1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
Require Import Arith Max Min ZArith_base NArith Nnat.
Open Local Scope Z_scope.
(** * zify: the Z-ification tactic *)
(* This tactic searches for nat and N and positive elements in the goal and
translates everything into Z. It is meant as a pre-processor for
(r)omega; for instance a positivity hypothesis is added whenever
- a multiplication is encountered
- an atom is encountered (that is a variable or an unknown construct)
Recognized relations (can be handled as deeply as allowed by setoid rewrite):
- { eq, le, lt, ge, gt } on { Z, positive, N, nat }
Recognized operations:
- on Z: Zmin, Zmax, Zabs, Zsgn are translated in term of <= < =
- on nat: + * - S O pred min max nat_of_P nat_of_N Zabs_nat
- on positive: Zneg Zpos xI xO xH + * - Psucc Ppred Pmin Pmax P_of_succ_nat
- on N: N0 Npos + * - Nsucc Nmin Nmax N_of_nat Zabs_N
*)
(** I) translation of Zmax, Zmin, Zabs, Zsgn into recognized equations *)
Ltac zify_unop_core t thm a :=
(* Let's introduce the specification theorem for t *)
pose proof (thm a);
(* Then we replace (t a) everywhere with a fresh variable *)
let z := fresh "z" in set (z:=t a) in *; clearbody z.
Ltac zify_unop_var_or_term t thm a :=
(* If a is a variable, no need for aliasing *)
let za := fresh "z" in
(rename a into za; rename za into a; zify_unop_core t thm a) ||
(* Otherwise, a is a complex term: we alias it. *)
(remember a as za; zify_unop_core t thm za).
Ltac zify_unop t thm a :=
(* if a is a scalar, we can simply reduce the unop *)
let isz := isZcst a in
match isz with
| true => simpl (t a) in *
| _ => zify_unop_var_or_term t thm a
end.
Ltac zify_unop_nored t thm a :=
(* in this version, we don't try to reduce the unop (that can be (Zplus x)) *)
let isz := isZcst a in
match isz with
| true => zify_unop_core t thm a
| _ => zify_unop_var_or_term t thm a
end.
Ltac zify_binop t thm a b:=
(* works as zify_unop, except that we should be careful when
dealing with b, since it can be equal to a *)
let isza := isZcst a in
match isza with
| true => zify_unop (t a) (thm a) b
| _ =>
let za := fresh "z" in
(rename a into za; rename za into a; zify_unop_nored (t a) (thm a) b) ||
(remember a as za; match goal with
| H : za = b |- _ => zify_unop_nored (t za) (thm za) za
| _ => zify_unop_nored (t za) (thm za) b
end)
end.
Ltac zify_op_1 :=
match goal with
| |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b
| H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b
| |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b
| H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b
| |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a
| H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a
| |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a
| H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a
end.
Ltac zify_op := repeat zify_op_1.
(** II) Conversion from nat to Z *)
Definition Z_of_nat' := Z_of_nat.
Ltac hide_Z_of_nat t :=
let z := fresh "z" in set (z:=Z_of_nat t) in *;
change Z_of_nat with Z_of_nat' in z;
unfold z in *; clear z.
Ltac zify_nat_rel :=
match goal with
(* I: equalities *)
| H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H
| |- (@eq nat ?a ?b) => apply (inj_eq_rev a b)
| H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H
| |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b)
(* II: less than *)
| H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H
| |- (lt ?a ?b) => apply (inj_lt_rev a b)
| H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H
| |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b)
(* III: less or equal *)
| H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H
| |- (le ?a ?b) => apply (inj_le_rev a b)
| H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H
| |- context [ le ?a ?b ] => rewrite (inj_le_iff a b)
(* IV: greater than *)
| H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H
| |- (gt ?a ?b) => apply (inj_gt_rev a b)
| H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H
| |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b)
(* V: greater or equal *)
| H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H
| |- (ge ?a ?b) => apply (inj_ge_rev a b)
| H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H
| |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b)
end.
Ltac zify_nat_op :=
match goal with
(* misc type conversions: positive/N/Z to nat *)
| H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H
| |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a)
| H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H
| |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a)
| H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H
| |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a)
(* plus -> Zplus *)
| H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H
| |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b)
(* min -> Zmin *)
| H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H
| |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b)
(* max -> Zmax *)
| H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H
| |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b)
(* minus -> Zmax (Zminus ... ...) 0 *)
| H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H
| |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b)
(* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *)
| H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H
| |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a)
(* mult -> Zmult and a positivity hypothesis *)
| H : context [ Z_of_nat (mult ?a ?b) ] |- _ =>
pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
| |- context [ Z_of_nat (mult ?a ?b) ] =>
pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
(* O -> Z0 *)
| H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H
| |- context [ Z_of_nat O ] => simpl (Z_of_nat O)
(* S -> number or Zsucc *)
| H : context [ Z_of_nat (S ?a) ] |- _ =>
let isnat := isnatcst a in
match isnat with
| true => simpl (Z_of_nat (S a)) in H
| _ => rewrite (inj_S a) in H
end
| |- context [ Z_of_nat (S ?a) ] =>
let isnat := isnatcst a in
match isnat with
| true => simpl (Z_of_nat (S a))
| _ => rewrite (inj_S a)
end
(* atoms of type nat : we add a positivity condition (if not already there) *)
| _ : 0 <= Z_of_nat ?a |- _ => hide_Z_of_nat a
| _ : context [ Z_of_nat ?a ] |- _ => pose proof (Zle_0_nat a); hide_Z_of_nat a
| |- context [ Z_of_nat ?a ] => pose proof (Zle_0_nat a); hide_Z_of_nat a
end.
Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *.
(* III) conversion from positive to Z *)
Definition Zpos' := Zpos.
Definition Zneg' := Zneg.
Ltac hide_Zpos t :=
let z := fresh "z" in set (z:=Zpos t) in *;
change Zpos with Zpos' in z;
unfold z in *; clear z.
Ltac zify_positive_rel :=
match goal with
(* I: equalities *)
| H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H
| |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b)
| H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H
| |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b)
(* II: less than *)
| H : context [ (?a < ?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
| |- context [ (?a < ?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
(* III: less or equal *)
| H : context [ (?a <= ?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
| |- context [ (?a <= ?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
(* IV: greater than *)
| H : context [ (?a > ?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
| |- context [ (?a > ?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
(* V: greater or equal *)
| H : context [ (?a >= ?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
| |- context [ (?a >= ?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
end.
Ltac zify_positive_op :=
match goal with
(* Zneg -> -Zpos (except for numbers) *)
| H : context [ Zneg ?a ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zneg a) with (Zneg' a) in H
| _ => change (Zneg a) with (- Zpos a) in H
end
| |- context [ Zneg ?a ] =>
let isp := isPcst a in
match isp with
| true => change (Zneg a) with (Zneg' a)
| _ => change (Zneg a) with (- Zpos a)
end
(* misc type conversions: nat to positive *)
| H : context [ Zpos (P_of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H
| |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a)
(* Pplus -> Zplus *)
| H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H
| |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b))
(* Pmin -> Zmin *)
| H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H
| |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b)
(* Pmax -> Zmax *)
| H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H
| |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b)
(* Pminus -> Zmax 1 (Zminus ... ...) *)
| H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H
| |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b)
(* Psucc -> Zsucc *)
| H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H
| |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a)
(* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *)
| H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H
| |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a)
(* Pmult -> Zmult and a positivity hypothesis *)
| H : context [ Zpos (Pmult ?a ?b) ] |- _ =>
pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
| |- context [ Zpos (Pmult ?a ?b) ] =>
pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
(* xO *)
| H : context [ Zpos (xO ?a) ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xO a)) with (Zpos' (xO a)) in H
| _ => rewrite (Zpos_xO a) in H
end
| |- context [ Zpos (xO ?a) ] =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xO a)) with (Zpos' (xO a))
| _ => rewrite (Zpos_xO a)
end
(* xI *)
| H : context [ Zpos (xI ?a) ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xI a)) with (Zpos' (xI a)) in H
| _ => rewrite (Zpos_xI a) in H
end
| |- context [ Zpos (xI ?a) ] =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xI a)) with (Zpos' (xI a))
| _ => rewrite (Zpos_xI a)
end
(* xI : nothing to do, just prevent adding a useless positivity condition *)
| H : context [ Zpos xH ] |- _ => hide_Zpos xH
| |- context [ Zpos xH ] => hide_Zpos xH
(* atoms of type positive : we add a positivity condition (if not already there) *)
| _ : Zpos ?a > 0 |- _ => hide_Zpos a
| _ : context [ Zpos ?a ] |- _ => pose proof (Zgt_pos_0 a); hide_Zpos a
| |- context [ Zpos ?a ] => pose proof (Zgt_pos_0 a); hide_Zpos a
end.
Ltac zify_positive :=
repeat zify_positive_rel; repeat zify_positive_op; unfold Zpos',Zneg' in *.
(* IV) conversion from N to Z *)
Definition Z_of_N' := Z_of_N.
Ltac hide_Z_of_N t :=
let z := fresh "z" in set (z:=Z_of_N t) in *;
change Z_of_N with Z_of_N' in z;
unfold z in *; clear z.
Ltac zify_N_rel :=
match goal with
(* I: equalities *)
| H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H
| |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b)
| H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H
| |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b)
(* II: less than *)
| H : (?a < ?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H
| |- (?a < ?b)%N => apply (Z_of_N_lt_rev a b)
| H : context [ (?a < ?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H
| |- context [ (?a < ?b)%N ] => rewrite (Z_of_N_lt_iff a b)
(* III: less or equal *)
| H : (?a <= ?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H
| |- (?a <= ?b)%N => apply (Z_of_N_le_rev a b)
| H : context [ (?a <= ?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H
| |- context [ (?a <= ?b)%N ] => rewrite (Z_of_N_le_iff a b)
(* IV: greater than *)
| H : (?a > ?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H
| |- (?a > ?b)%N => apply (Z_of_N_gt_rev a b)
| H : context [ (?a > ?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H
| |- context [ (?a > ?b)%N ] => rewrite (Z_of_N_gt_iff a b)
(* V: greater or equal *)
| H : (?a >= ?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H
| |- (?a >= ?b)%N => apply (Z_of_N_ge_rev a b)
| H : context [ (?a >= ?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H
| |- context [ (?a >= ?b)%N ] => rewrite (Z_of_N_ge_iff a b)
end.
Ltac zify_N_op :=
match goal with
(* misc type conversions: nat to positive *)
| H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H
| |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a)
| H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H
| |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a)
| H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H
| |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a)
| H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H
| |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0
(* Nplus -> Zplus *)
| H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H
| |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b)
(* Nmin -> Zmin *)
| H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H
| |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b)
(* Nmax -> Zmax *)
| H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H
| |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b)
(* Nminus -> Zmax 0 (Zminus ... ...) *)
| H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H
| |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b)
(* Nsucc -> Zsucc *)
| H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H
| |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a)
(* Nmult -> Zmult and a positivity hypothesis *)
| H : context [ Z_of_N (Nmult ?a ?b) ] |- _ =>
pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
| |- context [ Z_of_N (Nmult ?a ?b) ] =>
pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
(* atoms of type N : we add a positivity condition (if not already there) *)
| _ : 0 <= Z_of_N ?a |- _ => hide_Z_of_N a
| _ : context [ Z_of_N ?a ] |- _ => pose proof (Z_of_N_le_0 a); hide_Z_of_N a
| |- context [ Z_of_N ?a ] => pose proof (Z_of_N_le_0 a); hide_Z_of_N a
end.
Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *.
(** The complete Z-ification tactic *)
Ltac zify :=
repeat progress (zify_nat; zify_positive; zify_N); zify_op.
|