1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export List.
Require Export Bintree.
Require Import Bool.
Declare ML Module "rtauto_plugin".
Ltac clean:=try (simpl;congruence).
Inductive form:Set:=
Atom : positive -> form
| Arrow : form -> form -> form
| Bot
| Conjunct : form -> form -> form
| Disjunct : form -> form -> form.
Notation "[ n ]":=(Atom n).
Notation "A =>> B":= (Arrow A B) (at level 59, right associativity).
Notation "#" := Bot.
Notation "A //\\ B" := (Conjunct A B) (at level 57, left associativity).
Notation "A \\// B" := (Disjunct A B) (at level 58, left associativity).
Definition ctx := Store form.
Fixpoint pos_eq (m n:positive) {struct m} :bool :=
match m with
xI mm => match n with xI nn => pos_eq mm nn | _ => false end
| xO mm => match n with xO nn => pos_eq mm nn | _ => false end
| xH => match n with xH => true | _ => false end
end.
Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
induction m;simpl;destruct n;congruence ||
(intro e;apply f_equal;auto).
Qed.
Fixpoint form_eq (p q:form) {struct p} :bool :=
match p with
Atom m => match q with Atom n => pos_eq m n | _ => false end
| Arrow p1 p2 =>
match q with
Arrow q1 q2 => form_eq p1 q1 && form_eq p2 q2
| _ => false end
| Bot => match q with Bot => true | _ => false end
| Conjunct p1 p2 =>
match q with
Conjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2
| _ => false
end
| Disjunct p1 p2 =>
match q with
Disjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2
| _ => false
end
end.
Theorem form_eq_refl: forall p q, form_eq p q = true -> p = q.
induction p;destruct q;simpl;clean.
intro h;generalize (pos_eq_refl _ _ h);congruence.
case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
Qed.
Arguments form_eq_refl [p q] _.
Section with_env.
Variable env:Store Prop.
Fixpoint interp_form (f:form): Prop :=
match f with
[n]=> match get n env with PNone => True | PSome P => P end
| A =>> B => (interp_form A) -> (interp_form B)
| # => False
| A //\\ B => (interp_form A) /\ (interp_form B)
| A \\// B => (interp_form A) \/ (interp_form B)
end.
Notation "[[ A ]]" := (interp_form A).
Fixpoint interp_ctx (hyps:ctx) (F:Full hyps) (G:Prop) {struct F} : Prop :=
match F with
F_empty => G
| F_push H hyps0 F0 => interp_ctx hyps0 F0 ([[H]] -> G)
end.
Require Export BinPos.
Ltac wipe := intros;simpl;constructor.
Lemma compose0 :
forall hyps F (A:Prop),
A ->
(interp_ctx hyps F A).
induction F;intros A H;simpl;auto.
Qed.
Lemma compose1 :
forall hyps F (A B:Prop),
(A -> B) ->
(interp_ctx hyps F A) ->
(interp_ctx hyps F B).
induction F;intros A B H;simpl;auto.
apply IHF;auto.
Qed.
Theorem compose2 :
forall hyps F (A B C:Prop),
(A -> B -> C) ->
(interp_ctx hyps F A) ->
(interp_ctx hyps F B) ->
(interp_ctx hyps F C).
induction F;intros A B C H;simpl;auto.
apply IHF;auto.
Qed.
Theorem compose3 :
forall hyps F (A B C D:Prop),
(A -> B -> C -> D) ->
(interp_ctx hyps F A) ->
(interp_ctx hyps F B) ->
(interp_ctx hyps F C) ->
(interp_ctx hyps F D).
induction F;intros A B C D H;simpl;auto.
apply IHF;auto.
Qed.
Lemma weaken : forall hyps F f G,
(interp_ctx hyps F G) ->
(interp_ctx (hyps\f) (F_push f hyps F) G).
induction F;simpl;intros;auto.
apply compose1 with ([[a]]-> G);auto.
Qed.
Theorem project_In : forall hyps F g,
In g hyps F ->
interp_ctx hyps F [[g]].
induction F;simpl.
contradiction.
intros g H;destruct H.
subst;apply compose0;simpl;trivial.
apply compose1 with [[g]];auto.
Qed.
Theorem project : forall hyps F p g,
get p hyps = PSome g->
interp_ctx hyps F [[g]].
intros hyps F p g e; apply project_In.
apply get_In with p;assumption.
Qed.
Arguments project [hyps] F [p g] _.
Inductive proof:Set :=
Ax : positive -> proof
| I_Arrow : proof -> proof
| E_Arrow : positive -> positive -> proof -> proof
| D_Arrow : positive -> proof -> proof -> proof
| E_False : positive -> proof
| I_And: proof -> proof -> proof
| E_And: positive -> proof -> proof
| D_And: positive -> proof -> proof
| I_Or_l: proof -> proof
| I_Or_r: proof -> proof
| E_Or: positive -> proof -> proof -> proof
| D_Or: positive -> proof -> proof
| Cut: form -> proof -> proof -> proof.
Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).
Fixpoint check_proof (hyps:ctx) (gl:form) (P:proof) {struct P}: bool :=
match P with
Ax i =>
match get i hyps with
PSome F => form_eq F gl
| _ => false
end
| I_Arrow p =>
match gl with
A =>> B => check_proof (hyps \ A) B p
| _ => false
end
| E_Arrow i j p =>
match get i hyps,get j hyps with
PSome A,PSome (B =>>C) =>
form_eq A B && check_proof (hyps \ C) (gl) p
| _,_ => false
end
| D_Arrow i p1 p2 =>
match get i hyps with
PSome ((A =>>B)=>>C) =>
(check_proof ( hyps \ B =>> C \ A) B p1) && (check_proof (hyps \ C) gl p2)
| _ => false
end
| E_False i =>
match get i hyps with
PSome # => true
| _ => false
end
| I_And p1 p2 =>
match gl with
A //\\ B =>
check_proof hyps A p1 && check_proof hyps B p2
| _ => false
end
| E_And i p =>
match get i hyps with
PSome (A //\\ B) => check_proof (hyps \ A \ B) gl p
| _=> false
end
| D_And i p =>
match get i hyps with
PSome (A //\\ B =>> C) => check_proof (hyps \ A=>>B=>>C) gl p
| _=> false
end
| I_Or_l p =>
match gl with
(A \\// B) => check_proof hyps A p
| _ => false
end
| I_Or_r p =>
match gl with
(A \\// B) => check_proof hyps B p
| _ => false
end
| E_Or i p1 p2 =>
match get i hyps with
PSome (A \\// B) =>
check_proof (hyps \ A) gl p1 && check_proof (hyps \ B) gl p2
| _=> false
end
| D_Or i p =>
match get i hyps with
PSome (A \\// B =>> C) =>
(check_proof (hyps \ A=>>C \ B=>>C) gl p)
| _=> false
end
| Cut A p1 p2 =>
check_proof hyps A p1 && check_proof (hyps \ A) gl p2
end.
Theorem interp_proof:
forall p hyps F gl,
check_proof hyps gl p = true -> interp_ctx hyps F [[gl]].
induction p;intros hyps F gl.
(* cas Axiom *)
Focus 1.
simpl;case_eq (get p hyps);clean.
intros f nth_f e;rewrite <- (form_eq_refl e).
apply project with p;trivial.
(* Cas Arrow_Intro *)
Focus 1.
destruct gl;clean.
simpl;intros.
change (interp_ctx (hyps\gl1) (F_push gl1 hyps F) [[gl2]]).
apply IHp;try constructor;trivial.
(* Cas Arrow_Elim *)
Focus 1.
simpl check_proof;case_eq (get p hyps);clean.
intros f ef;case_eq (get p0 hyps);clean.
intros f0 ef0;destruct f0;clean.
case_eq (form_eq f f0_1);clean.
simpl;intros e check_p1.
generalize (project F ef) (project F ef0)
(IHp (hyps \ f0_2) (F_push f0_2 hyps F) gl check_p1);
clear check_p1 IHp p p0 p1 ef ef0.
simpl.
apply compose3.
rewrite (form_eq_refl e).
auto.
(* cas Arrow_Destruct *)
Focus 1.
simpl;case_eq (get p1 hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
case_eq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean.
intros check_p1 check_p2.
generalize (project F ef)
(IHp1 (hyps \ f1_2 =>> f2 \ f1_1)
(F_push f1_1 (hyps \ f1_2 =>> f2)
(F_push (f1_2 =>> f2) hyps F)) f1_2 check_p1)
(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2).
simpl;apply compose3;auto.
(* Cas False_Elim *)
Focus 1.
simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
intros _; generalize (project F ef).
apply compose1;apply False_ind.
(* Cas And_Intro *)
Focus 1.
simpl;destruct gl;clean.
case_eq (check_proof hyps gl1 p1);clean.
intros Hp1 Hp2;generalize (IHp1 hyps F gl1 Hp1) (IHp2 hyps F gl2 Hp2).
apply compose2 ;simpl;auto.
(* cas And_Elim *)
Focus 1.
simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
intro check_p;generalize (project F ef)
(IHp (hyps \ f1 \ f2) (F_push f2 (hyps \ f1) (F_push f1 hyps F)) gl check_p).
simpl;apply compose2;intros [h1 h2];auto.
(* cas And_Destruct *)
Focus 1.
simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
intro H;generalize (project F ef)
(IHp (hyps \ f1_1 =>> f1_2 =>> f2)
(F_push (f1_1 =>> f1_2 =>> f2) hyps F) gl H);clear H;simpl.
apply compose2;auto.
(* cas Or_Intro_left *)
Focus 1.
destruct gl;clean.
intro Hp;generalize (IHp hyps F gl1 Hp).
apply compose1;simpl;auto.
(* cas Or_Intro_right *)
Focus 1.
destruct gl;clean.
intro Hp;generalize (IHp hyps F gl2 Hp).
apply compose1;simpl;auto.
(* cas Or_elim *)
Focus 1.
simpl;case_eq (get p1 hyps);clean.
intros f ef;destruct f;clean.
case_eq (check_proof (hyps \ f1) gl p2);clean.
intros check_p1 check_p2;generalize (project F ef)
(IHp1 (hyps \ f1) (F_push f1 hyps F) gl check_p1)
(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2);
simpl;apply compose3;simpl;intro h;destruct h;auto.
(* cas Or_Destruct *)
Focus 1.
simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
intro check_p0;generalize (project F ef)
(IHp (hyps \ f1_1 =>> f2 \ f1_2 =>> f2)
(F_push (f1_2 =>> f2) (hyps \ f1_1 =>> f2)
(F_push (f1_1 =>> f2) hyps F)) gl check_p0);simpl.
apply compose2;auto.
(* cas Cut *)
Focus 1.
simpl;case_eq (check_proof hyps f p1);clean.
intros check_p1 check_p2;
generalize (IHp1 hyps F f check_p1)
(IHp2 (hyps\f) (F_push f hyps F) gl check_p2);
simpl; apply compose2;auto.
Qed.
Theorem Reflect: forall gl prf, if check_proof empty gl prf then [[gl]] else True.
intros gl prf;case_eq (check_proof empty gl prf);intro check_prf.
change (interp_ctx empty F_empty [[gl]]) ;
apply interp_proof with prf;assumption.
trivial.
Qed.
End with_env.
(*
(* A small example *)
Parameters A B C D:Prop.
Theorem toto:A /\ (B \/ C) -> (A /\ B) \/ (A /\ C).
exact (Reflect (empty \ A \ B \ C)
([1] //\\ ([2] \\// [3]) =>> [1] //\\ [2] \\// [1] //\\ [3])
(I_Arrow (E_And 1 (E_Or 3
(I_Or_l (I_And (Ax 2) (Ax 4)))
(I_Or_r (I_And (Ax 2) (Ax 4))))))).
Qed.
Print toto.
*)
|