1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Recursive polynomials: R[x1]...[xn]. *)
open Utile
open Util
(* 1. Coefficients: R *)
module type Coef = sig
type t
val equal : t -> t -> bool
val lt : t -> t -> bool
val le : t -> t -> bool
val abs : t -> t
val plus : t -> t -> t
val mult : t -> t -> t
val sub : t -> t -> t
val opp : t -> t
val div : t -> t -> t
val modulo : t -> t -> t
val puis : t -> int -> t
val pgcd : t -> t -> t
val hash : t -> int
val of_num : Num.num -> t
val to_string : t -> string
end
module type S = sig
type coef
type variable = int
type t = Pint of coef | Prec of variable * t array
val of_num : Num.num -> t
val x : variable -> t
val monome : variable -> int -> t
val is_constantP : t -> bool
val is_zero : t -> bool
val max_var_pol : t -> variable
val max_var_pol2 : t -> variable
val max_var : t array -> variable
val equal : t -> t -> bool
val norm : t -> t
val deg : variable -> t -> int
val deg_total : t -> int
val copyP : t -> t
val coef : variable -> int -> t -> t
val plusP : t -> t -> t
val content : t -> coef
val div_int : t -> coef -> t
val vire_contenu : t -> t
val vars : t -> variable list
val int_of_Pint : t -> coef
val multx : int -> variable -> t -> t
val multP : t -> t -> t
val deriv : variable -> t -> t
val oppP : t -> t
val moinsP : t -> t -> t
val puisP : t -> int -> t
val ( @@ ) : t -> t -> t
val ( -- ) : t -> t -> t
val ( ^^ ) : t -> int -> t
val coefDom : variable -> t -> t
val coefConst : variable -> t -> t
val remP : variable -> t -> t
val coef_int_tete : t -> coef
val normc : t -> t
val coef_constant : t -> coef
val univ : bool ref
val string_of_var : int -> string
val nsP : int ref
val to_string : t -> string
val printP : t -> unit
val print_tpoly : t array -> unit
val print_lpoly : t list -> unit
val quo_rem_pol : t -> t -> variable -> t * t
val div_pol : t -> t -> variable -> t
val divP : t -> t -> t
val div_pol_rat : t -> t -> bool
val pseudo_div : t -> t -> variable -> t * t * int * t
val pgcdP : t -> t -> t
val pgcd_pol : t -> t -> variable -> t
val content_pol : t -> variable -> t
val pgcd_coef_pol : t -> t -> variable -> t
val pgcd_pol_rec : t -> t -> variable -> t
val gcd_sub_res : t -> t -> variable -> t
val gcd_sub_res_rec : t -> t -> t -> t -> int -> variable -> t
val lazard_power : t -> t -> int -> variable -> t
val hash : t -> int
module Hashpol : Hashtbl.S with type key=t
end
(***********************************************************************
2. Type of polynomials, operations.
*)
module Make (C:Coef) = struct
type coef = C.t
let coef_of_int i = C.of_num (Num.Int i)
let coef0 = coef_of_int 0
let coef1 = coef_of_int 1
type variable = int
type t =
Pint of coef (* constant polynomial *)
| Prec of variable * (t array) (* coefficients, increasing degree *)
(* by default, operations work with normalized polynomials:
- variables are positive integers
- coefficients of a polynomial in x only use variables < x
- no zero coefficient at beginning
- no Prec(x,a) where a is constant in x
*)
(* constant polynomials *)
let of_num x = Pint (C.of_num x)
let cf0 = of_num (Num.Int 0)
let cf1 = of_num (Num.Int 1)
(* nth variable *)
let x n = Prec (n,[|cf0;cf1|])
(* create v^n *)
let monome v n =
match n with
0->Pint coef1;
|_->let tmp = Array.create (n+1) (Pint coef0) in
tmp.(n)<-(Pint coef1);
Prec (v, tmp)
let is_constantP = function
Pint _ -> true
| Prec _ -> false
let int_of_Pint = function
Pint x -> x
| _ -> failwith "non"
let is_zero p =
match p with Pint n -> if C.equal n coef0 then true else false |_-> false
let max_var_pol p =
match p with
Pint _ -> 0
|Prec(x,_) -> x
(* p not normalized *)
let rec max_var_pol2 p =
match p with
Pint _ -> 0
|Prec(v,c)-> Array.fold_right (fun q m -> max (max_var_pol2 q) m) c v
let rec max_var l = Array.fold_right (fun p m -> max (max_var_pol2 p) m) l 0
(* equality between polynomials *)
let rec equal p q =
match (p,q) with
(Pint a,Pint b) -> C.equal a b
|(Prec(x,p1),Prec(y,q1)) ->
if x<>y then false
else if (Array.length p1)<>(Array.length q1) then false
else (try (Array.iteri (fun i a -> if not (equal a q1.(i))
then failwith "raté")
p1;
true)
with e when Errors.noncritical e -> false)
| (_,_) -> false
(* normalize polynomial: remove head zeros, coefficients are normalized
if constant, returns the coefficient
*)
let rec norm p = match p with
Pint _ -> p
|Prec (x,a)->
let d = (Array.length a -1) in
let n = ref d in
while !n>0 && (equal a.(!n) (Pint coef0)) do
n:=!n-1;
done;
if !n<0 then Pint coef0
else if !n=0 then a.(0)
else if !n=d then p
else (let b=Array.create (!n+1) (Pint coef0) in
for i=0 to !n do b.(i)<-a.(i);done;
Prec(x,b))
(* degree in v, v >= max var of p *)
let rec deg v p =
match p with
Prec(x,p1) when x=v -> Array.length p1 -1
|_ -> 0
(* total degree *)
let rec deg_total p =
match p with
Prec (x,p1) -> let d = ref 0 in
Array.iteri (fun i q -> d:= (max !d (i+(deg_total q)))) p1;
!d
|_ -> 0
let rec copyP p =
match p with
Pint i -> Pint i
|Prec(x,q) -> Prec(x,Array.map copyP q)
(* coefficient of degree i in v, v >= max var of p *)
let coef v i p =
match p with
Prec (x,p1) when x=v -> if i<(Array.length p1) then p1.(i) else Pint coef0
|_ -> if i=0 then p else Pint coef0
(* addition *)
let rec plusP p q =
let res =
(match (p,q) with
(Pint a,Pint b) -> Pint (C.plus a b)
|(Pint a, Prec (y,q1)) -> let q2=Array.map copyP q1 in
q2.(0)<- plusP p q1.(0);
Prec (y,q2)
|(Prec (x,p1),Pint b) -> let p2=Array.map copyP p1 in
p2.(0)<- plusP p1.(0) q;
Prec (x,p2)
|(Prec (x,p1),Prec (y,q1)) ->
if x<y then (let q2=Array.map copyP q1 in
q2.(0)<- plusP p q1.(0);
Prec (y,q2))
else if x>y then (let p2=Array.map copyP p1 in
p2.(0)<- plusP p1.(0) q;
Prec (x,p2))
else
(let n=max (deg x p) (deg x q) in
let r=Array.create (n+1) (Pint coef0) in
for i=0 to n do
r.(i)<- plusP (coef x i p) (coef x i q);
done;
Prec(x,r)))
in norm res
(* content, positive integer *)
let rec content p =
match p with
Pint a -> C.abs a
| Prec (x ,p1) ->
Array.fold_left C.pgcd coef0 (Array.map content p1)
let rec div_int p a=
match p with
Pint b -> Pint (C.div b a)
| Prec(x,p1) -> Prec(x,Array.map (fun x -> div_int x a) p1)
let vire_contenu p =
let c = content p in
if C.equal c coef0 then p else div_int p c
(* sorted list of variables of a polynomial *)
let rec vars=function
Pint _->[]
| Prec (x,l)->(List.flatten ([x]::(List.map vars (Array.to_list l))))
(* multiply p by v^n, v >= max_var p *)
let rec multx n v p =
match p with
Prec (x,p1) when x=v -> let p2= Array.create ((Array.length p1)+n) (Pint coef0) in
for i=0 to (Array.length p1)-1 do
p2.(i+n)<-p1.(i);
done;
Prec (x,p2)
|_ -> if equal p (Pint coef0) then (Pint coef0)
else (let p2=Array.create (n+1) (Pint coef0) in
p2.(n)<-p;
Prec (v,p2))
(* product *)
let rec multP p q =
match (p,q) with
(Pint a,Pint b) -> Pint (C.mult a b)
|(Pint a, Prec (y,q1)) ->
if C.equal a coef0 then Pint coef0
else let q2 = Array.map (fun z-> multP p z) q1 in
Prec (y,q2)
|(Prec (x,p1), Pint b) ->
if C.equal b coef0 then Pint coef0
else let p2 = Array.map (fun z-> multP z q) p1 in
Prec (x,p2)
|(Prec (x,p1), Prec(y,q1)) ->
if x<y
then (let q2 = Array.map (fun z-> multP p z) q1 in
Prec (y,q2))
else if x>y
then (let p2 = Array.map (fun z-> multP z q) p1 in
Prec (x,p2))
else Array.fold_left plusP (Pint coef0)
(Array.mapi (fun i z-> (multx i x (multP z q))) p1)
(* derive p with variable v, v >= max_var p *)
let rec deriv v p =
match p with
Pint a -> Pint coef0
| Prec(x,p1) when x=v ->
let d = Array.length p1 -1 in
if d=1 then p1.(1)
else
(let p2 = Array.create d (Pint coef0) in
for i=0 to d-1 do
p2.(i)<- multP (Pint (coef_of_int (i+1))) p1.(i+1);
done;
Prec (x,p2))
| Prec(x,p1)-> Pint coef0
(* opposite *)
let rec oppP p =
match p with
Pint a -> Pint (C.opp a)
|Prec(x,p1) -> Prec(x,Array.map oppP p1)
let moinsP p q=plusP p (oppP q)
let rec puisP p n = match n with
0 -> cf1
|_ -> (multP p (puisP p (n-1)))
(* infix notations *)
(*let (++) a b = plusP a b
*)
let (@@) a b = multP a b
let (--) a b = moinsP a b
let (^^) a b = puisP a b
(* leading coefficient in v, v>= max_var p *)
let coefDom v p= coef v (deg v p) p
let coefConst v p = coef v 0 p
(* tail of a polynomial *)
let remP v p =
moinsP p (multP (coefDom v p) (puisP (x v) (deg v p)))
(* first interger coefficient of p *)
let rec coef_int_tete p =
let v = max_var_pol p in
if v>0
then coef_int_tete (coefDom v p)
else (match p with | Pint a -> a |_ -> assert false)
(* divide by the content and make the head int coef positive *)
let normc p =
let p = vire_contenu p in
let a = coef_int_tete p in
if C.le coef0 a then p else oppP p
(* constant coef of normalized polynomial *)
let rec coef_constant p =
match p with
Pint a->a
|Prec(_,q)->coef_constant q.(0)
(***********************************************************************
3. Printing polynomials.
*)
(* if univ = false, we use x,y,z,a,b,c,d... as variables, else x1,x2,...
*)
let univ=ref true
let string_of_var x=
if !univ then
"u"^(string_of_int x)
else
if x<=3 then String.make 1 (Char.chr(x+(Char.code 'w')))
else String.make 1 (Char.chr(x-4+(Char.code 'a')))
let nsP = ref 0
let rec string_of_Pcut p =
if (!nsP)<=0
then "..."
else
match p with
|Pint a-> nsP:=(!nsP)-1;
if C.le coef0 a
then C.to_string a
else "("^(C.to_string a)^")"
|Prec (x,t)->
let v=string_of_var x
and s=ref ""
and sp=ref "" in
let st0 = string_of_Pcut t.(0) in
if st0<>"0"
then s:=st0;
let fin = ref false in
for i=(Array.length t)-1 downto 1 do
if (!nsP)<0
then (sp:="...";
if not (!fin) then s:=(!s)^"+"^(!sp);
fin:=true)
else (
let si=string_of_Pcut t.(i) in
sp:="";
if i=1
then (
if si<>"0"
then (nsP:=(!nsP)-1;
if si="1"
then sp:=v
else
(if (String.contains si '+')
then sp:="("^si^")*"^v
else sp:=si^"*"^v)))
else (
if si<>"0"
then (nsP:=(!nsP)-1;
if si="1"
then sp:=v^"^"^(string_of_int i)
else (if (String.contains si '+')
then sp:="("^si^")*"^v^"^"^(string_of_int i)
else sp:=si^"*"^v^"^"^(string_of_int i))));
if !sp<>"" && not (!fin)
then (nsP:=(!nsP)-1;
if !s=""
then s:=!sp
else s:=(!s)^"+"^(!sp)));
done;
if !s="" then (nsP:=(!nsP)-1;
(s:="0"));
!s
let to_string p =
nsP:=20;
string_of_Pcut p
let printP p = Format.printf "@[%s@]" (to_string p)
let print_tpoly lp =
let s = ref "\n{ " in
Array.iter (fun p -> s:=(!s)^(to_string p)^"\n") lp;
prt0 ((!s)^"}")
let print_lpoly lp = print_tpoly (Array.of_list lp)
(***********************************************************************
4. Exact division of polynomials.
*)
(* return (s,r) s.t. p = s*q+r *)
let rec quo_rem_pol p q x =
if x=0
then (match (p,q) with
|(Pint a, Pint b) ->
if C.equal (C.modulo a b) coef0
then (Pint (C.div a b), cf0)
else failwith "div_pol1"
|_ -> assert false)
else
let m = deg x q in
let b = coefDom x q in
let q1 = remP x q in (* q = b*x^m+q1 *)
let r = ref p in
let s = ref cf0 in
let continue =ref true in
while (!continue) && (not (equal !r cf0)) do
let n = deg x !r in
if n<m
then continue:=false
else (
let a = coefDom x !r in
let p1 = remP x !r in (* r = a*x^n+p1 *)
let c = div_pol a b (x-1) in (* a = c*b *)
let s1 = c @@ ((monome x (n-m))) in
s:= plusP (!s) s1;
r:= p1 -- (s1 @@ q1);
)
done;
(!s,!r)
(* returns quotient p/q if q divides p, else fails *)
and div_pol p q x =
let (s,r) = quo_rem_pol p q x in
if equal r cf0
then s
else failwith ("div_pol:\n"
^"p:"^(to_string p)^"\n"
^"q:"^(to_string q)^"\n"
^"r:"^(to_string r)^"\n"
^"x:"^(string_of_int x)^"\n"
)
let divP p q=
let x = max (max_var_pol p) (max_var_pol q) in
div_pol p q x
let div_pol_rat p q=
let x = max (max_var_pol p) (max_var_pol q) in
try (let s = div_pol (multP p (puisP (Pint(coef_int_tete q))
(1+(deg x p) - (deg x q))))
q x in
(* degueulasse, mais c 'est pour enlever un warning *)
if s==s then true else true)
with e when Errors.noncritical e -> false
(***********************************************************************
5. Pseudo-division and gcd with subresultants.
*)
(* pseudo division :
q = c*x^m+q1
retruns (r,c,d,s) s.t. c^d*p = s*q + r.
*)
let pseudo_div p q x =
match q with
Pint _ -> (cf0, q,1, p)
| Prec (v,q1) when x<>v -> (cf0, q,1, p)
| Prec (v,q1) ->
(
(* pr "pseudo_division: c^d*p = s*q + r";*)
let delta = ref 0 in
let r = ref p in
let c = coefDom x q in
let q1 = remP x q in
let d' = deg x q in
let s = ref cf0 in
while (deg x !r)>=(deg x q) do
let d = deg x !r in
let a = coefDom x !r in
let r1=remP x !r in
let u = a @@ ((monome x (d-d'))) in
r:=(c @@ r1) -- (u @@ q1);
s:=plusP (c @@ (!s)) u;
delta := (!delta) + 1;
done;
(*
pr ("deg d: "^(string_of_int (!delta))^", deg c: "^(string_of_int (deg_total c)));
pr ("deg r:"^(string_of_int (deg_total !r)));
*)
(!r,c,!delta, !s)
)
(* gcd with subresultants *)
let rec pgcdP p q =
let x = max (max_var_pol p) (max_var_pol q) in
pgcd_pol p q x
and pgcd_pol p q x =
pgcd_pol_rec p q x
and content_pol p x =
match p with
Prec(v,p1) when v=x ->
Array.fold_left (fun a b -> pgcd_pol_rec a b (x-1)) cf0 p1
| _ -> p
and pgcd_coef_pol c p x =
match p with
Prec(v,p1) when x=v ->
Array.fold_left (fun a b -> pgcd_pol_rec a b (x-1)) c p1
|_ -> pgcd_pol_rec c p (x-1)
and pgcd_pol_rec p q x =
match (p,q) with
(Pint a,Pint b) -> Pint (C.pgcd (C.abs a) (C.abs b))
|_ ->
if equal p cf0
then q
else if equal q cf0
then p
else if (deg x q) = 0
then pgcd_coef_pol q p x
else if (deg x p) = 0
then pgcd_coef_pol p q x
else (
let a = content_pol p x in
let b = content_pol q x in
let c = pgcd_pol_rec a b (x-1) in
pr (string_of_int x);
let p1 = div_pol p c x in
let q1 = div_pol q c x in
let r = gcd_sub_res p1 q1 x in
let cr = content_pol r x in
let res = c @@ (div_pol r cr x) in
res
)
(* Sub-résultants:
ai*Ai = Qi*Ai+1 + bi*Ai+2
deg Ai+2 < deg Ai+1
Ai = ci*X^ni + ...
di = ni - ni+1
ai = (- ci+1)^(di + 1)
b1 = 1
bi = ci*si^di si i>1
s1 = 1
si+1 = ((ci+1)^di*si)/si^di
*)
and gcd_sub_res p q x =
if equal q cf0
then p
else
let d = deg x p in
let d' = deg x q in
if d<d'
then gcd_sub_res q p x
else
let delta = d-d' in
let c' = coefDom x q in
let r = snd (quo_rem_pol (((oppP c')^^(delta+1))@@p) (oppP q) x) in
gcd_sub_res_rec q r (c'^^delta) c' d' x
and gcd_sub_res_rec p q s c d x =
if equal q cf0
then p
else (
let d' = deg x q in
let c' = coefDom x q in
let delta = d-d' in
let r = snd (quo_rem_pol (((oppP c')^^(delta+1))@@p) (oppP q) x) in
let s'= lazard_power c' s delta x in
gcd_sub_res_rec q (div_pol r (c @@ (s^^delta)) x) s' c' d' x
)
and lazard_power c s d x =
let res = ref c in
for i=1 to d-1 do
res:= div_pol ((!res)@@c) s x;
done;
!res
(* memoizations *)
let rec hash = function
Pint a -> (C.hash a)
| Prec (v,p) ->
Array.fold_right (fun q h -> h + hash q) p 0
module Hashpol = Hashtbl.Make(
struct
type poly = t
type t = poly
let equal = equal
let hash = hash
end)
end
|