1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
Require Import LegacyRing_theory.
Require Import Quote.
Require Import Ring_normalize.
Unset Boxed Definitions.
Section abstract_semi_rings.
Inductive aspolynomial : Type :=
| ASPvar : index -> aspolynomial
| ASP0 : aspolynomial
| ASP1 : aspolynomial
| ASPplus : aspolynomial -> aspolynomial -> aspolynomial
| ASPmult : aspolynomial -> aspolynomial -> aspolynomial.
Inductive abstract_sum : Type :=
| Nil_acs : abstract_sum
| Cons_acs : varlist -> abstract_sum -> abstract_sum.
Fixpoint abstract_sum_merge (s1:abstract_sum) :
abstract_sum -> abstract_sum :=
match s1 with
| Cons_acs l1 t1 =>
(fix asm_aux (s2:abstract_sum) : abstract_sum :=
match s2 with
| Cons_acs l2 t2 =>
if varlist_lt l1 l2
then Cons_acs l1 (abstract_sum_merge t1 s2)
else Cons_acs l2 (asm_aux t2)
| Nil_acs => s1
end)
| Nil_acs => fun s2 => s2
end.
Fixpoint abstract_varlist_insert (l1:varlist) (s2:abstract_sum) {struct s2} :
abstract_sum :=
match s2 with
| Cons_acs l2 t2 =>
if varlist_lt l1 l2
then Cons_acs l1 s2
else Cons_acs l2 (abstract_varlist_insert l1 t2)
| Nil_acs => Cons_acs l1 Nil_acs
end.
Fixpoint abstract_sum_scalar (l1:varlist) (s2:abstract_sum) {struct s2} :
abstract_sum :=
match s2 with
| Cons_acs l2 t2 =>
abstract_varlist_insert (varlist_merge l1 l2)
(abstract_sum_scalar l1 t2)
| Nil_acs => Nil_acs
end.
Fixpoint abstract_sum_prod (s1 s2:abstract_sum) {struct s1} : abstract_sum :=
match s1 with
| Cons_acs l1 t1 =>
abstract_sum_merge (abstract_sum_scalar l1 s2)
(abstract_sum_prod t1 s2)
| Nil_acs => Nil_acs
end.
Fixpoint aspolynomial_normalize (p:aspolynomial) : abstract_sum :=
match p with
| ASPvar i => Cons_acs (Cons_var i Nil_var) Nil_acs
| ASP1 => Cons_acs Nil_var Nil_acs
| ASP0 => Nil_acs
| ASPplus l r =>
abstract_sum_merge (aspolynomial_normalize l)
(aspolynomial_normalize r)
| ASPmult l r =>
abstract_sum_prod (aspolynomial_normalize l) (aspolynomial_normalize r)
end.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aeq : A -> A -> bool.
Variable vm : varmap A.
Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
Fixpoint interp_asp (p:aspolynomial) : A :=
match p with
| ASPvar i => interp_var Azero vm i
| ASP0 => Azero
| ASP1 => Aone
| ASPplus l r => Aplus (interp_asp l) (interp_asp r)
| ASPmult l r => Amult (interp_asp l) (interp_asp r)
end.
(* Local *) Definition iacs_aux :=
(fix iacs_aux (a:A) (s:abstract_sum) {struct s} : A :=
match s with
| Nil_acs => a
| Cons_acs l t =>
Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t)
end).
Definition interp_acs (s:abstract_sum) : A :=
match s with
| Cons_acs l t => iacs_aux (interp_vl Amult Aone Azero vm l) t
| Nil_acs => Azero
end.
Hint Resolve (SR_plus_comm T).
Hint Resolve (SR_plus_assoc T).
Hint Resolve (SR_plus_assoc2 T).
Hint Resolve (SR_mult_comm T).
Hint Resolve (SR_mult_assoc T).
Hint Resolve (SR_mult_assoc2 T).
Hint Resolve (SR_plus_zero_left T).
Hint Resolve (SR_plus_zero_left2 T).
Hint Resolve (SR_mult_one_left T).
Hint Resolve (SR_mult_one_left2 T).
Hint Resolve (SR_mult_zero_left T).
Hint Resolve (SR_mult_zero_left2 T).
Hint Resolve (SR_distr_left T).
Hint Resolve (SR_distr_left2 T).
(*Hint Resolve (SR_plus_reg_left T).*)
Hint Resolve (SR_plus_permute T).
Hint Resolve (SR_mult_permute T).
Hint Resolve (SR_distr_right T).
Hint Resolve (SR_distr_right2 T).
Hint Resolve (SR_mult_zero_right T).
Hint Resolve (SR_mult_zero_right2 T).
Hint Resolve (SR_plus_zero_right T).
Hint Resolve (SR_plus_zero_right2 T).
Hint Resolve (SR_mult_one_right T).
Hint Resolve (SR_mult_one_right2 T).
(*Hint Resolve (SR_plus_reg_right T).*)
Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
Hint Immediate T.
Remark iacs_aux_ok :
forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
simple induction s; simpl in |- *; intros.
trivial.
reflexivity.
Qed.
Hint Extern 10 (_ = _ :>A) => rewrite iacs_aux_ok: core.
Lemma abstract_varlist_insert_ok :
forall (l:varlist) (s:abstract_sum),
interp_acs (abstract_varlist_insert l s) =
Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s).
simple induction s.
trivial.
simpl in |- *; intros.
elim (varlist_lt l v); simpl in |- *.
eauto.
rewrite iacs_aux_ok.
rewrite H; auto.
Qed.
Lemma abstract_sum_merge_ok :
forall x y:abstract_sum,
interp_acs (abstract_sum_merge x y) = Aplus (interp_acs x) (interp_acs y).
Proof.
simple induction x.
trivial.
simple induction y; intros.
auto.
simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
repeat rewrite iacs_aux_ok.
rewrite H; simpl in |- *; auto.
simpl in H0.
repeat rewrite iacs_aux_ok.
rewrite H0. simpl in |- *; auto.
Qed.
Lemma abstract_sum_scalar_ok :
forall (l:varlist) (s:abstract_sum),
interp_acs (abstract_sum_scalar l s) =
Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
simple induction s.
simpl in |- *; eauto.
simpl in |- *; intros.
rewrite iacs_aux_ok.
rewrite abstract_varlist_insert_ok.
rewrite H.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
auto.
Qed.
Lemma abstract_sum_prod_ok :
forall x y:abstract_sum,
interp_acs (abstract_sum_prod x y) = Amult (interp_acs x) (interp_acs y).
Proof.
simple induction x.
intros; simpl in |- *; eauto.
destruct y as [| v0 a0]; intros.
simpl in |- *; rewrite H; eauto.
unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
rewrite abstract_sum_merge_ok.
rewrite abstract_sum_scalar_ok.
rewrite H; simpl in |- *; auto.
Qed.
Theorem aspolynomial_normalize_ok :
forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
simple induction x; simpl in |- *; intros; trivial.
rewrite abstract_sum_merge_ok.
rewrite H; rewrite H0; eauto.
rewrite abstract_sum_prod_ok.
rewrite H; rewrite H0; eauto.
Qed.
End abstract_semi_rings.
Section abstract_rings.
(* In abstract polynomials there is no constants other
than 0 and 1. An abstract ring is a ring whose operations plus,
and mult are not functions but constructors. In other words,
when c1 and c2 are closed, (plus c1 c2) doesn't reduce to a closed
term. "closed" mean here "without plus and mult". *)
(* this section is not parametrized by a (semi-)ring.
Nevertheless, they are two different types for semi-rings and rings
and there will be 2 correction theorems *)
Inductive apolynomial : Type :=
| APvar : index -> apolynomial
| AP0 : apolynomial
| AP1 : apolynomial
| APplus : apolynomial -> apolynomial -> apolynomial
| APmult : apolynomial -> apolynomial -> apolynomial
| APopp : apolynomial -> apolynomial.
(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
Invariant : the list is sorted and there is no varlist is present
with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
Inductive signed_sum : Type :=
| Nil_varlist : signed_sum
| Plus_varlist : varlist -> signed_sum -> signed_sum
| Minus_varlist : varlist -> signed_sum -> signed_sum.
Fixpoint signed_sum_merge (s1:signed_sum) : signed_sum -> signed_sum :=
match s1 with
| Plus_varlist l1 t1 =>
(fix ssm_aux (s2:signed_sum) : signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_lt l1 l2
then Plus_varlist l1 (signed_sum_merge t1 s2)
else Plus_varlist l2 (ssm_aux t2)
| Minus_varlist l2 t2 =>
if varlist_eq l1 l2
then signed_sum_merge t1 t2
else
if varlist_lt l1 l2
then Plus_varlist l1 (signed_sum_merge t1 s2)
else Minus_varlist l2 (ssm_aux t2)
| Nil_varlist => s1
end)
| Minus_varlist l1 t1 =>
(fix ssm_aux2 (s2:signed_sum) : signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_eq l1 l2
then signed_sum_merge t1 t2
else
if varlist_lt l1 l2
then Minus_varlist l1 (signed_sum_merge t1 s2)
else Plus_varlist l2 (ssm_aux2 t2)
| Minus_varlist l2 t2 =>
if varlist_lt l1 l2
then Minus_varlist l1 (signed_sum_merge t1 s2)
else Minus_varlist l2 (ssm_aux2 t2)
| Nil_varlist => s1
end)
| Nil_varlist => fun s2 => s2
end.
Fixpoint plus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_lt l1 l2
then Plus_varlist l1 s2
else Plus_varlist l2 (plus_varlist_insert l1 t2)
| Minus_varlist l2 t2 =>
if varlist_eq l1 l2
then t2
else
if varlist_lt l1 l2
then Plus_varlist l1 s2
else Minus_varlist l2 (plus_varlist_insert l1 t2)
| Nil_varlist => Plus_varlist l1 Nil_varlist
end.
Fixpoint minus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_eq l1 l2
then t2
else
if varlist_lt l1 l2
then Minus_varlist l1 s2
else Plus_varlist l2 (minus_varlist_insert l1 t2)
| Minus_varlist l2 t2 =>
if varlist_lt l1 l2
then Minus_varlist l1 s2
else Minus_varlist l2 (minus_varlist_insert l1 t2)
| Nil_varlist => Minus_varlist l1 Nil_varlist
end.
Fixpoint signed_sum_opp (s:signed_sum) : signed_sum :=
match s with
| Plus_varlist l2 t2 => Minus_varlist l2 (signed_sum_opp t2)
| Minus_varlist l2 t2 => Plus_varlist l2 (signed_sum_opp t2)
| Nil_varlist => Nil_varlist
end.
Fixpoint plus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
plus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
| Minus_varlist l2 t2 =>
minus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
| Nil_varlist => Nil_varlist
end.
Fixpoint minus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
minus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
| Minus_varlist l2 t2 =>
plus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
| Nil_varlist => Nil_varlist
end.
Fixpoint signed_sum_prod (s1 s2:signed_sum) {struct s1} : signed_sum :=
match s1 with
| Plus_varlist l1 t1 =>
signed_sum_merge (plus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
| Minus_varlist l1 t1 =>
signed_sum_merge (minus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
| Nil_varlist => Nil_varlist
end.
Fixpoint apolynomial_normalize (p:apolynomial) : signed_sum :=
match p with
| APvar i => Plus_varlist (Cons_var i Nil_var) Nil_varlist
| AP1 => Plus_varlist Nil_var Nil_varlist
| AP0 => Nil_varlist
| APplus l r =>
signed_sum_merge (apolynomial_normalize l) (apolynomial_normalize r)
| APmult l r =>
signed_sum_prod (apolynomial_normalize l) (apolynomial_normalize r)
| APopp q => signed_sum_opp (apolynomial_normalize q)
end.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Variable vm : varmap A.
Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
(* Local *) Definition isacs_aux :=
(fix isacs_aux (a:A) (s:signed_sum) {struct s} : A :=
match s with
| Nil_varlist => a
| Plus_varlist l t =>
Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t)
| Minus_varlist l t =>
Aplus a
(isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
end).
Definition interp_sacs (s:signed_sum) : A :=
match s with
| Plus_varlist l t => isacs_aux (interp_vl Amult Aone Azero vm l) t
| Minus_varlist l t => isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t
| Nil_varlist => Azero
end.
Fixpoint interp_ap (p:apolynomial) : A :=
match p with
| APvar i => interp_var Azero vm i
| AP0 => Azero
| AP1 => Aone
| APplus l r => Aplus (interp_ap l) (interp_ap r)
| APmult l r => Amult (interp_ap l) (interp_ap r)
| APopp q => Aopp (interp_ap q)
end.
Hint Resolve (Th_plus_comm T).
Hint Resolve (Th_plus_assoc T).
Hint Resolve (Th_plus_assoc2 T).
Hint Resolve (Th_mult_comm T).
Hint Resolve (Th_mult_assoc T).
Hint Resolve (Th_mult_assoc2 T).
Hint Resolve (Th_plus_zero_left T).
Hint Resolve (Th_plus_zero_left2 T).
Hint Resolve (Th_mult_one_left T).
Hint Resolve (Th_mult_one_left2 T).
Hint Resolve (Th_mult_zero_left T).
Hint Resolve (Th_mult_zero_left2 T).
Hint Resolve (Th_distr_left T).
Hint Resolve (Th_distr_left2 T).
(*Hint Resolve (Th_plus_reg_left T).*)
Hint Resolve (Th_plus_permute T).
Hint Resolve (Th_mult_permute T).
Hint Resolve (Th_distr_right T).
Hint Resolve (Th_distr_right2 T).
Hint Resolve (Th_mult_zero_right2 T).
Hint Resolve (Th_plus_zero_right T).
Hint Resolve (Th_plus_zero_right2 T).
Hint Resolve (Th_mult_one_right T).
Hint Resolve (Th_mult_one_right2 T).
(*Hint Resolve (Th_plus_reg_right T).*)
Hint Resolve refl_equal sym_equal trans_equal.
(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
Hint Immediate T.
Lemma isacs_aux_ok :
forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
simple induction s; simpl in |- *; intros.
trivial.
reflexivity.
reflexivity.
Qed.
Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
Ltac solve1 v v0 H H0 :=
simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
[ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
Lemma signed_sum_merge_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
simple induction x.
intro; simpl in |- *; auto.
simple induction y; intros.
auto.
solve1 v v0 H H0.
simpl in |- *; generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); simpl in |- *.
intro Heq; rewrite (Heq I).
rewrite H.
repeat rewrite isacs_aux_ok.
rewrite (Th_plus_permute T).
repeat rewrite (Th_plus_assoc T).
rewrite
(Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v0))
(interp_vl Amult Aone Azero vm v0)).
rewrite (Th_opp_def T).
rewrite (Th_plus_zero_left T).
reflexivity.
solve1 v v0 H H0.
simple induction y; intros.
auto.
simpl in |- *; generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); simpl in |- *.
intro Heq; rewrite (Heq I).
rewrite H.
repeat rewrite isacs_aux_ok.
rewrite (Th_plus_permute T).
repeat rewrite (Th_plus_assoc T).
rewrite (Th_opp_def T).
rewrite (Th_plus_zero_left T).
reflexivity.
solve1 v v0 H H0.
solve1 v v0 H H0.
Qed.
Ltac solve2 l v H :=
elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
[ auto | rewrite H; auto ].
Lemma plus_varlist_insert_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (plus_varlist_insert l s) =
Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
simple induction s.
trivial.
simpl in |- *; intros.
solve2 l v H.
simpl in |- *; intros.
generalize (varlist_eq_prop l v).
elim (varlist_eq l v); simpl in |- *.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
repeat rewrite (Th_plus_assoc T).
rewrite (Th_opp_def T).
rewrite (Th_plus_zero_left T).
reflexivity.
solve2 l v H.
Qed.
Lemma minus_varlist_insert_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (minus_varlist_insert l s) =
Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s).
Proof.
simple induction s.
trivial.
simpl in |- *; intros.
generalize (varlist_eq_prop l v).
elim (varlist_eq l v); simpl in |- *.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
repeat rewrite (Th_plus_assoc T).
rewrite
(Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v))
(interp_vl Amult Aone Azero vm v)).
rewrite (Th_opp_def T).
auto.
simpl in |- *; intros.
solve2 l v H.
simpl in |- *; intros; solve2 l v H.
Qed.
Lemma signed_sum_opp_ok :
forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
simple induction s; simpl in |- *; intros.
symmetry in |- *; apply (Th_opp_zero T).
repeat rewrite isacs_aux_ok.
rewrite H.
rewrite (Th_plus_opp_opp T).
reflexivity.
repeat rewrite isacs_aux_ok.
rewrite H.
rewrite <- (Th_plus_opp_opp T).
rewrite (Th_opp_opp T).
reflexivity.
Qed.
Lemma plus_sum_scalar_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (plus_sum_scalar l s) =
Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
simple induction s.
trivial.
simpl in |- *; intros.
rewrite plus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
simpl in |- *; intros.
rewrite minus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
rewrite H.
rewrite (Th_distr_right T).
rewrite <- (Th_opp_mult_right T).
reflexivity.
Qed.
Lemma minus_sum_scalar_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (minus_sum_scalar l s) =
Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
simple induction s; simpl in |- *; intros.
rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
simpl in |- *; intros.
rewrite minus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
rewrite (Th_distr_right T).
rewrite (Th_plus_opp_opp T).
reflexivity.
simpl in |- *; intros.
rewrite plus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
rewrite H.
rewrite (Th_distr_right T).
rewrite <- (Th_opp_mult_right T).
rewrite <- (Th_plus_opp_opp T).
rewrite (Th_opp_opp T).
reflexivity.
Qed.
Lemma signed_sum_prod_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_prod x y) = Amult (interp_sacs x) (interp_sacs y).
Proof.
simple induction x.
simpl in |- *; eauto 1.
intros; simpl in |- *.
rewrite signed_sum_merge_ok.
rewrite plus_sum_scalar_ok.
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
intros; simpl in |- *.
repeat rewrite isacs_aux_ok.
rewrite signed_sum_merge_ok.
rewrite minus_sum_scalar_ok.
rewrite H.
rewrite (Th_distr_left T).
rewrite (Th_opp_mult_left T).
reflexivity.
Qed.
Theorem apolynomial_normalize_ok :
forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
simple induction p; simpl in |- *; auto 1.
intros.
rewrite signed_sum_merge_ok.
rewrite H; rewrite H0; reflexivity.
intros.
rewrite signed_sum_prod_ok.
rewrite H; rewrite H0; reflexivity.
intros.
rewrite signed_sum_opp_ok.
rewrite H; reflexivity.
Qed.
End abstract_rings.
|