1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i $Id: OmegaLemmas.v 12337 2009-09-17 15:58:14Z glondu $ i*)
Require Import ZArith_base.
Open Local Scope Z_scope.
(** Factorization lemmas *)
Theorem Zred_factor0 : forall n:Z, n = n * 1.
intro x; rewrite (Zmult_1_r x); reflexivity.
Qed.
Theorem Zred_factor1 : forall n:Z, n + n = n * 2.
Proof.
exact Zplus_diag_eq_mult_2.
Qed.
Theorem Zred_factor2 : forall n m:Z, n + n * m = n * (1 + m).
Proof.
intros x y; pattern x at 1 in |- *; rewrite <- (Zmult_1_r x);
rewrite <- Zmult_plus_distr_r; trivial with arith.
Qed.
Theorem Zred_factor3 : forall n m:Z, n * m + n = n * (1 + m).
Proof.
intros x y; pattern x at 2 in |- *; rewrite <- (Zmult_1_r x);
rewrite <- Zmult_plus_distr_r; rewrite Zplus_comm;
trivial with arith.
Qed.
Theorem Zred_factor4 : forall n m p:Z, n * m + n * p = n * (m + p).
Proof.
intros x y z; symmetry in |- *; apply Zmult_plus_distr_r.
Qed.
Theorem Zred_factor5 : forall n m:Z, n * 0 + m = m.
Proof.
intros x y; rewrite <- Zmult_0_r_reverse; auto with arith.
Qed.
Theorem Zred_factor6 : forall n:Z, n = n + 0.
Proof.
intro; rewrite Zplus_0_r; trivial with arith.
Qed.
(** Other specific variants of theorems dedicated for the Omega tactic *)
Lemma new_var : forall x : Z, exists y : Z, x = y.
intros x; exists x; trivial with arith.
Qed.
Lemma OMEGA1 : forall x y : Z, x = y -> 0 <= x -> 0 <= y.
intros x y H; rewrite H; auto with arith.
Qed.
Lemma OMEGA2 : forall x y : Z, 0 <= x -> 0 <= y -> 0 <= x + y.
exact Zplus_le_0_compat.
Qed.
Lemma OMEGA3 : forall x y k : Z, k > 0 -> x = y * k -> x = 0 -> y = 0.
intros x y k H1 H2 H3; apply (Zmult_integral_l k);
[ unfold not in |- *; intros H4; absurd (k > 0);
[ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate
| assumption ]
| rewrite <- H2; assumption ].
Qed.
Lemma OMEGA4 : forall x y z : Z, x > 0 -> y > x -> z * y + x <> 0.
unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0);
[ intros H4; cut (0 <= z * y + x);
[ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6;
absurd (z * y + x > 0);
[ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate
| apply Zle_gt_trans with x;
[ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x);
apply Zplus_le_compat_r; rewrite Zmult_comm;
generalize H4; unfold Zgt in |- *; case y;
[ simpl in |- *; intros H7; discriminate H7
| intros p H7; rewrite <- (Zmult_0_r (Zpos p));
unfold Zle in |- *; rewrite Zcompare_mult_compat;
exact H6
| simpl in |- *; intros p H7; discriminate H7 ]
| assumption ] ]
| rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ]
| apply Zgt_trans with x; [ assumption | assumption ] ].
Qed.
Lemma OMEGA5 : forall x y z : Z, x = 0 -> y = 0 -> x + y * z = 0.
intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith.
Qed.
Lemma OMEGA6 : forall x y z : Z, 0 <= x -> y = 0 -> 0 <= x + y * z.
intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption.
Qed.
Lemma OMEGA7 :
forall x y z t : Z, z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t.
intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat;
apply Zmult_gt_0_le_0_compat; assumption.
Qed.
Lemma OMEGA8 : forall x y : Z, 0 <= x -> 0 <= y -> x = - y -> x = 0.
intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1);
[ intros H4; absurd (0 < x);
[ change (0 >= x) in |- *; apply Zle_ge; apply Zplus_le_reg_l with y;
rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r;
assumption
| assumption ]
| intros H4; rewrite H4; trivial with arith ].
Qed.
Lemma OMEGA9 : forall x y z t : Z, y = 0 -> x = z -> y + (- x + z) * t = 0.
intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l;
rewrite Zplus_0_r; assumption.
Qed.
Lemma OMEGA10 :
forall v c1 c2 l1 l2 k1 k2 : Z,
(v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith.
Qed.
Lemma OMEGA11 :
forall v1 c1 l1 l2 k1 : Z,
(v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
trivial with arith.
Qed.
Lemma OMEGA12 :
forall v2 c2 l1 l2 k2 : Z,
l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
rewrite Zplus_permute; trivial with arith.
Qed.
Lemma OMEGA13 :
forall (v l1 l2 : Z) (x : positive),
v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2.
intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1);
rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x));
rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r;
trivial with arith.
Qed.
Lemma OMEGA14 :
forall (v l1 l2 : Z) (x : positive),
v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2.
intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1);
rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r;
rewrite Zplus_0_r; trivial with arith.
Qed.
Lemma OMEGA15 :
forall v c1 c2 l1 l2 k2 : Z,
v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith.
Qed.
Lemma OMEGA16 : forall v c l k : Z, (v * c + l) * k = v * (c * k) + l * k.
intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
trivial with arith.
Qed.
Lemma OMEGA17 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1;
apply Zplus_reg_l with (y * z); rewrite Zplus_comm;
rewrite H3; rewrite H2; auto with arith.
Qed.
Lemma OMEGA18 : forall x y k : Z, x = y * k -> Zne x 0 -> Zne y 0.
unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1;
rewrite H3; auto with arith.
Qed.
Lemma OMEGA19 : forall x : Z, Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1.
unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x);
[ intros H1; elim Zle_lt_or_eq with (1 := H1);
[ intros H2; left; change (0 <= Zpred x) in |- *; apply Zsucc_le_reg;
rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption
| intros H2; absurd (x = 0); auto with arith ]
| intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm;
apply Zle_left; apply Zsucc_le_reg; simpl in |- *;
apply Zlt_le_succ; auto with arith ].
Qed.
Lemma OMEGA20 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3;
simpl in H3; rewrite Zplus_0_r in H3; trivial with arith.
Qed.
Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop)
(H : P (y + x)) := eq_ind_r P H (Zplus_comm x y).
Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p).
Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop)
(H : P (n + m + p)) := eq_ind_r P H (Zplus_assoc n m p).
Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop)
(H : P (m + (n + p))) := eq_ind_r P H (Zplus_permute n m p).
Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop)
(H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) :=
eq_ind_r P H (OMEGA10 v c1 c2 l1 l2 k1 k2).
Definition fast_OMEGA11 (v1 c1 l1 l2 k1 : Z) (P : Z -> Prop)
(H : P (v1 * (c1 * k1) + (l1 * k1 + l2))) :=
eq_ind_r P H (OMEGA11 v1 c1 l1 l2 k1).
Definition fast_OMEGA12 (v2 c2 l1 l2 k2 : Z) (P : Z -> Prop)
(H : P (v2 * (c2 * k2) + (l1 + l2 * k2))) :=
eq_ind_r P H (OMEGA12 v2 c2 l1 l2 k2).
Definition fast_OMEGA15 (v c1 c2 l1 l2 k2 : Z) (P : Z -> Prop)
(H : P (v * (c1 + c2 * k2) + (l1 + l2 * k2))) :=
eq_ind_r P H (OMEGA15 v c1 c2 l1 l2 k2).
Definition fast_OMEGA16 (v c l k : Z) (P : Z -> Prop)
(H : P (v * (c * k) + l * k)) := eq_ind_r P H (OMEGA16 v c l k).
Definition fast_OMEGA13 (v l1 l2 : Z) (x : positive) (P : Z -> Prop)
(H : P (l1 + l2)) := eq_ind_r P H (OMEGA13 v l1 l2 x).
Definition fast_OMEGA14 (v l1 l2 : Z) (x : positive) (P : Z -> Prop)
(H : P (l1 + l2)) := eq_ind_r P H (OMEGA14 v l1 l2 x).
Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop)
(H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x).
Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop)
(H : P (x * -1)) := eq_ind_r P H (Zopp_eq_mult_neg_1 x).
Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop)
(H : P (y * x)) := eq_ind_r P H (Zmult_comm x y).
Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop)
(H : P (- x + - y)) := eq_ind_r P H (Zopp_plus_distr x y).
Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) :=
eq_ind_r P H (Zopp_involutive x).
Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop)
(H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y).
Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop)
(H : P (n * p + m * p)) := eq_ind_r P H (Zmult_plus_distr_l n m p).
Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop)
(H : P (x * - y)) := eq_ind_r P H (Zmult_opp_comm x y).
Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p).
Definition fast_Zred_factor1 (x : Z) (P : Z -> Prop)
(H : P (x * 2)) := eq_ind_r P H (Zred_factor1 x).
Definition fast_Zred_factor2 (x y : Z) (P : Z -> Prop)
(H : P (x * (1 + y))) := eq_ind_r P H (Zred_factor2 x y).
Definition fast_Zred_factor3 (x y : Z) (P : Z -> Prop)
(H : P (x * (1 + y))) := eq_ind_r P H (Zred_factor3 x y).
Definition fast_Zred_factor4 (x y z : Z) (P : Z -> Prop)
(H : P (x * (y + z))) := eq_ind_r P H (Zred_factor4 x y z).
Definition fast_Zred_factor5 (x y : Z) (P : Z -> Prop)
(H : P y) := eq_ind_r P H (Zred_factor5 x y).
Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop)
(H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x).
|