1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Setoid.
Require Import BinPos.
Require Import BinNat.
Set Implicit Arguments.
Module RingSyntax.
Reserved Notation "x ?=! y" (at level 70, no associativity).
Reserved Notation "x +! y " (at level 50, left associativity).
Reserved Notation "x -! y" (at level 50, left associativity).
Reserved Notation "x *! y" (at level 40, left associativity).
Reserved Notation "-! x" (at level 35, right associativity).
Reserved Notation "[ x ]" (at level 0).
Reserved Notation "x ?== y" (at level 70, no associativity).
Reserved Notation "x -- y" (at level 50, left associativity).
Reserved Notation "x ** y" (at level 40, left associativity).
Reserved Notation "-- x" (at level 35, right associativity).
Reserved Notation "x == y" (at level 70, no associativity).
End RingSyntax.
Import RingSyntax.
Section Power.
Variable R:Type.
Variable rI : R.
Variable rmul : R -> R -> R.
Variable req : R -> R -> Prop.
Variable Rsth : Setoid_Theory R req.
Notation "x * y " := (rmul x y).
Notation "x == y" := (req x y).
Hypothesis mul_ext :
forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2.
Hypothesis mul_comm : forall x y, x * y == y * x.
Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z.
Add Setoid R req Rsth as R_set_Power.
Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed.
Fixpoint pow_pos (x:R) (i:positive) {struct i}: R :=
match i with
| xH => x
| xO i => let p := pow_pos x i in rmul p p
| xI i => let p := pow_pos x i in rmul x (rmul p p)
end.
Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j.
Proof.
induction j;simpl.
rewrite IHj.
rewrite (mul_comm x (pow_pos x j *pow_pos x j)).
setoid_rewrite (mul_comm x (pow_pos x j)) at 2.
repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
apply (Seq_refl _ _ Rsth).
Qed.
Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j.
Proof.
intro x;induction i;intros.
rewrite xI_succ_xO;rewrite Pplus_one_succ_r.
rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
repeat rewrite IHi.
rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc.
simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc;
simpl. apply (Seq_refl _ _ Rsth).
Qed.
Definition pow_N (x:R) (p:N) :=
match p with
| N0 => rI
| Npos p => pow_pos x p
end.
Definition id_phi_N (x:N) : N := x.
Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n.
Proof.
intros; apply (Seq_refl _ _ Rsth).
Qed.
End Power.
Section DEFINITIONS.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
(** Semi Ring *)
Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
SRadd_comm : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
SRmul_comm : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
}.
(** Almost Ring *)
(*Almost ring are no ring : Ropp_def is missing **)
Record almost_ring_theory : Prop := mk_art {
ARadd_0_l : forall x, 0 + x == x;
ARadd_comm : forall x y, x + y == y + x;
ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z;
ARmul_1_l : forall x, 1 * x == x;
ARmul_0_l : forall x, 0 * x == 0;
ARmul_comm : forall x y, x * y == y * x;
ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
ARopp_mul_l : forall x y, -(x * y) == -x * y;
ARopp_add : forall x y, -(x + y) == -x + -y;
ARsub_def : forall x y, x - y == x + -y
}.
(** Ring *)
Record ring_theory : Prop := mk_rt {
Radd_0_l : forall x, 0 + x == x;
Radd_comm : forall x y, x + y == y + x;
Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
Rmul_1_l : forall x, 1 * x == x;
Rmul_comm : forall x y, x * y == y * x;
Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
Ropp_def : forall x, x + (- x) == 0
}.
(** Equality is extensional *)
Record sring_eq_ext : Prop := mk_seqe {
(* SRing operators are compatible with equality *)
SRadd_ext :
forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
SRmul_ext :
forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2
}.
Record ring_eq_ext : Prop := mk_reqe {
(* Ring operators are compatible with equality *)
Radd_ext :
forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
Rmul_ext :
forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2;
Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2
}.
(** Interpretation morphisms definition*)
Section MORPHISM.
Variable C:Type.
Variable (cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
(* [phi] est un morphisme de [C] dans [R] *)
Variable phi : C -> R.
Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y).
Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x).
Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
(*for semi rings*)
Record semi_morph : Prop := mkRmorph {
Smorph0 : [cO] == 0;
Smorph1 : [cI] == 1;
Smorph_add : forall x y, [x +! y] == [x]+[y];
Smorph_mul : forall x y, [x *! y] == [x]*[y];
Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
}.
(* for rings*)
Record ring_morph : Prop := mkmorph {
morph0 : [cO] == 0;
morph1 : [cI] == 1;
morph_add : forall x y, [x +! y] == [x]+[y];
morph_sub : forall x y, [x -! y] == [x]-[y];
morph_mul : forall x y, [x *! y] == [x]*[y];
morph_opp : forall x, [-!x] == -[x];
morph_eq : forall x y, x?=!y = true -> [x] == [y]
}.
Section SIGN.
Variable get_sign : C -> option C.
Record sign_theory : Prop := mksign_th {
sign_spec : forall c c', get_sign c = Some c' -> c ?=! -! c' = true
}.
End SIGN.
Definition get_sign_None (c:C) := @None C.
Lemma get_sign_None_th : sign_theory get_sign_None.
Proof. constructor;intros;discriminate. Qed.
Section DIV.
Variable cdiv: C -> C -> C*C.
Record div_theory : Prop := mkdiv_th {
div_eucl_th : forall a b, let (q,r) := cdiv a b in [a] == [b *! q +! r]
}.
End DIV.
End MORPHISM.
(** Identity is a morphism *)
Variable Rsth : Setoid_Theory R req.
Add Setoid R req Rsth as R_setoid1.
Variable reqb : R->R->bool.
Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
Definition IDphi (x:R) := x.
Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi.
Proof.
apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi;
try apply (Seq_refl _ _ Rsth);auto.
Qed.
(** Specification of the power function *)
Section POWER.
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Record power_theory : Prop := mkpow_th {
rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
}.
End POWER.
Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
End DEFINITIONS.
Section ALMOST_RING.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
(** Leibniz equality leads to a setoid theory and is extensional*)
Lemma Eqsth : Setoid_Theory R (@eq R).
Proof. constructor;red;intros;subst;trivial. Qed.
Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R).
Proof. constructor;intros;subst;trivial. Qed.
Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R).
Proof. constructor;intros;subst;trivial. Qed.
Variable Rsth : Setoid_Theory R req.
Add Setoid R req Rsth as R_setoid2.
Ltac sreflexivity := apply (Seq_refl _ _ Rsth).
Section SEMI_RING.
Variable SReqe : sring_eq_ext radd rmul req.
Add Morphism radd : radd_ext1. exact (SRadd_ext SReqe). Qed.
Add Morphism rmul : rmul_ext1. exact (SRmul_ext SReqe). Qed.
Variable SRth : semi_ring_theory 0 1 radd rmul req.
(** Every semi ring can be seen as an almost ring, by taking :
-x = x and x - y = x + y *)
Definition SRopp (x:R) := x. Notation "- x" := (SRopp x).
Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y).
Lemma SRopp_ext : forall x y, x == y -> -x == -y.
Proof. intros x y H;exact H. Qed.
Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req.
Proof.
constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe).
exact SRopp_ext.
Qed.
Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y.
Proof. intros;sreflexivity. Qed.
Lemma SRopp_add : forall x y, -(x + y) == -x + -y.
Proof. intros;sreflexivity. Qed.
Lemma SRsub_def : forall x y, x - y == x + -y.
Proof. intros;sreflexivity. Qed.
Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req.
Proof (mk_art 0 1 radd rmul SRsub SRopp req
(SRadd_0_l SRth) (SRadd_comm SRth) (SRadd_assoc SRth)
(SRmul_1_l SRth) (SRmul_0_l SRth)
(SRmul_comm SRth) (SRmul_assoc SRth) (SRdistr_l SRth)
SRopp_mul_l SRopp_add SRsub_def).
(** Identity morphism for semi-ring equipped with their almost-ring structure*)
Variable reqb : R->R->bool.
Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req
0 1 radd rmul SRsub SRopp reqb (@IDphi R).
Proof.
apply mkmorph;intros;try sreflexivity. unfold IDphi;auto.
Qed.
(* a semi_morph can be extended to a ring_morph for the almost_ring derived
from a semi_ring, provided the ring is a setoid (we only need
reflexivity) *)
Variable C : Type.
Variable (cO cI : C) (cadd cmul: C->C->C).
Variable (ceqb : C -> C -> bool).
Variable phi : C -> R.
Variable Smorph : semi_morph rO rI radd rmul req cO cI cadd cmul ceqb phi.
Lemma SRmorph_Rmorph :
ring_morph rO rI radd rmul SRsub SRopp req
cO cI cadd cmul cadd (fun x => x) ceqb phi.
Proof.
case Smorph; intros; constructor; auto.
unfold SRopp in |- *; intros.
setoid_reflexivity.
Qed.
End SEMI_RING.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Add Morphism radd : radd_ext2. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext2. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext2. exact (Ropp_ext Reqe). Qed.
Section RING.
Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
(** Rings are almost rings*)
Lemma Rmul_0_l : forall x, 0 * x == 0.
Proof.
intro x; setoid_replace (0*x) with ((0+1)*x + -x).
rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth).
rewrite (Ropp_def Rth);sreflexivity.
rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth).
rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity.
Qed.
Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y.
Proof.
intros x y;rewrite <-(Radd_0_l Rth (- x * y)).
rewrite (Radd_comm Rth).
rewrite <-(Ropp_def Rth (x*y)).
rewrite (Radd_assoc Rth).
rewrite <- (Rdistr_l Rth).
rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth).
rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity.
Qed.
Lemma Ropp_add : forall x y, -(x + y) == -x + -y.
Proof.
intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))).
rewrite <- ((Ropp_def Rth) x).
rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))).
rewrite <- ((Ropp_def Rth) y).
rewrite ((Radd_comm Rth) x).
rewrite ((Radd_comm Rth) y).
rewrite <- ((Radd_assoc Rth) (-y)).
rewrite <- ((Radd_assoc Rth) (- x)).
rewrite ((Radd_assoc Rth) y).
rewrite ((Radd_comm Rth) y).
rewrite <- ((Radd_assoc Rth) (- x)).
rewrite ((Radd_assoc Rth) y).
rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth).
rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth).
apply (Radd_comm Rth).
Qed.
Lemma Ropp_opp : forall x, - -x == x.
Proof.
intros x; rewrite <- (Radd_0_l Rth (- -x)).
rewrite <- (Ropp_def Rth x).
rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth).
Qed.
Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
Proof
(mk_art 0 1 radd rmul rsub ropp req (Radd_0_l Rth) (Radd_comm Rth) (Radd_assoc Rth)
(Rmul_1_l Rth) Rmul_0_l (Rmul_comm Rth) (Rmul_assoc Rth) (Rdistr_l Rth)
Ropp_mul_l Ropp_add (Rsub_def Rth)).
(** Every semi morphism between two rings is a morphism*)
Variable C : Type.
Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C).
Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool).
Variable phi : C -> R.
Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
Variable Csth : Setoid_Theory C ceq.
Variable Ceqe : ring_eq_ext cadd cmul copp ceq.
Add Setoid C ceq Csth as C_setoid.
Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed.
Add Morphism cmul : cmul_ext. exact (Rmul_ext Ceqe). Qed.
Add Morphism copp : copp_ext. exact (Ropp_ext Ceqe). Qed.
Variable Cth : ring_theory cO cI cadd cmul csub copp ceq.
Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi.
Variable phi_ext : forall x y, ceq x y -> [x] == [y].
Add Morphism phi : phi_ext1. exact phi_ext. Qed.
Lemma Smorph_opp : forall x, [-!x] == -[x].
Proof.
intros x;rewrite <- (Rth.(Radd_0_l) [-!x]).
rewrite <- ((Ropp_def Rth) [x]).
rewrite ((Radd_comm Rth) [x]).
rewrite <- (Radd_assoc Rth).
rewrite <- (Smorph_add Smorph).
rewrite (Ropp_def Cth).
rewrite (Smorph0 Smorph).
rewrite (Radd_comm Rth (-[x])).
apply (Radd_0_l Rth);sreflexivity.
Qed.
Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y].
Proof.
intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth).
rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity.
Qed.
Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
Proof
(mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi
(Smorph0 Smorph) (Smorph1 Smorph)
(Smorph_add Smorph) Smorph_sub (Smorph_mul Smorph) Smorph_opp
(Smorph_eq Smorph)).
End RING.
(** Useful lemmas on almost ring *)
Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
Lemma ARth_SRth : semi_ring_theory 0 1 radd rmul req.
Proof.
elim ARth; intros.
constructor; trivial.
Qed.
Lemma ARsub_ext :
forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2.
Proof.
intros.
setoid_replace (x1 - y1) with (x1 + -y1).
setoid_replace (x2 - y2) with (x2 + -y2).
rewrite H;rewrite H0;sreflexivity.
apply (ARsub_def ARth).
apply (ARsub_def ARth).
Qed.
Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed.
Ltac mrewrite :=
repeat first
[ rewrite (ARadd_0_l ARth)
| rewrite <- ((ARadd_comm ARth) 0)
| rewrite (ARmul_1_l ARth)
| rewrite <- ((ARmul_comm ARth) 1)
| rewrite (ARmul_0_l ARth)
| rewrite <- ((ARmul_comm ARth) 0)
| rewrite (ARdistr_l ARth)
| sreflexivity
| match goal with
| |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y))
end].
Lemma ARadd_0_r : forall x, (x + 0) == x.
Proof. intros; mrewrite. Qed.
Lemma ARmul_1_r : forall x, x * 1 == x.
Proof. intros;mrewrite. Qed.
Lemma ARmul_0_r : forall x, x * 0 == 0.
Proof. intros;mrewrite. Qed.
Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y.
Proof.
intros;mrewrite.
repeat rewrite (ARth.(ARmul_comm) z);sreflexivity.
Qed.
Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x.
Proof.
intros;rewrite <-(ARth.(ARadd_assoc) x).
rewrite (ARth.(ARadd_comm) x);sreflexivity.
Qed.
Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x.
Proof.
intros; repeat rewrite <- (ARadd_assoc ARth);
rewrite ((ARadd_comm ARth) x); sreflexivity.
Qed.
Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x.
Proof.
intros;rewrite <-((ARmul_assoc ARth) x).
rewrite ((ARmul_comm ARth) x);sreflexivity.
Qed.
Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x.
Proof.
intros; repeat rewrite <- (ARmul_assoc ARth);
rewrite ((ARmul_comm ARth) x); sreflexivity.
Qed.
Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y.
Proof.
intros;rewrite ((ARmul_comm ARth) x y);
rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth).
Qed.
Lemma ARopp_zero : -0 == 0.
Proof.
rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth).
repeat rewrite ARmul_0_r; sreflexivity.
Qed.
End ALMOST_RING.
Section AddRing.
(* Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop. *)
Inductive ring_kind : Type :=
| Abstract
| Computational
(R:Type)
(req : R -> R -> Prop)
(reqb : R -> R -> bool)
(_ : forall x y, (reqb x y) = true -> req x y)
| Morphism
(R : Type)
(rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R)
(req : R -> R -> Prop)
(C : Type)
(cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C)
(ceqb : C->C->bool)
phi
(_ : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi).
End AddRing.
(** Some simplification tactics*)
Ltac gen_reflexivity Rsth := apply (Seq_refl _ _ Rsth).
Ltac gen_srewrite Rsth Reqe ARth :=
repeat first
[ gen_reflexivity Rsth
| progress rewrite (ARopp_zero Rsth Reqe ARth)
| rewrite (ARadd_0_l ARth)
| rewrite (ARadd_0_r Rsth ARth)
| rewrite (ARmul_1_l ARth)
| rewrite (ARmul_1_r Rsth ARth)
| rewrite (ARmul_0_l ARth)
| rewrite (ARmul_0_r Rsth ARth)
| rewrite (ARdistr_l ARth)
| rewrite (ARdistr_r Rsth Reqe ARth)
| rewrite (ARadd_assoc ARth)
| rewrite (ARmul_assoc ARth)
| progress rewrite (ARopp_add ARth)
| progress rewrite (ARsub_def ARth)
| progress rewrite <- (ARopp_mul_l ARth)
| progress rewrite <- (ARopp_mul_r Rsth Reqe ARth) ].
Ltac gen_add_push add Rsth Reqe ARth x :=
repeat (match goal with
| |- context [add (add ?y x) ?z] =>
progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z)
| |- context [add (add x ?y) ?z] =>
progress rewrite (ARadd_assoc1 Rsth ARth x y z)
end).
Ltac gen_mul_push mul Rsth Reqe ARth x :=
repeat (match goal with
| |- context [mul (mul ?y x) ?z] =>
progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z)
| |- context [mul (mul x ?y) ?z] =>
progress rewrite (ARmul_assoc1 Rsth ARth x y z)
end).
|