1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(*i $Id$ i*)
open Pp
open Util
open Names
open Term
open Closure
open Environ
open Libnames
open Tactics
open Rawterm
open Termops
open Tacticals
open Tacexpr
open Pcoq
open Tactic
open Constr
open Proof_type
open Coqlib
open Tacmach
open Mod_subst
open Tacinterp
open Libobject
open Printer
open Declare
open Decl_kinds
open Entries
(****************************************************************************)
(* controlled reduction *)
let mark_arg i c = mkEvar(i,[|c|])
let unmark_arg f c =
match destEvar c with
| (i,[|c|]) -> f i c
| _ -> assert false
type protect_flag = Eval|Prot|Rec
let tag_arg tag_rec map subs i c =
match map i with
Eval -> mk_clos subs c
| Prot -> mk_atom c
| Rec -> if i = -1 then mk_clos subs c else tag_rec c
let rec mk_clos_but f_map subs t =
match f_map t with
| Some map -> tag_arg (mk_clos_but f_map subs) map subs (-1) t
| None ->
(match kind_of_term t with
App(f,args) -> mk_clos_app_but f_map subs f args 0
| Prod _ -> mk_clos_deep (mk_clos_but f_map) subs t
| _ -> mk_atom t)
and mk_clos_app_but f_map subs f args n =
if n >= Array.length args then mk_atom(mkApp(f, args))
else
let fargs, args' = array_chop n args in
let f' = mkApp(f,fargs) in
match f_map f' with
Some map ->
mk_clos_deep
(fun s' -> unmark_arg (tag_arg (mk_clos_but f_map s') map s'))
subs
(mkApp (mark_arg (-1) f', Array.mapi mark_arg args'))
| None -> mk_clos_app_but f_map subs f args (n+1)
let interp_map l c =
try
let (im,am) = List.assoc c l in
Some(fun i ->
if List.mem i im then Eval
else if List.mem i am then Prot
else if i = -1 then Eval
else Rec)
with Not_found -> None
let interp_map l t =
try Some(List.assoc t l) with Not_found -> None
let protect_maps = ref Stringmap.empty
let add_map s m = protect_maps := Stringmap.add s m !protect_maps
let lookup_map map =
try Stringmap.find map !protect_maps
with Not_found ->
errorlabstrm"lookup_map"(str"map "++qs map++str"not found")
let protect_red map env sigma c =
kl (create_clos_infos betadeltaiota env)
(mk_clos_but (lookup_map map c) (Esubst.ESID 0) c);;
let protect_tac map =
Tactics.reduct_option (protect_red map,DEFAULTcast) None ;;
let protect_tac_in map id =
Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id,InHyp));;
TACTIC EXTEND protect_fv
[ "protect_fv" string(map) "in" ident(id) ] ->
[ protect_tac_in map id ]
| [ "protect_fv" string(map) ] ->
[ protect_tac map ]
END;;
(****************************************************************************)
let closed_term t l =
let l = List.map constr_of_global l in
let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in
if Quote.closed_under cs t then tclIDTAC else tclFAIL 0 (mt())
;;
TACTIC EXTEND closed_term
[ "closed_term" constr(t) "[" ne_reference_list(l) "]" ] ->
[ closed_term t l ]
END
;;
TACTIC EXTEND echo
| [ "echo" constr(t) ] ->
[ Pp.msg (Termops.print_constr t); Tacinterp.eval_tactic (TacId []) ]
END;;
(*
let closed_term_ast l =
TacFun([Some(id_of_string"t")],
TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
[Genarg.in_gen Genarg.wit_constr (mkVar(id_of_string"t"));
Genarg.in_gen (Genarg.wit_list1 Genarg.wit_ref) l])))
*)
let closed_term_ast l =
let l = List.map (fun gr -> ArgArg(dummy_loc,gr)) l in
TacFun([Some(id_of_string"t")],
TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
[Genarg.in_gen Genarg.globwit_constr (RVar(dummy_loc,id_of_string"t"),None);
Genarg.in_gen (Genarg.wit_list1 Genarg.globwit_ref) l])))
(*
let _ = add_tacdef false ((dummy_loc,id_of_string"ring_closed_term"
*)
(****************************************************************************)
let ic c =
let env = Global.env() and sigma = Evd.empty in
Constrintern.interp_constr sigma env c
let ty c = Typing.type_of (Global.env()) Evd.empty c
let decl_constant na c =
mkConst(declare_constant (id_of_string na) (DefinitionEntry
{ const_entry_body = c;
const_entry_type = None;
const_entry_opaque = true;
const_entry_boxed = true},
IsProof Lemma))
(* Calling a global tactic *)
let ltac_call tac (args:glob_tactic_arg list) =
TacArg(TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force tac),args))
(* Calling a locally bound tactic *)
let ltac_lcall tac args =
TacArg(TacCall(dummy_loc, ArgVar(dummy_loc, id_of_string tac),args))
let ltac_letin (x, e1) e2 =
TacLetIn(false,[(dummy_loc,id_of_string x),e1],e2)
let ltac_apply (f:glob_tactic_expr) (args:glob_tactic_arg list) =
Tacinterp.eval_tactic
(ltac_letin ("F", Tacexp f) (ltac_lcall "F" args))
let ltac_record flds =
TacFun([Some(id_of_string"proj")], ltac_lcall "proj" flds)
let carg c = TacDynamic(dummy_loc,Pretyping.constr_in c)
let dummy_goal env =
{Evd.it = Evd.make_evar (named_context_val env) mkProp;
Evd.sigma = Evd.empty}
let exec_tactic env n f args =
let lid = list_tabulate(fun i -> id_of_string("x"^string_of_int i)) n in
let res = ref [||] in
let get_res ist =
let l = List.map (fun id -> List.assoc id ist.lfun) lid in
res := Array.of_list l;
TacId[] in
let getter =
Tacexp(TacFun(List.map(fun id -> Some id) lid,
glob_tactic(tacticIn get_res))) in
let _ =
Tacinterp.eval_tactic(ltac_call f (args@[getter])) (dummy_goal env) in
!res
let constr_of = function
| VConstr ([],c) -> c
| _ -> failwith "Ring.exec_tactic: anomaly"
let stdlib_modules =
[["Coq";"Setoids";"Setoid"];
["Coq";"Lists";"List"];
["Coq";"Init";"Datatypes"];
["Coq";"Init";"Logic"];
]
let coq_constant c =
lazy (Coqlib.gen_constant_in_modules "Ring" stdlib_modules c)
let coq_mk_Setoid = coq_constant "Build_Setoid_Theory"
let coq_cons = coq_constant "cons"
let coq_nil = coq_constant "nil"
let coq_None = coq_constant "None"
let coq_Some = coq_constant "Some"
let coq_eq = coq_constant "eq"
let lapp f args = mkApp(Lazy.force f,args)
let dest_rel0 t =
match kind_of_term t with
| App(f,args) when Array.length args >= 2 ->
let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in
if closed0 rel then
(rel,args.(Array.length args - 2),args.(Array.length args - 1))
else error "ring: cannot find relation (not closed)"
| _ -> error "ring: cannot find relation"
let rec dest_rel t =
match kind_of_term t with
| Prod(_,_,c) -> dest_rel c
| _ -> dest_rel0 t
(****************************************************************************)
(* Library linking *)
let plugin_dir = "setoid_ring"
let cdir = ["Coq";plugin_dir]
let plugin_modules =
List.map (fun d -> cdir@d)
[["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"];
["Field_tac"]; ["Field_theory"]
]
let my_constant c =
lazy (Coqlib.gen_constant_in_modules "Ring" plugin_modules c)
let new_ring_path =
make_dirpath (List.map id_of_string ["Ring_tac";plugin_dir;"Coq"])
let ltac s =
lazy(make_kn (MPfile new_ring_path) (make_dirpath []) (mk_label s))
let znew_ring_path =
make_dirpath (List.map id_of_string ["InitialRing";plugin_dir;"Coq"])
let zltac s =
lazy(make_kn (MPfile znew_ring_path) (make_dirpath []) (mk_label s))
let mk_cst l s = lazy (Coqlib.gen_constant "newring" l s);;
let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;;
(* Ring theory *)
(* almost_ring defs *)
let coq_almost_ring_theory = my_constant "almost_ring_theory"
(* setoid and morphism utilities *)
let coq_eq_setoid = my_constant "Eqsth"
let coq_eq_morph = my_constant "Eq_ext"
let coq_eq_smorph = my_constant "Eq_s_ext"
(* ring -> almost_ring utilities *)
let coq_ring_theory = my_constant "ring_theory"
let coq_mk_reqe = my_constant "mk_reqe"
(* semi_ring -> almost_ring utilities *)
let coq_semi_ring_theory = my_constant "semi_ring_theory"
let coq_mk_seqe = my_constant "mk_seqe"
let ltac_inv_morph_gen = zltac"inv_gen_phi"
let ltac_inv_morphZ = zltac"inv_gen_phiZ"
let ltac_inv_morphN = zltac"inv_gen_phiN"
let ltac_inv_morphNword = zltac"inv_gen_phiNword"
let coq_abstract = my_constant"Abstract"
let coq_comp = my_constant"Computational"
let coq_morph = my_constant"Morphism"
(* morphism *)
let coq_ring_morph = my_constant "ring_morph"
let coq_semi_morph = my_constant "semi_morph"
(* power function *)
let ltac_inv_morph_nothing = zltac"inv_morph_nothing"
let coq_pow_N_pow_N = my_constant "pow_N_pow_N"
(* hypothesis *)
let coq_mkhypo = my_constant "mkhypo"
let coq_hypo = my_constant "hypo"
(* Equality: do not evaluate but make recursive call on both sides *)
let map_with_eq arg_map c =
let (req,_,_) = dest_rel c in
interp_map
((req,(function -1->Prot|_->Rec))::
List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)
let _ = add_map "ring"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
pol_cst "Pphi_pow",
(function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)])
(****************************************************************************)
(* Ring database *)
type ring_info =
{ ring_carrier : types;
ring_req : constr;
ring_setoid : constr;
ring_ext : constr;
ring_morph : constr;
ring_th : constr;
ring_cst_tac : glob_tactic_expr;
ring_pow_tac : glob_tactic_expr;
ring_lemma1 : constr;
ring_lemma2 : constr;
ring_pre_tac : glob_tactic_expr;
ring_post_tac : glob_tactic_expr }
module Cmap = Map.Make(struct type t = constr let compare = compare end)
let from_carrier = ref Cmap.empty
let from_relation = ref Cmap.empty
let from_name = ref Spmap.empty
let ring_for_carrier r = Cmap.find r !from_carrier
let ring_for_relation rel = Cmap.find rel !from_relation
let find_ring_structure env sigma l =
match l with
| t::cl' ->
let ty = Retyping.get_type_of env sigma t in
let check c =
let ty' = Retyping.get_type_of env sigma c in
if not (Reductionops.is_conv env sigma ty ty') then
errorlabstrm "ring"
(str"arguments of ring_simplify do not have all the same type")
in
List.iter check cl';
(try ring_for_carrier ty
with Not_found ->
errorlabstrm "ring"
(str"cannot find a declared ring structure over"++
spc()++str"\""++pr_constr ty++str"\""))
| [] -> assert false
(*
let (req,_,_) = dest_rel cl in
(try ring_for_relation req
with Not_found ->
errorlabstrm "ring"
(str"cannot find a declared ring structure for equality"++
spc()++str"\""++pr_constr req++str"\"")) *)
let _ =
Summary.declare_summary "tactic-new-ring-table"
{ Summary.freeze_function =
(fun () -> !from_carrier,!from_relation,!from_name);
Summary.unfreeze_function =
(fun (ct,rt,nt) ->
from_carrier := ct; from_relation := rt; from_name := nt);
Summary.init_function =
(fun () ->
from_carrier := Cmap.empty; from_relation := Cmap.empty;
from_name := Spmap.empty) }
let add_entry (sp,_kn) e =
(* let _ = ty e.ring_lemma1 in
let _ = ty e.ring_lemma2 in
*)
from_carrier := Cmap.add e.ring_carrier e !from_carrier;
from_relation := Cmap.add e.ring_req e !from_relation;
from_name := Spmap.add sp e !from_name
let subst_th (subst,th) =
let c' = subst_mps subst th.ring_carrier in
let eq' = subst_mps subst th.ring_req in
let set' = subst_mps subst th.ring_setoid in
let ext' = subst_mps subst th.ring_ext in
let morph' = subst_mps subst th.ring_morph in
let th' = subst_mps subst th.ring_th in
let thm1' = subst_mps subst th.ring_lemma1 in
let thm2' = subst_mps subst th.ring_lemma2 in
let tac'= subst_tactic subst th.ring_cst_tac in
let pow_tac'= subst_tactic subst th.ring_pow_tac in
let pretac'= subst_tactic subst th.ring_pre_tac in
let posttac'= subst_tactic subst th.ring_post_tac in
if c' == th.ring_carrier &&
eq' == th.ring_req &&
set' = th.ring_setoid &&
ext' == th.ring_ext &&
morph' == th.ring_morph &&
th' == th.ring_th &&
thm1' == th.ring_lemma1 &&
thm2' == th.ring_lemma2 &&
tac' == th.ring_cst_tac &&
pow_tac' == th.ring_pow_tac &&
pretac' == th.ring_pre_tac &&
posttac' == th.ring_post_tac then th
else
{ ring_carrier = c';
ring_req = eq';
ring_setoid = set';
ring_ext = ext';
ring_morph = morph';
ring_th = th';
ring_cst_tac = tac';
ring_pow_tac = pow_tac';
ring_lemma1 = thm1';
ring_lemma2 = thm2';
ring_pre_tac = pretac';
ring_post_tac = posttac' }
let (theory_to_obj, obj_to_theory) =
let cache_th (name,th) = add_entry name th in
declare_object
{(default_object "tactic-new-ring-theory") with
open_function = (fun i o -> if i=1 then cache_th o);
cache_function = cache_th;
subst_function = subst_th;
classify_function = (fun x -> Substitute x)}
let setoid_of_relation env a r =
let evm = Evd.empty in
try
lapp coq_mk_Setoid
[|a ; r ;
Rewrite.get_reflexive_proof env evm a r ;
Rewrite.get_symmetric_proof env evm a r ;
Rewrite.get_transitive_proof env evm a r |]
with Not_found ->
error "cannot find setoid relation"
let op_morph r add mul opp req m1 m2 m3 =
lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |]
let op_smorph r add mul req m1 m2 =
lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |]
(* let default_ring_equality (r,add,mul,opp,req) = *)
(* let is_setoid = function *)
(* {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *)
(* eq_constr req rel (\* Qu: use conversion ? *\) *)
(* | _ -> false in *)
(* match default_relation_for_carrier ~filter:is_setoid r with *)
(* Leibniz _ -> *)
(* let setoid = lapp coq_eq_setoid [|r|] in *)
(* let op_morph = *)
(* match opp with *)
(* Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] *)
(* | None -> lapp coq_eq_smorph [|r;add;mul|] in *)
(* (setoid,op_morph) *)
(* | Relation rel -> *)
(* let setoid = setoid_of_relation rel in *)
(* let is_endomorphism = function *)
(* { args=args } -> List.for_all *)
(* (function (var,Relation rel) -> *)
(* var=None && eq_constr req rel *)
(* | _ -> false) args in *)
(* let add_m = *)
(* try default_morphism ~filter:is_endomorphism add *)
(* with Not_found -> *)
(* error "ring addition should be declared as a morphism" in *)
(* let mul_m = *)
(* try default_morphism ~filter:is_endomorphism mul *)
(* with Not_found -> *)
(* error "ring multiplication should be declared as a morphism" in *)
(* let op_morph = *)
(* match opp with *)
(* | Some opp -> *)
(* (let opp_m = *)
(* try default_morphism ~filter:is_endomorphism opp *)
(* with Not_found -> *)
(* error "ring opposite should be declared as a morphism" in *)
(* let op_morph = *)
(* op_morph r add mul opp req add_m.lem mul_m.lem opp_m.lem in *)
(* msgnl *)
(* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\""++spc()++ *)
(* str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
(* str"\","++spc()++ str"\""++pr_constr mul_m.morphism_theory++ *)
(* str"\""++spc()++str"and \""++pr_constr opp_m.morphism_theory++ *)
(* str"\""); *)
(* op_morph) *)
(* | None -> *)
(* (msgnl *)
(* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\"" ++ spc() ++ *)
(* str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
(* str"\""++spc()++str"and \""++ *)
(* pr_constr mul_m.morphism_theory++str"\""); *)
(* op_smorph r add mul req add_m.lem mul_m.lem) in *)
(* (setoid,op_morph) *)
let ring_equality (r,add,mul,opp,req) =
match kind_of_term req with
| App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
let setoid = lapp coq_eq_setoid [|r|] in
let op_morph =
match opp with
Some opp -> lapp coq_eq_morph [|r;add;mul;opp|]
| None -> lapp coq_eq_smorph [|r;add;mul|] in
(setoid,op_morph)
| _ ->
let setoid = setoid_of_relation (Global.env ()) r req in
let signature = [Some (r,req);Some (r,req)],Some(r,req) in
let add_m, add_m_lem =
try Rewrite.default_morphism signature add
with Not_found ->
error "ring addition should be declared as a morphism" in
let mul_m, mul_m_lem =
try Rewrite.default_morphism signature mul
with Not_found ->
error "ring multiplication should be declared as a morphism" in
let op_morph =
match opp with
| Some opp ->
(let opp_m,opp_m_lem =
try Rewrite.default_morphism ([Some(r,req)],Some(r,req)) opp
with Not_found ->
error "ring opposite should be declared as a morphism" in
let op_morph =
op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in
Flags.if_verbose
msgnl
(str"Using setoid \""++pr_constr req++str"\""++spc()++
str"and morphisms \""++pr_constr add_m_lem ++
str"\","++spc()++ str"\""++pr_constr mul_m_lem++
str"\""++spc()++str"and \""++pr_constr opp_m_lem++
str"\"");
op_morph)
| None ->
(Flags.if_verbose
msgnl
(str"Using setoid \""++pr_constr req ++str"\"" ++ spc() ++
str"and morphisms \""++pr_constr add_m_lem ++
str"\""++spc()++str"and \""++
pr_constr mul_m_lem++str"\"");
op_smorph r add mul req add_m_lem mul_m_lem) in
(setoid,op_morph)
let build_setoid_params r add mul opp req eqth =
match eqth with
Some th -> th
| None -> ring_equality (r,add,mul,opp,req)
let dest_ring env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req|])
when f = Lazy.force coq_almost_ring_theory ->
(None,r,zero,one,add,mul,Some sub,Some opp,req)
| App(f,[|r;zero;one;add;mul;req|])
when f = Lazy.force coq_semi_ring_theory ->
(Some true,r,zero,one,add,mul,None,None,req)
| App(f,[|r;zero;one;add;mul;sub;opp;req|])
when f = Lazy.force coq_ring_theory ->
(Some false,r,zero,one,add,mul,Some sub,Some opp,req)
| _ -> error "bad ring structure"
let dest_morph env sigma m_spec =
let m_typ = Retyping.get_type_of env sigma m_spec in
match kind_of_term m_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req;
c;czero;cone;cadd;cmul;csub;copp;ceqb;phi|])
when f = Lazy.force coq_ring_morph ->
(c,czero,cone,cadd,cmul,Some csub,Some copp,ceqb,phi)
| App(f,[|r;zero;one;add;mul;req;c;czero;cone;cadd;cmul;ceqb;phi|])
when f = Lazy.force coq_semi_morph ->
(c,czero,cone,cadd,cmul,None,None,ceqb,phi)
| _ -> error "bad morphism structure"
type coeff_spec =
Computational of constr (* equality test *)
| Abstract (* coeffs = Z *)
| Morphism of constr (* general morphism *)
let reflect_coeff rkind =
(* We build an ill-typed terms on purpose... *)
match rkind with
Abstract -> Lazy.force coq_abstract
| Computational c -> lapp coq_comp [|c|]
| Morphism m -> lapp coq_morph [|m|]
type cst_tac_spec =
CstTac of raw_tactic_expr
| Closed of reference list
let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
match cst_tac with
Some (CstTac t) -> Tacinterp.glob_tactic t
| Some (Closed lc) ->
closed_term_ast (List.map Smartlocate.global_with_alias lc)
| None ->
(match rk, opp, kind with
Abstract, None, _ ->
let t = ArgArg(dummy_loc,Lazy.force ltac_inv_morphN) in
TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul]))
| Abstract, Some opp, Some _ ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphZ) in
TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
| Abstract, Some opp, None ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphNword) in
TacArg
(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
| Computational _,_,_ ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
TacArg
(TacCall(dummy_loc,t,List.map carg [zero;one;zero;one]))
| Morphism mth,_,_ ->
let (_,czero,cone,_,_,_,_,_,_) = dest_morph env sigma mth in
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
TacArg
(TacCall(dummy_loc,t,List.map carg [zero;one;czero;cone])))
let make_hyp env c =
let t = Retyping.get_type_of env Evd.empty c in
lapp coq_mkhypo [|t;c|]
let make_hyp_list env lH =
let carrier = Lazy.force coq_hypo in
List.fold_right
(fun c l -> lapp coq_cons [|carrier; (make_hyp env c); l|]) lH
(lapp coq_nil [|carrier|])
let interp_power env pow =
let carrier = Lazy.force coq_hypo in
match pow with
| None ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_nothing) in
(TacArg(TacCall(dummy_loc,t,[])), lapp coq_None [|carrier|])
| Some (tac, spec) ->
let tac =
match tac with
| CstTac t -> Tacinterp.glob_tactic t
| Closed lc ->
closed_term_ast (List.map Smartlocate.global_with_alias lc) in
let spec = make_hyp env (ic spec) in
(tac, lapp coq_Some [|carrier; spec|])
let interp_sign env sign =
let carrier = Lazy.force coq_hypo in
match sign with
| None -> lapp coq_None [|carrier|]
| Some spec ->
let spec = make_hyp env (ic spec) in
lapp coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
let interp_div env div =
let carrier = Lazy.force coq_hypo in
match div with
| None -> lapp coq_None [|carrier|]
| Some spec ->
let spec = make_hyp env (ic spec) in
lapp coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
let add_theory name rth eqth morphth cst_tac (pre,post) power sign div =
check_required_library (cdir@["Ring_base"]);
let env = Global.env() in
let sigma = Evd.empty in
let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in
let (sth,ext) = build_setoid_params r add mul opp req eqth in
let (pow_tac, pspec) = interp_power env power in
let sspec = interp_sign env sign in
let dspec = interp_div env div in
let rk = reflect_coeff morphth in
let params =
exec_tactic env 5 (zltac "ring_lemmas")
(List.map carg[sth;ext;rth;pspec;sspec;dspec;rk]) in
let lemma1 = constr_of params.(3) in
let lemma2 = constr_of params.(4) in
let lemma1 = decl_constant (string_of_id name^"_ring_lemma1") lemma1 in
let lemma2 = decl_constant (string_of_id name^"_ring_lemma2") lemma2 in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
match pre with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let posttac =
match post with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let _ =
Lib.add_leaf name
(theory_to_obj
{ ring_carrier = r;
ring_req = req;
ring_setoid = sth;
ring_ext = constr_of params.(1);
ring_morph = constr_of params.(2);
ring_th = constr_of params.(0);
ring_cst_tac = cst_tac;
ring_pow_tac = pow_tac;
ring_lemma1 = lemma1;
ring_lemma2 = lemma2;
ring_pre_tac = pretac;
ring_post_tac = posttac }) in
()
type ring_mod =
Ring_kind of coeff_spec
| Const_tac of cst_tac_spec
| Pre_tac of raw_tactic_expr
| Post_tac of raw_tactic_expr
| Setoid of Topconstr.constr_expr * Topconstr.constr_expr
| Pow_spec of cst_tac_spec * Topconstr.constr_expr
(* Syntaxification tactic , correctness lemma *)
| Sign_spec of Topconstr.constr_expr
| Div_spec of Topconstr.constr_expr
VERNAC ARGUMENT EXTEND ring_mod
| [ "decidable" constr(eq_test) ] -> [ Ring_kind(Computational (ic eq_test)) ]
| [ "abstract" ] -> [ Ring_kind Abstract ]
| [ "morphism" constr(morph) ] -> [ Ring_kind(Morphism (ic morph)) ]
| [ "constants" "[" tactic(cst_tac) "]" ] -> [ Const_tac(CstTac cst_tac) ]
| [ "closed" "[" ne_global_list(l) "]" ] -> [ Const_tac(Closed l) ]
| [ "preprocess" "[" tactic(pre) "]" ] -> [ Pre_tac pre ]
| [ "postprocess" "[" tactic(post) "]" ] -> [ Post_tac post ]
| [ "setoid" constr(sth) constr(ext) ] -> [ Setoid(sth,ext) ]
| [ "sign" constr(sign_spec) ] -> [ Sign_spec sign_spec ]
| [ "power" constr(pow_spec) "[" ne_global_list(l) "]" ] ->
[ Pow_spec (Closed l, pow_spec) ]
| [ "power_tac" constr(pow_spec) "[" tactic(cst_tac) "]" ] ->
[ Pow_spec (CstTac cst_tac, pow_spec) ]
| [ "div" constr(div_spec) ] -> [ Div_spec div_spec ]
END
let set_once s r v =
if !r = None then r := Some v else error (s^" cannot be set twice")
let process_ring_mods l =
let kind = ref None in
let set = ref None in
let cst_tac = ref None in
let pre = ref None in
let post = ref None in
let sign = ref None in
let power = ref None in
let div = ref None in
List.iter(function
Ring_kind k -> set_once "ring kind" kind k
| Const_tac t -> set_once "tactic recognizing constants" cst_tac t
| Pre_tac t -> set_once "preprocess tactic" pre t
| Post_tac t -> set_once "postprocess tactic" post t
| Setoid(sth,ext) -> set_once "setoid" set (ic sth,ic ext)
| Pow_spec(t,spec) -> set_once "power" power (t,spec)
| Sign_spec t -> set_once "sign" sign t
| Div_spec t -> set_once "div" div t) l;
let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !cst_tac, !pre, !post, !power, !sign, !div)
VERNAC COMMAND EXTEND AddSetoidRing
| [ "Add" "Ring" ident(id) ":" constr(t) ring_mods(l) ] ->
[ let (k,set,cst,pre,post,power,sign, div) = process_ring_mods l in
add_theory id (ic t) set k cst (pre,post) power sign div]
END
(*****************************************************************************)
(* The tactics consist then only in a lookup in the ring database and
call the appropriate ltac. *)
let make_args_list rl t =
match rl with
| [] -> let (_,t1,t2) = dest_rel0 t in [t1;t2]
| _ -> rl
let make_term_list carrier rl =
List.fold_right
(fun x l -> lapp coq_cons [|carrier;x;l|]) rl
(lapp coq_nil [|carrier|])
let ltac_ring_structure e =
let req = carg e.ring_req in
let sth = carg e.ring_setoid in
let ext = carg e.ring_ext in
let morph = carg e.ring_morph in
let th = carg e.ring_th in
let cst_tac = Tacexp e.ring_cst_tac in
let pow_tac = Tacexp e.ring_pow_tac in
let lemma1 = carg e.ring_lemma1 in
let lemma2 = carg e.ring_lemma2 in
let pretac = Tacexp(TacFun([None],e.ring_pre_tac)) in
let posttac = Tacexp(TacFun([None],e.ring_post_tac)) in
[req;sth;ext;morph;th;cst_tac;pow_tac;
lemma1;lemma2;pretac;posttac]
let ring_lookup (f:glob_tactic_expr) lH rl t gl =
let env = pf_env gl in
let sigma = project gl in
let rl = make_args_list rl t in
let e = find_ring_structure env sigma rl in
let rl = carg (make_term_list e.ring_carrier rl) in
let lH = carg (make_hyp_list env lH) in
let ring = ltac_ring_structure e in
ltac_apply f (ring@[lH;rl]) gl
TACTIC EXTEND ring_lookup
| [ "ring_lookup" tactic0(f) "[" constr_list(lH) "]" ne_constr_list(lrt) ] ->
[ let (t,lr) = list_sep_last lrt in ring_lookup (fst f) lH lr t]
END
(***********************************************************************)
let new_field_path =
make_dirpath (List.map id_of_string ["Field_tac";plugin_dir;"Coq"])
let field_ltac s =
lazy(make_kn (MPfile new_field_path) (make_dirpath []) (mk_label s))
let _ = add_map "field"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
(* display_linear: evaluate polynomials and coef operations, protect
field operations and make recursive call on the var map *)
my_constant "display_linear",
(function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot);
my_constant "display_pow_linear",
(function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
pol_cst "Pphi_pow",
(function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot);
(* FEeval: evaluate morphism, protect field
operations and make recursive call on the var map *)
my_constant "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);;
let _ = add_map "field_cond"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
(* PCond: evaluate morphism and denum list, protect ring
operations and make recursive call on the var map *)
my_constant "PCond", (function -1|8|10|13->Eval|12->Rec|_->Prot)]);;
(* (function -1|8|10->Eval|9->Rec|_->Prot)]);;*)
let _ = Redexpr.declare_reduction "simpl_field_expr"
(protect_red "field")
let afield_theory = my_constant "almost_field_theory"
let field_theory = my_constant "field_theory"
let sfield_theory = my_constant "semi_field_theory"
let af_ar = my_constant"AF_AR"
let f_r = my_constant"F_R"
let sf_sr = my_constant"SF_SR"
let dest_field env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
when f = Lazy.force afield_theory ->
let rth = lapp af_ar
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
when f = Lazy.force field_theory ->
let rth =
lapp f_r
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;div;inv;req|])
when f = Lazy.force sfield_theory ->
let rth = lapp sf_sr
[|r;zero;one;add;mul;div;inv;req;th_spec|] in
(Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
| _ -> error "bad field structure"
type field_info =
{ field_carrier : types;
field_req : constr;
field_cst_tac : glob_tactic_expr;
field_pow_tac : glob_tactic_expr;
field_ok : constr;
field_simpl_eq_ok : constr;
field_simpl_ok : constr;
field_simpl_eq_in_ok : constr;
field_cond : constr;
field_pre_tac : glob_tactic_expr;
field_post_tac : glob_tactic_expr }
let field_from_carrier = ref Cmap.empty
let field_from_relation = ref Cmap.empty
let field_from_name = ref Spmap.empty
let field_for_carrier r = Cmap.find r !field_from_carrier
let field_for_relation rel = Cmap.find rel !field_from_relation
let find_field_structure env sigma l =
check_required_library (cdir@["Field_tac"]);
match l with
| t::cl' ->
let ty = Retyping.get_type_of env sigma t in
let check c =
let ty' = Retyping.get_type_of env sigma c in
if not (Reductionops.is_conv env sigma ty ty') then
errorlabstrm "field"
(str"arguments of field_simplify do not have all the same type")
in
List.iter check cl';
(try field_for_carrier ty
with Not_found ->
errorlabstrm "field"
(str"cannot find a declared field structure over"++
spc()++str"\""++pr_constr ty++str"\""))
| [] -> assert false
(* let (req,_,_) = dest_rel cl in
(try field_for_relation req
with Not_found ->
errorlabstrm "field"
(str"cannot find a declared field structure for equality"++
spc()++str"\""++pr_constr req++str"\"")) *)
let _ =
Summary.declare_summary "tactic-new-field-table"
{ Summary.freeze_function =
(fun () -> !field_from_carrier,!field_from_relation,!field_from_name);
Summary.unfreeze_function =
(fun (ct,rt,nt) ->
field_from_carrier := ct; field_from_relation := rt;
field_from_name := nt);
Summary.init_function =
(fun () ->
field_from_carrier := Cmap.empty; field_from_relation := Cmap.empty;
field_from_name := Spmap.empty) }
let add_field_entry (sp,_kn) e =
(*
let _ = ty e.field_ok in
let _ = ty e.field_simpl_eq_ok in
let _ = ty e.field_simpl_ok in
let _ = ty e.field_cond in
*)
field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier;
field_from_relation := Cmap.add e.field_req e !field_from_relation;
field_from_name := Spmap.add sp e !field_from_name
let subst_th (subst,th) =
let c' = subst_mps subst th.field_carrier in
let eq' = subst_mps subst th.field_req in
let thm1' = subst_mps subst th.field_ok in
let thm2' = subst_mps subst th.field_simpl_eq_ok in
let thm3' = subst_mps subst th.field_simpl_ok in
let thm4' = subst_mps subst th.field_simpl_eq_in_ok in
let thm5' = subst_mps subst th.field_cond in
let tac'= subst_tactic subst th.field_cst_tac in
let pow_tac' = subst_tactic subst th.field_pow_tac in
let pretac'= subst_tactic subst th.field_pre_tac in
let posttac'= subst_tactic subst th.field_post_tac in
if c' == th.field_carrier &&
eq' == th.field_req &&
thm1' == th.field_ok &&
thm2' == th.field_simpl_eq_ok &&
thm3' == th.field_simpl_ok &&
thm4' == th.field_simpl_eq_in_ok &&
thm5' == th.field_cond &&
tac' == th.field_cst_tac &&
pow_tac' == th.field_pow_tac &&
pretac' == th.field_pre_tac &&
posttac' == th.field_post_tac then th
else
{ field_carrier = c';
field_req = eq';
field_cst_tac = tac';
field_pow_tac = pow_tac';
field_ok = thm1';
field_simpl_eq_ok = thm2';
field_simpl_ok = thm3';
field_simpl_eq_in_ok = thm4';
field_cond = thm5';
field_pre_tac = pretac';
field_post_tac = posttac' }
let (ftheory_to_obj, obj_to_ftheory) =
let cache_th (name,th) = add_field_entry name th in
declare_object
{(default_object "tactic-new-field-theory") with
open_function = (fun i o -> if i=1 then cache_th o);
cache_function = cache_th;
subst_function = subst_th;
classify_function = (fun x -> Substitute x) }
let field_equality r inv req =
match kind_of_term req with
| App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
mkApp((Coqlib.build_coq_eq_data()).congr,[|r;r;inv|])
| _ ->
let _setoid = setoid_of_relation (Global.env ()) r req in
let signature = [Some (r,req)],Some(r,req) in
let inv_m, inv_m_lem =
try Rewrite.default_morphism signature inv
with Not_found ->
error "field inverse should be declared as a morphism" in
inv_m_lem
let add_field_theory name fth eqth morphth cst_tac inj (pre,post) power sign odiv =
check_required_library (cdir@["Field_tac"]);
let env = Global.env() in
let sigma = Evd.empty in
let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) =
dest_field env sigma fth in
let (sth,ext) = build_setoid_params r add mul opp req eqth in
let eqth = Some(sth,ext) in
let _ = add_theory name rth eqth morphth cst_tac (None,None) power sign odiv in
let (pow_tac, pspec) = interp_power env power in
let sspec = interp_sign env sign in
let dspec = interp_div env odiv in
let inv_m = field_equality r inv req in
let rk = reflect_coeff morphth in
let params =
exec_tactic env 9 (field_ltac"field_lemmas")
(List.map carg[sth;ext;inv_m;fth;pspec;sspec;dspec;rk]) in
let lemma1 = constr_of params.(3) in
let lemma2 = constr_of params.(4) in
let lemma3 = constr_of params.(5) in
let lemma4 = constr_of params.(6) in
let cond_lemma =
match inj with
| Some thm -> mkApp(constr_of params.(8),[|thm|])
| None -> constr_of params.(7) in
let lemma1 = decl_constant (string_of_id name^"_field_lemma1") lemma1 in
let lemma2 = decl_constant (string_of_id name^"_field_lemma2") lemma2 in
let lemma3 = decl_constant (string_of_id name^"_field_lemma3") lemma3 in
let lemma4 = decl_constant (string_of_id name^"_field_lemma4") lemma4 in
let cond_lemma = decl_constant (string_of_id name^"_lemma5") cond_lemma in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
match pre with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let posttac =
match post with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let _ =
Lib.add_leaf name
(ftheory_to_obj
{ field_carrier = r;
field_req = req;
field_cst_tac = cst_tac;
field_pow_tac = pow_tac;
field_ok = lemma1;
field_simpl_eq_ok = lemma2;
field_simpl_ok = lemma3;
field_simpl_eq_in_ok = lemma4;
field_cond = cond_lemma;
field_pre_tac = pretac;
field_post_tac = posttac }) in ()
type field_mod =
Ring_mod of ring_mod
| Inject of Topconstr.constr_expr
VERNAC ARGUMENT EXTEND field_mod
| [ ring_mod(m) ] -> [ Ring_mod m ]
| [ "completeness" constr(inj) ] -> [ Inject inj ]
END
let process_field_mods l =
let kind = ref None in
let set = ref None in
let cst_tac = ref None in
let pre = ref None in
let post = ref None in
let inj = ref None in
let sign = ref None in
let power = ref None in
let div = ref None in
List.iter(function
Ring_mod(Ring_kind k) -> set_once "field kind" kind k
| Ring_mod(Const_tac t) ->
set_once "tactic recognizing constants" cst_tac t
| Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t
| Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t
| Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic sth,ic ext)
| Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec)
| Ring_mod(Sign_spec t) -> set_once "sign" sign t
| Ring_mod(Div_spec t) -> set_once "div" div t
| Inject i -> set_once "infinite property" inj (ic i)) l;
let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div)
VERNAC COMMAND EXTEND AddSetoidField
| [ "Add" "Field" ident(id) ":" constr(t) field_mods(l) ] ->
[ let (k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods l in
add_field_theory id (ic t) set k cst_tac inj (pre,post) power sign div]
END
let ltac_field_structure e =
let req = carg e.field_req in
let cst_tac = Tacexp e.field_cst_tac in
let pow_tac = Tacexp e.field_pow_tac in
let field_ok = carg e.field_ok in
let field_simpl_ok = carg e.field_simpl_ok in
let field_simpl_eq_ok = carg e.field_simpl_eq_ok in
let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in
let cond_ok = carg e.field_cond in
let pretac = Tacexp(TacFun([None],e.field_pre_tac)) in
let posttac = Tacexp(TacFun([None],e.field_post_tac)) in
[req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok;
field_simpl_eq_in_ok;cond_ok;pretac;posttac]
let field_lookup (f:glob_tactic_expr) lH rl t gl =
let env = pf_env gl in
let sigma = project gl in
let rl = make_args_list rl t in
let e = find_field_structure env sigma rl in
let rl = carg (make_term_list e.field_carrier rl) in
let lH = carg (make_hyp_list env lH) in
let field = ltac_field_structure e in
ltac_apply f (field@[lH;rl]) gl
TACTIC EXTEND field_lookup
| [ "field_lookup" tactic(f) "[" constr_list(lH) "]" ne_constr_list(lt) ] ->
[ let (t,l) = list_sep_last lt in field_lookup (fst f) lH l t ]
END
|