1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export Bool.
Set Implicit Arguments.
Section Theory_of_semi_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
(* There is also a "weakly decidable" equality on A. That means
that if (A_eq x y)=true then x=y but x=y can arise when
(A_eq x y)=false. On an abstract ring the function [x,y:A]false
is a good choice. The proof of A_eq_prop is in this case easy. *)
Variable Aeq : A -> A -> bool.
Infix "+" := Aplus (at level 50, left associativity).
Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
Record Semi_Ring_Theory : Prop :=
{SR_plus_comm : forall n m:A, n + m = m + n;
SR_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
SR_mult_comm : forall n m:A, n * m = m * n;
SR_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
SR_plus_zero_left : forall n:A, 0 + n = n;
SR_mult_one_left : forall n:A, 1 * n = n;
SR_mult_zero_left : forall n:A, 0 * n = 0;
SR_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
(* SR_plus_reg_left : forall n m p:A, n + m = n + p -> m = p;*)
SR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
Variable T : Semi_Ring_Theory.
Let plus_comm := SR_plus_comm T.
Let plus_assoc := SR_plus_assoc T.
Let mult_comm := SR_mult_comm T.
Let mult_assoc := SR_mult_assoc T.
Let plus_zero_left := SR_plus_zero_left T.
Let mult_one_left := SR_mult_one_left T.
Let mult_zero_left := SR_mult_zero_left T.
Let distr_left := SR_distr_left T.
(*Let plus_reg_left := SR_plus_reg_left T.*)
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left mult_zero_left distr_left (*plus_reg_left*).
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
symmetry ; eauto. Qed.
Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
symmetry ; eauto. Qed.
Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
symmetry ; eauto. Qed.
Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
symmetry ; eauto. Qed.
Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
symmetry ; eauto. Qed.
Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
symmetry ; eauto. Qed.
Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
rewrite plus_assoc.
elim (plus_comm m n).
rewrite <- plus_assoc.
reflexivity.
Qed.
Lemma SR_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
intros.
rewrite mult_assoc.
elim (mult_comm m n).
rewrite <- mult_assoc.
reflexivity.
Qed.
Hint Resolve SR_plus_permute SR_mult_permute.
Lemma SR_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
intros.
repeat rewrite (mult_comm n).
eauto.
Qed.
Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
symmetry ; apply SR_distr_right. Qed.
Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
intro; rewrite mult_comm; eauto.
Qed.
Lemma SR_mult_zero_right2 : forall n:A, 0 = n * 0.
intro; rewrite mult_comm; eauto.
Qed.
Lemma SR_plus_zero_right : forall n:A, n + 0 = n.
intro; rewrite plus_comm; eauto.
Qed.
Lemma SR_plus_zero_right2 : forall n:A, n = n + 0.
intro; rewrite plus_comm; eauto.
Qed.
Lemma SR_mult_one_right : forall n:A, n * 1 = n.
intro; elim mult_comm; auto.
Qed.
Lemma SR_mult_one_right2 : forall n:A, n = n * 1.
intro; elim mult_comm; auto.
Qed.
(*
Lemma SR_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n); eauto.
Qed.
*)
End Theory_of_semi_rings.
Section Theory_of_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Infix "+" := Aplus (at level 50, left associativity).
Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
Notation "- x" := (Aopp x).
Record Ring_Theory : Prop :=
{Th_plus_comm : forall n m:A, n + m = m + n;
Th_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
Th_mult_comm : forall n m:A, n * m = m * n;
Th_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
Th_plus_zero_left : forall n:A, 0 + n = n;
Th_mult_one_left : forall n:A, 1 * n = n;
Th_opp_def : forall n:A, n + - n = 0;
Th_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
Th_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
Variable T : Ring_Theory.
Let plus_comm := Th_plus_comm T.
Let plus_assoc := Th_plus_assoc T.
Let mult_comm := Th_mult_comm T.
Let mult_assoc := Th_mult_assoc T.
Let plus_zero_left := Th_plus_zero_left T.
Let mult_one_left := Th_mult_one_left T.
Let opp_def := Th_opp_def T.
Let distr_left := Th_distr_left T.
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left opp_def distr_left.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
symmetry ; eauto. Qed.
Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
symmetry ; eauto. Qed.
Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
symmetry ; eauto. Qed.
Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
symmetry ; eauto. Qed.
Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
symmetry ; eauto. Qed.
Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
symmetry ; eauto. Qed.
Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
rewrite plus_assoc.
elim (plus_comm m n).
rewrite <- plus_assoc.
reflexivity.
Qed.
Lemma Th_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
intros.
rewrite mult_assoc.
elim (mult_comm m n).
rewrite <- mult_assoc.
reflexivity.
Qed.
Hint Resolve Th_plus_permute Th_mult_permute.
Lemma aux1 : forall a:A, a + a = a -> a = 0.
intros.
generalize (opp_def a).
pattern a at 1.
rewrite <- H.
rewrite <- plus_assoc.
rewrite opp_def.
elim plus_comm.
rewrite plus_zero_left.
trivial.
Qed.
Lemma Th_mult_zero_left : forall n:A, 0 * n = 0.
intros.
apply aux1.
rewrite <- distr_left.
rewrite plus_zero_left.
reflexivity.
Qed.
Hint Resolve Th_mult_zero_left.
Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
symmetry ; eauto. Qed.
Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
intros.
rewrite <- (plus_zero_left y).
elim H0.
elim plus_assoc.
elim (plus_comm y z).
rewrite plus_assoc.
rewrite H.
rewrite plus_zero_left.
reflexivity.
Qed.
Lemma Th_opp_mult_left : forall x y:A, - (x * y) = - x * y.
intros.
apply (aux2 (x:=(x * y)));
[ apply opp_def | rewrite <- distr_left; rewrite opp_def; auto ].
Qed.
Hint Resolve Th_opp_mult_left.
Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
symmetry ; eauto. Qed.
Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_mult_zero_right2 : forall n:A, 0 = n * 0.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_plus_zero_right : forall n:A, n + 0 = n.
intro; rewrite plus_comm; eauto.
Qed.
Lemma Th_plus_zero_right2 : forall n:A, n = n + 0.
intro; rewrite plus_comm; eauto.
Qed.
Lemma Th_mult_one_right : forall n:A, n * 1 = n.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_mult_one_right2 : forall n:A, n = n * 1.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_opp_mult_right : forall x y:A, - (x * y) = x * - y.
intros; do 2 rewrite (mult_comm x); auto.
Qed.
Lemma Th_opp_mult_right2 : forall x y:A, x * - y = - (x * y).
intros; do 2 rewrite (mult_comm x); auto.
Qed.
Lemma Th_plus_opp_opp : forall x y:A, - x + - y = - (x + y).
intros.
apply (aux2 (x:=(x + y)));
[ elim plus_assoc; rewrite (Th_plus_permute y (- x)); rewrite plus_assoc;
rewrite opp_def; rewrite plus_zero_left; auto
| auto ].
Qed.
Lemma Th_plus_permute_opp : forall n m p:A, - m + (n + p) = n + (- m + p).
eauto. Qed.
Lemma Th_opp_opp : forall n:A, - - n = n.
intro; apply (aux2 (x:=(- n))); [ auto | elim plus_comm; auto ].
Qed.
Hint Resolve Th_opp_opp.
Lemma Th_opp_opp2 : forall n:A, n = - - n.
symmetry ; eauto. Qed.
Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
Qed.
Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
symmetry ; apply Th_mult_opp_opp. Qed.
Lemma Th_opp_zero : - 0 = 0.
rewrite <- (plus_zero_left (- 0)).
auto. Qed.
(*
Lemma Th_plus_reg_left : forall n m p:A, n + m = n + p -> m = p.
intros; generalize (f_equal (fun z => - n + z) H).
repeat rewrite plus_assoc.
rewrite (plus_comm (- n) n).
rewrite opp_def.
repeat rewrite Th_plus_zero_left; eauto.
Qed.
Lemma Th_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
intros.
eapply Th_plus_reg_left with n.
rewrite (plus_comm n m).
rewrite (plus_comm n p).
auto.
Qed.
*)
Lemma Th_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
intros.
repeat rewrite (mult_comm n).
eauto.
Qed.
Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
symmetry ; apply Th_distr_right.
Qed.
End Theory_of_rings.
Hint Resolve Th_mult_zero_left (*Th_plus_reg_left*): core.
Unset Implicit Arguments.
Definition Semi_Ring_Theory_of :
forall (A:Type) (Aplus Amult:A -> A -> A) (Aone Azero:A)
(Aopp:A -> A) (Aeq:A -> A -> bool),
Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
intros until 1; case H.
split; intros; simpl; eauto.
Defined.
(* Every ring can be viewed as a semi-ring : this property will be used
in Abstract_polynom. *)
Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
Section product_ring.
End product_ring.
Section power_ring.
End power_ring.
|