref tomatchs sign c =
let cook (n, l, env, signs) = function
| c,IsInd (_,IndType(indf,realargs),_) ->
let indf' = lift_inductive_family n indf in
let sign = make_arity_signature env dep indf' in
let p = List.length realargs in
if dep then
(n + p + 1, c::(List.rev realargs)@l, push_rels sign env,sign::signs)
else
(n + p, (List.rev realargs)@l, push_rels sign env,sign::signs)
| c,NotInd (bo,typ) ->
let sign = [Anonymous,Option.map (lift n) bo,lift n typ] in
let sign = name_context env sign in
(n + 1, c::l, push_rels sign env, sign::signs) in
let n,allargs,env',signs = List.fold_left cook (0, [], env, []) tomatchs in
let names = List.rev (List.map (List.map pi1) signs) in
names, build_inversion_problem loc env evdref tomatchs c
(* Here, [pred] is assumed to be in the context built from all *)
(* realargs and terms to match *)
let build_initial_predicate knowndep allnames pred =
let nar = List.fold_left (fun n names -> List.length names + n) 0 allnames in
let rec buildrec n pred nal = function
| [] -> List.rev nal,pred
| names::lnames ->
let names' = List.tl names in
let n' = n + List.length names' in
let pred, p =
if dependent (mkRel (nar-n')) pred then pred, 1
else liftn (-1) (nar-n') pred, 0 in
let na =
if p=1 then
let na = List.hd names in
((if na = Anonymous then
(* can happen if evars occur in the return clause *)
Name (id_of_string "x") (*Hum*)
else na),knowndep)
else (Anonymous,KnownNotDep) in
buildrec (n'+1) pred (na::nal) lnames
in buildrec 0 pred [] allnames
let extract_arity_signature env0 tomatchl tmsign =
let get_one_sign n tm (na,t) =
match tm with
| NotInd (bo,typ) ->
(match t with
| None -> [na,Option.map (lift n) bo,lift n typ]
| Some (loc,_,_,_) ->
user_err_loc (loc,"",
str"Unexpected type annotation for a term of non inductive type."))
| IsInd (term,IndType(indf,realargs),_) ->
let indf' = lift_inductive_family n indf in
let (ind,params) = dest_ind_family indf' in
let nrealargs = List.length realargs in
let realnal =
match t with
| Some (loc,ind',nparams,realnal) ->
if ind <> ind' then
user_err_loc (loc,"",str "Wrong inductive type.");
if List.length params <> nparams
or nrealargs <> List.length realnal then
anomaly "Ill-formed 'in' clause in cases";
List.rev realnal
| None -> list_make nrealargs Anonymous in
let arsign = fst (get_arity env0 indf') in
(* let na = *)
(* match na with *)
(* | Name _ -> na *)
(* | Anonymous -> *)
(* match kind_of_term term with *)
(* | Rel n -> pi1 (lookup_rel n (Environ.rel_context env0)) *)
(* | _ -> Anonymous *)
(* in *)
(na,None,build_dependent_inductive env0 indf')
::(List.map2 (fun x (_,c,t) ->(x,c,t)) realnal arsign) in
let rec buildrec n = function
| [],[] -> []
| (_,tm)::ltm, x::tmsign ->
let l = get_one_sign n tm x in
l :: buildrec (n + List.length l) (ltm,tmsign)
| _ -> assert false
in List.rev (buildrec 0 (tomatchl,tmsign))
let inh_conv_coerce_to_tycon loc env evdref j tycon =
match tycon with
| Some p ->
let (evd',j) = Coercion.inh_conv_coerce_to loc env !evdref j p in
evdref := evd';
j
| None -> j
(* We put the tycon inside the arity signature, possibly discovering dependencies. *)
let prepare_predicate_from_arsign_tycon loc env tomatchs sign arsign c =
let nar = List.fold_left (fun n sign -> List.length sign + n) 0 arsign in
let subst, len =
List.fold_left2 (fun (subst, len) (tm, tmtype) sign ->
let signlen = List.length sign in
match kind_of_term tm with
| Rel n when dependent tm c
&& signlen = 1 (* The term to match is not of a dependent type itself *) ->
((n, len) :: subst, len - signlen)
| Rel _ when not (dependent tm c)
&& signlen > 1 (* The term is of a dependent type but does not appear in
the tycon, maybe some variable in its type does. *) ->
(match tmtype with
NotInd _ -> (* len - signlen, subst*) assert false (* signlen > 1 *)
| IsInd (_, IndType(indf,realargs),_) ->
List.fold_left
(fun (subst, len) arg ->
match kind_of_term arg with
| Rel n when dependent arg c ->
((n, len) :: subst, pred len)
| _ -> (subst, pred len))
(subst, len) realargs)
| _ -> (subst, len - signlen))
([], nar) tomatchs arsign
in
let rec predicate lift c =
match kind_of_term c with
| Rel n when n > lift ->
(try
(* Make the predicate dependent on the matched variable *)
let idx = List.assoc (n - lift) subst in
mkRel (idx + lift)
with Not_found ->
(* A variable that is not matched, lift over the arsign. *)
mkRel (n + nar))
| _ ->
map_constr_with_binders succ predicate lift c
in predicate 0 c
(* Builds the predicate. If the predicate is dependent, its context is
* made of 1+nrealargs assumptions for each matched term in an inductive
* type and 1 assumption for each term not _syntactically_ in an
* inductive type.
* Each matched terms are independently considered dependent or not.
* A type constraint but no annotation case: we try to specialize the
* tycon to make the predicate if it is not closed.
*)
let is_dependent_on_rel x t =
match kind_of_term x with
Rel n -> not (noccur_with_meta n n t)
| _ -> false
let prepare_predicate loc typing_fun evdref env tomatchs sign tycon pred =
match pred with
(* No type annotation *)
| None ->
(match tycon with
| Some (None, t) when not (noccur_with_meta 0 max_int t) ->
(* If the tycon is not closed w.r.t real variables *)
(* We try two different strategies *)
let evdref2 = ref !evdref in
let arsign = extract_arity_signature env tomatchs sign in
let env' = List.fold_right push_rels arsign env in
(* First strategy: we abstract the tycon wrt to the dependencies *)
let names1 = List.rev (List.map (List.map pi1) arsign) in
let pred1 = prepare_predicate_from_arsign_tycon loc env' tomatchs sign arsign t in
let nal1,pred1 = build_initial_predicate KnownDep names1 pred1 in
(* Second strategy: we build an "inversion" predicate *)
let names2,pred2 =
prepare_predicate_from_tycon loc true env evdref2 tomatchs sign t
in
let nal2,pred2 = build_initial_predicate DepUnknown names2 pred2 in
[evdref, nal1, pred1; evdref2, nal2, pred2]
| Some (None, t) ->
(* Only one strategy: we build an "inversion" predicate *)
let names,pred =
prepare_predicate_from_tycon loc true env evdref tomatchs sign t
in
let nal,pred = build_initial_predicate DepUnknown names pred in
[evdref, nal, pred]
| _ ->
(* No type constaints: we use two strategies *)
let evdref2 = ref !evdref in
let t1 = mkExistential env ~src:(loc, CasesType) evdref in
(* First strategy: we pose a possibly dependent "inversion" evar *)
let names1,pred1 =
prepare_predicate_from_tycon loc true env evdref tomatchs sign t1
in
let nal1,pred1 = build_initial_predicate DepUnknown names1 pred1 in
(* Second strategy: we pose a non dependent evar *)
let t2 = mkExistential env ~src:(loc, CasesType) evdref2 in
let arsign = extract_arity_signature env tomatchs sign in
let names2 = List.rev (List.map (List.map pi1) arsign) in
let nal2,pred2 = build_initial_predicate KnownNotDep names2 t2 in
[evdref, nal1, pred1; evdref2, nal2, pred2])
(* Some type annotation *)
| Some rtntyp ->
(* We extract the signature of the arity *)
let arsign = extract_arity_signature env tomatchs sign in
let env = List.fold_right push_rels arsign env in
let allnames = List.rev (List.map (List.map pi1) arsign) in
let predcclj = typing_fun (mk_tycon (new_Type ())) env evdref rtntyp in
let _ =
Option.map (fun tycon ->
evdref := Coercion.inh_conv_coerces_to loc env !evdref predcclj.uj_val
(lift_tycon_type (List.length arsign) tycon))
tycon
in
let predccl = (j_nf_isevar !evdref predcclj).uj_val in
let nal,pred = build_initial_predicate KnownDep allnames predccl in
[evdref, nal, pred]
(**************************************************************************)
(* Main entry of the matching compilation *)
let compile_cases loc style (typing_fun, evdref) tycon env (predopt, tomatchl, eqns) =
(* We build the matrix of patterns and right-hand-side *)
let matx = matx_of_eqns env tomatchl eqns in
(* We build the vector of terms to match consistently with the *)
(* constructors found in patterns *)
let tomatchs = coerce_to_indtype typing_fun evdref env matx tomatchl in
(* If an elimination predicate is provided, we check it is compatible
with the type of arguments to match; if none is provided, we
build alternative possible predicates *)
let sign = List.map snd tomatchl in
let preds = prepare_predicate loc typing_fun evdref env tomatchs sign tycon predopt in
let compile_for_one_predicate (myevdref,nal,pred) =
(* We push the initial terms to match and push their alias to rhs' envs *)
(* names of aliases will be recovered from patterns (hence Anonymous *)
(* here) *)
let initial_pushed = List.map2 (fun tm na -> Pushed(tm,[],na)) tomatchs nal in
(* A typing function that provides with a canonical term for absurd cases*)
let typing_fun tycon env evdref = function
| Some t -> typing_fun tycon env evdref t
| None -> coq_unit_judge () in
let pb =
{ env = env;
evdref = myevdref;
pred = pred;
tomatch = initial_pushed;
history = start_history (List.length initial_pushed);
mat = matx;
caseloc = loc;
casestyle = style;
typing_function = typing_fun } in
let j = compile pb in
evdref := !myevdref;
j in
(* Return the term compiled with the first possible elimination *)
(* predicate for which the compilation succeeds *)
let j = list_try_compile compile_for_one_predicate preds in
(* We check for unused patterns *)
List.iter (check_unused_pattern env) matx;
(* We coerce to the tycon (if an elim predicate was provided) *)
inh_conv_coerce_to_tycon loc env evdref j tycon
end
|