blob: 34731eb3b50bfd9b272a0ddd7af231f63731b4cd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import List.
Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
Require Export Morphisms Setoid Bool.
Require Import ZArith.
Require Import Algebra_syntax.
Require Export Ncring.
Require Import Ncring_polynom.
Require Import Ncring_initial.
Set Implicit Arguments.
Class nth (R:Type) (t:R) (l:list R) (i:nat).
Instance Ifind0 (R:Type) (t:R) l
: nth t(t::l) 0.
Instance IfindS (R:Type) (t2 t1:R) l i
{_:nth t1 l i}
: nth t1 (t2::l) (S i) | 1.
Class closed (T:Type) (l:list T).
Instance Iclosed_nil T
: closed (T:=T) nil.
Instance Iclosed_cons T t (l:list T)
{_:closed l}
: closed (t::l).
Class reify (R:Type)`{Rr:Ring (T:=R)} (e:PExpr Z) (lvar:list R) (t:R).
Instance reify_zero (R:Type) lvar op
`{Ring (T:=R)(ring0:=op)}
: reify (ring0:=op)(PEc 0%Z) lvar op.
Instance reify_one (R:Type) lvar op
`{Ring (T:=R)(ring1:=op)}
: reify (ring1:=op) (PEc 1%Z) lvar op.
Instance reifyZ0 (R:Type) lvar
`{Ring (T:=R)}
: reify (PEc Z0) lvar Z0|11.
Instance reifyZpos (R:Type) lvar (p:positive)
`{Ring (T:=R)}
: reify (PEc (Zpos p)) lvar (Zpos p)|11.
Instance reifyZneg (R:Type) lvar (p:positive)
`{Ring (T:=R)}
: reify (PEc (Zneg p)) lvar (Zneg p)|11.
Instance reify_add (R:Type)
e1 lvar t1 e2 t2 op
`{Ring (T:=R)(add:=op)}
{_:reify (add:=op) e1 lvar t1}
{_:reify (add:=op) e2 lvar t2}
: reify (add:=op) (PEadd e1 e2) lvar (op t1 t2).
Instance reify_mul (R:Type)
e1 lvar t1 e2 t2 op
`{Ring (T:=R)(mul:=op)}
{_:reify (mul:=op) e1 lvar t1}
{_:reify (mul:=op) e2 lvar t2}
: reify (mul:=op) (PEmul e1 e2) lvar (op t1 t2)|10.
Instance reify_mul_ext (R:Type) `{Ring R}
lvar z e2 t2
`{Ring (T:=R)}
{_:reify e2 lvar t2}
: reify (PEmul (PEc z) e2) lvar
(@multiplication Z _ _ z t2)|9.
Instance reify_sub (R:Type)
e1 lvar t1 e2 t2 op
`{Ring (T:=R)(sub:=op)}
{_:reify (sub:=op) e1 lvar t1}
{_:reify (sub:=op) e2 lvar t2}
: reify (sub:=op) (PEsub e1 e2) lvar (op t1 t2).
Instance reify_opp (R:Type)
e1 lvar t1 op
`{Ring (T:=R)(opp:=op)}
{_:reify (opp:=op) e1 lvar t1}
: reify (opp:=op) (PEopp e1) lvar (op t1).
Instance reify_pow (R:Type) `{Ring R}
e1 lvar t1 n
`{Ring (T:=R)}
{_:reify e1 lvar t1}
: reify (PEpow e1 n) lvar (pow_N t1 n)|1.
Instance reify_var (R:Type) t lvar i
`{nth R t lvar i}
`{Rr: Ring (T:=R)}
: reify (Rr:= Rr) (PEX Z (P_of_succ_nat i))lvar t
| 100.
Class reifylist (R:Type)`{Rr:Ring (T:=R)} (lexpr:list (PExpr Z)) (lvar:list R)
(lterm:list R).
Instance reify_nil (R:Type) lvar
`{Rr: Ring (T:=R)}
: reifylist (Rr:= Rr) nil lvar (@nil R).
Instance reify_cons (R:Type) e1 lvar t1 lexpr2 lterm2
`{Rr: Ring (T:=R)}
{_:reify (Rr:= Rr) e1 lvar t1}
{_:reifylist (Rr:= Rr) lexpr2 lvar lterm2}
: reifylist (Rr:= Rr) (e1::lexpr2) lvar (t1::lterm2).
Definition list_reifyl (R:Type) lexpr lvar lterm
`{Rr: Ring (T:=R)}
{_:reifylist (Rr:= Rr) lexpr lvar lterm}
`{closed (T:=R) lvar} := (lvar,lexpr).
Unset Implicit Arguments.
Ltac lterm_goal g :=
match g with
| ?t1 == ?t2 => constr:(t1::t2::nil)
| ?t1 = ?t2 => constr:(t1::t2::nil)
| (_ ?t1 ?t2) => constr:(t1::t2::nil)
end.
Lemma Zeqb_ok: forall x y : Z, Zeq_bool x y = true -> x == y.
intros x y H. rewrite (Zeq_bool_eq x y H). reflexivity. Qed.
Ltac reify_goal lvar lexpr lterm:=
(*idtac lvar; idtac lexpr; idtac lterm;*)
match lexpr with
nil => idtac
| ?e1::?e2::_ =>
match goal with
|- (?op ?u1 ?u2) =>
change (op
(@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
(fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
lvar e1)
(@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
(fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
lvar e2))
end
end.
Lemma comm: forall (R:Type)`{Ring R}(c : Z) (x : R),
x * (gen_phiZ c) == (gen_phiZ c) * x.
induction c. intros. simpl. gen_rewrite. simpl. intros.
rewrite <- same_gen.
induction p. simpl. gen_rewrite. rewrite IHp. reflexivity.
simpl. gen_rewrite. rewrite IHp. reflexivity.
simpl. gen_rewrite.
simpl. intros. rewrite <- same_gen.
induction p. simpl. generalize IHp. clear IHp.
gen_rewrite. intro IHp. rewrite IHp. reflexivity.
simpl. generalize IHp. clear IHp.
gen_rewrite. intro IHp. rewrite IHp. reflexivity.
simpl. gen_rewrite. Qed.
Ltac ring_gen :=
match goal with
|- ?g => let lterm := lterm_goal g in
match eval red in (list_reifyl (lterm:=lterm)) with
| (?fv, ?lexpr) =>
(*idtac "variables:";idtac fv;
idtac "terms:"; idtac lterm;
idtac "reifications:"; idtac lexpr; *)
reify_goal fv lexpr lterm;
match goal with
|- ?g =>
apply (@ring_correct Z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(@gen_phiZ _ _ _ _ _ _ _ _ _) _
(@comm _ _ _ _ _ _ _ _ _ _) Zeq_bool Zeqb_ok N (fun n:N => n)
(@pow_N _ _ _ _ _ _ _ _ _));
[apply mkpow_th; reflexivity
|vm_compute; reflexivity]
end
end
end.
Ltac non_commutative_ring:=
intros;
ring_gen.
(* simplification *)
Ltac ring_simplify_aux lterm fv lexpr hyp :=
match lterm with
| ?t0::?lterm =>
match lexpr with
| ?e::?le => (* e:PExpr Z est la réification de t0:R *)
let t := constr:(@Ncring_polynom.norm_subst
Z 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z) Zops Zeq_bool e) in
(* t:Pol Z *)
let te :=
constr:(@Ncring_polynom.Pphi Z
_ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ fv t) in
let eq1 := fresh "ring" in
let nft := eval vm_compute in t in
let t':= fresh "t" in
pose (t' := nft);
assert (eq1 : t = t');
[vm_cast_no_check (refl_equal t')|
let eq2 := fresh "ring" in
assert (eq2:(@Ncring_polynom.PEeval Z
_ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ N (fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication) fv e) == te);
[apply (@Ncring_polynom.norm_subst_ok
Z _ 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z)
_ _ 0 1 _+_ _*_ _-_ -_ _==_ _ _ Ncring_initial.gen_phiZ _
(@comm _ 0 1 _+_ _*_ _-_ -_ _==_ _ _) _ Zeqb_ok);
apply mkpow_th; reflexivity
| match hyp with
| 1%nat => rewrite eq2
| ?H => try rewrite eq2 in H
end];
let P:= fresh "P" in
match hyp with
| 1%nat => idtac "ok";
rewrite eq1;
pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
_ Ncring_initial.gen_phiZ fv t');
match goal with
|- (?p ?t) => set (P:=p)
end;
unfold t' in *; clear t' eq1 eq2; simpl
| ?H =>
rewrite eq1 in H;
pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
_ Ncring_initial.gen_phiZ fv t') in H;
match type of H with
| (?p ?t) => set (P:=p) in H
end;
unfold t' in *; clear t' eq1 eq2; simpl in H
end; unfold P in *; clear P
]; ring_simplify_aux lterm fv le hyp
| nil => idtac
end
| nil => idtac
end.
Ltac set_variables fv :=
match fv with
| nil => idtac
| ?t::?fv =>
let v := fresh "X" in
set (v:=t) in *; set_variables fv
end.
Ltac deset n:=
match n with
| 0%nat => idtac
| S ?n1 =>
match goal with
| h:= ?v : ?t |- ?g => unfold h in *; clear h; deset n1
end
end.
(* a est soit un terme de l'anneau, soit une liste de termes.
J'ai pas réussi à un décomposer les Vlists obtenues avec ne_constr_list
dans Tactic Notation *)
Ltac ring_simplify_gen a hyp :=
let lterm :=
match a with
| _::_ => a
| _ => constr:(a::nil)
end in
match eval red in (list_reifyl (lterm:=lterm)) with
| (?fv, ?lexpr) => idtac lterm; idtac fv; idtac lexpr;
let n := eval compute in (length fv) in
idtac n;
let lt:=fresh "lt" in
set (lt:= lterm);
let lv:=fresh "fv" in
set (lv:= fv);
(* les termes de fv sont remplacés par des variables
pour pouvoir utiliser simpl ensuite sans risquer
des simplifications indésirables *)
set_variables fv;
let lterm1 := eval unfold lt in lt in
let lv1 := eval unfold lv in lv in
idtac lterm1; idtac lv1;
ring_simplify_aux lterm1 lv1 lexpr hyp;
clear lt lv;
(* on remet les termes de fv *)
deset n
end.
Tactic Notation "non_commutative_ring_simplify" constr(lterm):=
ring_simplify_gen lterm 1%nat.
Tactic Notation "non_commutative_ring_simplify" constr(lterm) "in" ident(H):=
ring_simplify_gen lterm H.
|