summaryrefslogtreecommitdiff
path: root/plugins/nsatz/ideal.ml
blob: 5fde2cfc728f849dd08d05b49e126e08d41285d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Nullstellensatz with Groebner basis computation

We use a sparse representation for polynomials:
a monomial is an array of exponents (one for each variable)
with its degree in head
a polynomial is a sorted list of (coefficient, monomial)

 *)

open Utile
open List

exception NotInIdeal

module type S = sig

(* Monomials *)
type mon = int array

val mult_mon : mon -> mon -> mon
val deg : mon -> int
val compare_mon : mon -> mon -> int
val div_mon : mon -> mon -> mon
val div_mon_test : mon -> mon -> bool
val ppcm_mon : mon -> mon -> mon

(* Polynomials *)

type deg = int
type coef
type poly
type polynom 

val repr : poly -> (coef * mon) list
val polconst : coef -> poly
val zeroP : poly
val gen : int -> poly

val equal : poly -> poly -> bool
val name_var : string list ref
val getvar : string list -> int -> string
val lstringP : poly list -> string
val printP : poly -> unit
val lprintP : poly list -> unit

val div_pol_coef : poly -> coef -> poly
val plusP : poly -> poly -> poly
val mult_t_pol : coef -> mon -> poly -> poly
val selectdiv : mon -> poly list -> poly
val oppP : poly -> poly
val emultP : coef -> poly -> poly
val multP : poly -> poly -> poly
val puisP : poly -> int -> poly
val contentP : poly -> coef
val contentPlist : poly list -> coef
val pgcdpos : coef -> coef -> coef
val div_pol : poly -> poly -> coef -> coef -> mon -> poly
val reduce2 : poly -> poly list -> coef * poly

val poldepcontent : coef list ref
val coefpoldep_find : poly -> poly -> poly
val coefpoldep_set : poly -> poly -> poly -> unit
val initcoefpoldep : poly list -> unit
val reduce2_trace : poly -> poly list -> poly list -> poly list * poly
val spol : poly -> poly -> poly
val etrangers : poly -> poly -> bool
val div_ppcm : poly -> poly -> poly -> bool

val genPcPf : poly -> poly list -> poly list -> poly list
val genOCPf : poly list -> poly list

val is_homogeneous : poly -> bool

type certificate =
    { coef : coef; power : int;
      gb_comb : poly list list; last_comb : poly list }

val test_dans_ideal : poly -> poly list -> poly list ->
  poly list * poly * certificate
val in_ideal : deg -> poly list -> poly -> poly list * poly * certificate

end

(***********************************************************************
   Global options
*)
let lexico = ref false
let use_hmon = ref false

(* division of tail monomials *)

let reduire_les_queues = false

(* divide first with new polynomials *)

let nouveaux_pol_en_tete = false

(***********************************************************************
   Functor
*)

module Make (P:Polynom.S) = struct

  type coef = P.t
  let coef0 = P.of_num (Num.Int 0)
  let coef1 = P.of_num (Num.Int 1)
  let coefm1 = P.of_num (Num.Int (-1))
  let string_of_coef c = "["^(P.to_string c)^"]"

(***********************************************************************
   Monomials
 array of integers, first is the degree
*)

type mon = int array
type deg = int
type poly = (coef * mon) list
type polynom = 
   {pol : poly ref;
    num : int;
    sugar : int}

let nvar m =  Array.length m - 1

let deg m = m.(0)

let mult_mon m m' =
  let d = nvar m in
  let m'' = Array.create (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)+m'.(i));
  done;
  m''


let compare_mon m m' =
  let d = nvar m in
  if !lexico
  then (
    (* Comparaison de monomes avec ordre du degre lexicographique = on commence par regarder la 1ere variable*)
    let res=ref 0 in
    let i=ref 1 in (* 1 si lexico pur 0 si degre*)
    while (!res=0) && (!i<=d) do
      res:= (compare m.(!i) m'.(!i));
      i:=!i+1;
    done;
    !res)
  else (
     (* degre lexicographique inverse *)
    match compare m.(0) m'.(0) with
    | 0 -> (* meme degre total *)
	let res=ref 0 in
	let i=ref d in
	while (!res=0) && (!i>=1) do
	  res:= - (compare m.(!i) m'.(!i));
	  i:=!i-1;
	done;
	!res
    | x -> x)

let div_mon m m' =
  let d = nvar m in
  let m'' = Array.create (d+1) 0 in
  for i=0 to d do
    m''.(i)<- (m.(i)-m'.(i));
  done;
  m''

let div_pol_coef p c =
  List.map (fun (a,m) -> (P.divP a c,m)) p

(* m' divides m  *)
let div_mon_test m m' =
  let d = nvar m in
  let res=ref true in
  let i=ref 0 in (*il faut que le degre total soit bien mis sinon, i=ref 1*)
  while (!res) && (!i<=d) do
    res:= (m.(!i) >= m'.(!i));
    i:=succ !i;
  done;
  !res

let set_deg m =
  let d = nvar m in
  m.(0)<-0;
  for i=1 to d do
    m.(0)<-  m.(i)+m.(0);
  done;
  m

(* lcm *)
let ppcm_mon m m' =
  let d = nvar m in
  let m'' = Array.create (d+1) 0 in
  for i=1 to d do
    m''.(i)<- (max m.(i) m'.(i));
  done;
  set_deg m''



(**********************************************************************
  Polynomials
  list of (coefficient, monomial) decreasing order 
*)

let repr p = p

let equal =
  Util.list_for_all2eq
    (fun (c1,m1) (c2,m2) -> P.equal c1 c2 && m1=m2)

let hash p =
  let c = map fst p in
  let m = map snd p in
  fold_left (fun h p -> h * 17 + P.hash p) (Hashtbl.hash m) c

module Hashpol = Hashtbl.Make(
  struct
    type t = poly
    let equal = equal
    let hash = hash
  end)


(* A pretty printer for polynomials, with Maple-like syntax. *)

open Format

let getvar lv i =
  try (nth lv i)
  with _ -> (fold_left (fun r x -> r^" "^x) "lv= " lv)
    ^" i="^(string_of_int i)

let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =


  let rec string_of_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
      | e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone 
      then  "1"
      else ""
    | l -> if coefone 
    then  (String.concat "*" l)
    else ( "*" ^
           (String.concat "*" l)))
  and string_of_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ""
  | "1" ->(match start with
      true -> string_of_mon m true
    |false -> ( "+ "^
                (string_of_mon m true)))
  | "-1" ->( "-" ^" "^(string_of_mon m true))
  | c -> if (String.get c 0)='-'
  then ( "- "^
         (String.sub c 1 
            ((String.length c)-1))^
         (string_of_mon m false))
  else (match start with
    true -> ( c^(string_of_mon m false))
  |false -> ( "+ "^
              c^(string_of_mon m false)))
  and stringP p start = 
    if (zeroP p)
    then (if start 
    then ("0")
    else "")
    else ((string_of_term (hdP p) start)^
          " "^
          (stringP (tlP p) false))
  in 
  (stringP p true)



let print_pol zeroP hdP tlP coefterm monterm string_of_coef
    dimmon string_of_exp lvar p =

  let rec print_mon m coefone =
    let s=ref [] in
    for i=1 to (dimmon m) do
      (match (string_of_exp m i) with
        "0" -> ()
      | "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
      | e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
    done;
    (match !s with
      [] -> if coefone 
      then print_string "1"
      else ()
    | l -> if coefone 
    then print_string (String.concat "*" l)
    else (print_string "*"; 
          print_string (String.concat "*" l)))
  and print_term t start = let a = coefterm t and m = monterm t in
  match (string_of_coef a) with
    "0" -> ()
  | "1" ->(match start with
      true -> print_mon m true
    |false -> (print_string "+ ";
               print_mon m true))
  | "-1" ->(print_string "-";print_space();print_mon m true)
  | c -> if (String.get c 0)='-'
  then (print_string "- ";
        print_string (String.sub c 1 
                        ((String.length c)-1));
        print_mon m false)
  else (match start with
    true -> (print_string c;print_mon m false)
  |false -> (print_string "+ ";
             print_string c;print_mon m false))
  and printP p start = 
    if (zeroP p)
    then (if start 
    then print_string("0")
    else ())
    else (print_term (hdP p) start;
          if start then open_hovbox 0;
          print_space();
          print_cut();
          printP (tlP p) false)
  in open_hovbox 3;
  printP p true;
  print_flush()


let name_var= ref []

let stringP p =
  string_of_pol 
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length m)-1)
    (fun m i -> (string_of_int (m.(i))))
    name_var
    p

let nsP2 = ref max_int

let stringPcut p =
  (*Polynomesrec.nsP1:=20;*)
  nsP2:=10;
  let res =
    if (length p)> !nsP2
    then (stringP [hd p])^" + "^(string_of_int (length p))^" termes"
    else  stringP p in
  (*Polynomesrec.nsP1:= max_int;*)
  nsP2:= max_int;
  res

let rec lstringP l =
  match l with
    [] -> ""
  |p::l -> (stringP p)^("\n")^(lstringP l)

let printP = print_pol 
    (fun p -> match p with [] -> true | _ -> false)
    (fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
    (fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
    (fun (a,m) -> a)
    (fun (a,m) -> m)
    string_of_coef
    (fun m -> (Array.length m)-1)
    (fun m i -> (string_of_int (m.(i))))
    name_var


let rec lprintP l =
  match l with
    [] -> ()
  |p::l -> printP p;print_string "\n"; lprintP l


(* Operations *)

let zeroP = []

(* returns a constant polynom ial with d variables *)
let polconst d c =
  let m = Array.create (d+1) 0 in
  let m = set_deg m in 
  [(c,m)]

let plusP p q =
  let rec plusP p q =
    match p with
      [] -> q
    |t::p' -> 
	match q with
	  [] -> p
	|t'::q' ->
            match compare_mon (snd t) (snd t') with
              1 -> t::(plusP p' q)
            |(-1) -> t'::(plusP p q')
            |_ -> let c=P.plusP (fst t) (fst t') in
              match P.equal c coef0 with
                true -> (plusP p' q')
              |false -> (c,(snd t))::(plusP p' q')
  in plusP p q

(* multiplication by (a,monomial) *)
let mult_t_pol a m p =
  let rec mult_t_pol p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.multP a b),(mult_mon m m'))::(mult_t_pol p)
  in mult_t_pol p

let coef_of_int x = P.of_num (Num.Int x)

(* variable i *)
let gen d i =
  let m = Array.create (d+1) 0 in
  m.(i) <- 1;
  let m = set_deg m in 
  [((coef_of_int 1),m)]

let oppP p =
  let rec oppP p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.oppP b),m')::(oppP p)
  in oppP p

(* multiplication by a coefficient *)
let emultP a p =
  let rec emultP p =
    match p with
      [] -> []
    |(b,m')::p -> ((P.multP a b),m')::(emultP p)
  in emultP p

let multP p q =
  let rec aux p =
    match p with
      [] -> []
    |(a,m)::p' -> plusP (mult_t_pol a m q) (aux p')
  in aux p

let puisP p n=
  match p with
    [] -> []
  |_ ->
      let d = nvar (snd (hd p)) in
      let rec puisP n =
	match n with
	  0 -> [coef1, Array.create (d+1) 0]
	| 1 -> p
	|_ -> multP p (puisP (n-1))
      in puisP n
	
let rec contentP p =
  match p with
  |[] -> coef1
  |[a,m] -> a
  |(a,m)::p1 ->
      if P.equal a coef1 || P.equal a coefm1
      then a
      else P.pgcdP a (contentP p1)

let contentPlist lp =
  match lp with
  |[] -> coef1
  |p::l1 ->
      fold_left
	(fun r q ->
	  if P.equal r coef1 || P.equal r coefm1
	  then r
	  else P.pgcdP r (contentP q))
	(contentP p) l1
	
(***********************************************************************
   Division of polynomials
 *)

let pgcdpos a b  = P.pgcdP a b

let polynom0 =  {pol = ref []; num = 0; sugar = 0}
   
let ppol p = !(p.pol)

let lm p = snd (hd (ppol p))

let nallpol = ref 0

let allpol = ref (Array.create 1000 polynom0)

let new_allpol p s =
  nallpol := !nallpol + 1;
  if !nallpol >= Array.length !allpol
  then
    allpol := Array.append !allpol (Array.create !nallpol polynom0);
  let p = {pol = ref p; num = !nallpol; sugar = s} in
  !allpol.(!nallpol)<- p;
  p

(* returns a polynomial of l whose head monomial divides m, else [] *)

let rec selectdiv m l =
  match l with
    [] -> polynom0
  |q::r -> let m'= snd (hd (ppol q)) in
    match (div_mon_test m m') with
      true -> q
    |false -> selectdiv m r

let div_pol p q a b m = 
(*  info ".";*)
  plusP (emultP a p) (mult_t_pol b m q)

let hmon = Hashtbl.create 1000

let use_hmon = ref false

let find_hmon m =
  if !use_hmon
  then Hashtbl.find hmon m
  else raise Not_found

let add_hmon m q =
  if !use_hmon
  then Hashtbl.add hmon m q
  else ()

let div_coef a b = P.divP a b


(* remainder r of the division of p by polynomials of l, returns (c,r) where c is the coefficient for pseudo-division : c p = sum_i q_i p_i + r *)

let reduce2 p l =
  let l = if nouveaux_pol_en_tete then rev l else l in
  let rec reduce p =
    match p with
      [] -> (coef1,[])
    |t::p' ->
	let (a,m)=t in
      let q = (try find_hmon m 
      with Not_found -> 
	let q = selectdiv m l in
	match (ppol q) with 
          t'::q' -> (add_hmon m q;
		     q)
	|[] -> q) in
      match (ppol q) with
	[] -> if reduire_les_queues
	then
	  let (c,r)=(reduce p') in
          (c,((P.multP a c,m)::r))
	else (coef1,p)
      |(b,m')::q' -> 
          let c=(pgcdpos a b) in
          let a'= (div_coef b c) in
          let b'=(P.oppP (div_coef a c)) in
          let (e,r)=reduce (div_pol p' q' a' b'
                              (div_mon m m')) in
          (P.multP a' e,r)
  in let (c,r) = reduce p in
  (c,r)

(* trace of divisions *)

(* list of initial polynomials *)
let poldep = ref [] 
let poldepcontent = ref []

(* coefficients of polynomials when written with initial polynomials *)
let coefpoldep = Hashtbl.create 51

(* coef of q in p = sum_i c_i*q_i *)
let coefpoldep_find p q =
  try (Hashtbl.find coefpoldep (p.num,q.num))
  with _ -> []

let coefpoldep_remove p q =
  Hashtbl.remove coefpoldep (p.num,q.num)

let coefpoldep_set p q c =
  Hashtbl.add coefpoldep (p.num,q.num) c

let initcoefpoldep d lp =
  poldep:=lp;
  poldepcontent:= map (fun p -> contentP (ppol p)) lp;
  iter
    (fun p -> coefpoldep_set p p (polconst d (coef_of_int 1)))
    lp

(* keeps trace in coefpoldep 
   divides without pseudodivisions *)

let reduce2_trace p l lcp =
  let l = if nouveaux_pol_en_tete then rev l else l in
  (* rend (lq,r), ou r = p + sum(lq) *)
  let rec reduce p =
    match p with
      [] -> ([],[])
    |t::p' ->
	let (a,m)=t in
      let q =
	(try find_hmon m 
	with Not_found -> 
	  let q = selectdiv m l in
	  match (ppol q) with 
            t'::q' -> (add_hmon m q;
		       q)
          |[] -> q) in
      match (ppol q) with
	[] ->
	  if reduire_les_queues
	  then
	    let (lq,r)=(reduce p') in
            (lq,((a,m)::r))
	  else ([],p)
      |(b,m')::q' -> 
          let b'=(P.oppP (div_coef a b)) in
          let m''= div_mon m m' in
          let p1=plusP p' (mult_t_pol b' m'' q') in
          let (lq,r)=reduce p1 in
          ((b',m'',q)::lq, r)
  in let (lq,r) = reduce p in
  (*info "reduce2_trace:\n";
     iter
     (fun (a,m,s) ->
     let x = mult_t_pol a m s in
     info ((stringP x)^"\n"))
     lq;
     info "ok\n";*)
  (map2
     (fun c0 q ->
       let c =
	 fold_left
	   (fun x (a,m,s) ->
	     if equal (ppol s) (ppol q)
	     then
	       plusP x (mult_t_pol a m (polconst (nvar m) (coef_of_int 1)))
	     else x)
	   c0
	   lq in
       c)
     lcp
     !poldep,
   r)     

let homogeneous = ref false
let pol_courant = ref polynom0

(***********************************************************************
   Completion
 *)

let sugar_flag = ref true

let compute_sugar p =
  fold_left (fun s (a,m) -> max s m.(0)) 0 p

let mk_polynom p = 
  new_allpol p (compute_sugar p)

let spol ps qs=
  let p = ppol ps in
  let q = ppol qs in
  let m = snd (hd p) in
  let m'= snd (hd q) in
  let a = fst (hd p) in
  let b = fst (hd q) in
  let p'= tl p in
  let q'= tl q in
  let c = (pgcdpos a b) in
  let m''=(ppcm_mon m m') in
  let m1 = div_mon m'' m in
  let m2 = div_mon m'' m' in
  let fsp p' q' =
    plusP 
      (mult_t_pol 
	 (div_coef b c)
	 m1 p')
      (mult_t_pol 
	 (P.oppP (div_coef a c))
         m2 q') in
  let sp = fsp p' q' in
  let sps =
    new_allpol
      sp
      (max (m1.(0) + ps.sugar) (m2.(0) + qs.sugar)) in
  coefpoldep_set sps ps (fsp (polconst (nvar m) (coef_of_int 1)) []);
  coefpoldep_set sps qs (fsp [] (polconst (nvar m) (coef_of_int 1)));
  sps
  

let etrangers p p'=
  let m = snd (hd p) in
  let m'= snd (hd p') in
  let d = nvar m in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= (m.(!i) = 0) || (m'.(!i)=0);
      i:=!i+1;
  done;
  !res

(* teste if head monomial of p'' divides lcm of lhead monomials of p and p' *)

let div_ppcm p p' p'' =
  let m = snd (hd p) in
  let m'= snd (hd p') in
  let m''= snd (hd p'') in
  let d = nvar m in
  let res=ref true in
  let i=ref 1 in
  while (!res) && (!i<=d) do
    res:= ((max m.(!i) m'.(!i)) >= m''.(!i));
    i:=!i+1;
  done;
  !res

(* code from extraction of Laurent Théry Coq program *)

type 'poly cpRes =
    Keep of ('poly list)
  | DontKeep of ('poly list)

let list_rec f0 f1 =
  let rec f2 = function
      [] -> f0
    | a0::l0 -> f1 a0 l0 (f2 l0)
  in f2

let addRes i = function
    Keep h'0 -> Keep (i::h'0)
  | DontKeep h'0 -> DontKeep (i::h'0)

let slice i a q =
  list_rec
    (match etrangers (ppol i) (ppol a) with
      true -> DontKeep []
    | false -> Keep [])
    (fun b q1 rec_ren ->
      match div_ppcm (ppol i) (ppol a) (ppol b) with
	true ->  DontKeep (b::q1)
      | false ->
          (match div_ppcm (ppol i) (ppol b) (ppol a) with
            true -> rec_ren
          | false -> addRes b rec_ren)) q

(* sugar strategy *)

let rec addS x l =    l @ [x] (* oblige de mettre en queue sinon le certificat deconne *)
			  
let addSsugar x l =
  if !sugar_flag
  then 
    let sx = x.sugar in
    let rec insere l  =
      match l with
      | [] -> [x]
      | y::l1 ->
	  if sx <= y.sugar
	  then x::l
	  else y::(insere l1)
    in insere l
  else addS x l

(* ajoute les spolynomes de i avec la liste de polynomes aP, 
   a la liste q *)

let genPcPf i aP q =
  (let rec genPc aP0 =
    match aP0 with
      [] -> (fun r -> r)
    | a::l1 -> 
	(fun l ->
          (match slice i a l1 with
            Keep l2 -> addSsugar (spol i a) (genPc l2 l)
          | DontKeep l2 -> genPc l2 l))
  in genPc aP) q

let genOCPf h' =
  list_rec [] (fun a l rec_ren ->
    genPcPf a l rec_ren) h'
    
(***********************************************************************
 critical pairs/s-polynomials
 *)
    
let ordcpair ((i1,j1),m1) ((i2,j2),m2) =
(*  let s1 = (max
	      (!allpol.(i1).sugar + m1.(0)
		   - (snd (hd (ppol !allpol.(i1)))).(0))
	      (!allpol.(j1).sugar + m1.(0)
		   - (snd (hd (ppol !allpol.(j1)))).(0))) in 
  let s2 = (max
	      (!allpol.(i2).sugar + m2.(0)
		   - (snd (hd (ppol !allpol.(i2)))).(0))
	      (!allpol.(j2).sugar + m2.(0)
		   - (snd (hd (ppol !allpol.(j2)))).(0))) in 
  match compare s1 s2 with
  | 1 -> 1
  |(-1) -> -1
  |0 ->  compare_mon m1 m2*)

  compare_mon m1 m2 

let sortcpairs lcp = 
  sort ordcpair lcp

let mergecpairs l1 l2 =
  merge ordcpair l1 l2 

let ord i j =
  if i<j then (i,j) else (j,i)
    
let cpair p q =
  if etrangers (ppol p) (ppol q)
  then []
  else [(ord p.num q.num,
	 ppcm_mon (lm p) (lm q))]
      
let cpairs1 p lq =
  sortcpairs (fold_left (fun r q -> r @ (cpair p q)) [] lq)
    
let cpairs lp =
  let rec aux l =
    match l with
      []|[_] -> []
    |p::l1 -> mergecpairs (cpairs1 p l1) (aux l1)
  in aux lp
    
    
let critere2 ((i,j),m) lp lcp =
  exists
    (fun h ->
      h.num <> i && h.num <> j
        && (div_mon_test m (lm h))
	&& (let c1 = ord i h.num in
	not (exists (fun (c,_) -> c1 = c) lcp))
	&& (let c1 = ord j h.num in
	not (exists (fun (c,_) -> c1 = c) lcp)))
    lp

let critere3 ((i,j),m) lp lcp =
  exists
    (fun h ->
      h.num <> i && h.num <> j
        && (div_mon_test m (lm h))
	&& (h.num < j
	   || not (m = ppcm_mon 
		   (lm (!allpol.(i)))
		   (lm h)))
	&& (h.num < i
	  || not (m = ppcm_mon 
		   (lm (!allpol.(j)))
		   (lm h))))
    lp

let add_cpairs p lp lcp =
  mergecpairs (cpairs1 p lp) lcp 

let step = ref 0

let infobuch p q =
  if !step = 0 
  then (info ("[" ^ (string_of_int (length p))
              ^ "," ^  (string_of_int (length q))
              ^ "]"))

(* in lp new polynomials are at the end *)

let coef_courant = ref coef1

type certificate =
    { coef : coef; power : int;
      gb_comb : poly list list; last_comb : poly list }

let test_dans_ideal p lp lp0 =
  let (c,r) = reduce2 (ppol !pol_courant) lp in
  info ("remainder: "^(stringPcut r)^"\n");
  coef_courant:= P.multP !coef_courant c;
  pol_courant:= mk_polynom r;
  if r=[]
  then (info "polynomial reduced to 0\n";
	let lcp = map (fun q -> []) !poldep in
	let c = !coef_courant in
	let (lcq,r) = reduce2_trace (emultP c p) lp lcp in
	info "r ok\n";
	info ("r: "^(stringP r)^"\n");
        let res=ref  (emultP c p) in
	iter2
	  (fun cq q -> res:=plusP (!res) (multP cq (ppol q));
	  )
	  lcq !poldep;
	info ("verif sum: "^(stringP (!res))^"\n");
	info ("coefficient: "^(stringP (polconst 1 c))^"\n");
	let rec aux lp =
	  match lp with
	  |[] -> []
	  |p::lp ->
	      (map
		 (fun q -> coefpoldep_find p q)
		 lp)::(aux lp)
	in
	let coefficient_multiplicateur = c in
	let liste_polynomes_de_depart = rev lp0 in
	let polynome_a_tester = p in
	let liste_des_coefficients_intermediaires =
	  (let lci = rev (aux (rev lp)) in
	  let lci = ref lci (* (map rev lci) *) in
	  iter (fun x -> lci := tl (!lci)) lp0;
	  !lci) in
	let liste_des_coefficients =
	  map
	    (fun cq -> emultP (coef_of_int (-1)) cq)
	    (rev lcq) in
	(liste_polynomes_de_depart,
	 polynome_a_tester,
	 {coef = coefficient_multiplicateur;
	  power = 1;
	  gb_comb = liste_des_coefficients_intermediaires;
	  last_comb = liste_des_coefficients})
       )
  else ((*info "polynomial not reduced to 0\n";
	   info ("\nremainder: "^(stringPcut r)^"\n");*)
    raise NotInIdeal)
      
let divide_rem_with_critical_pair = ref false

let list_diff l x =
  filter (fun y -> y <> x) l

let deg_hom p =
  match p with
  | [] -> -1
  | (a,m)::_ -> m.(0)

let pbuchf pq p lp0=
  info "computation of the Groebner basis\n";
  step:=0;
  Hashtbl.clear hmon;
  let rec pbuchf (lp, lpc) =
      infobuch lp lpc;
(*      step:=(!step+1)mod 10;*)
      match lpc with
        [] ->
	  
	 (* info ("List of polynomials:\n"^(fold_left (fun r p -> r^(stringP p)^"\n") "" lp));
	  info "--------------------\n";*)
	  test_dans_ideal (ppol p) lp lp0
      | ((i,j),m) :: lpc2 ->
(*          info "choosen pair\n";*)
	  if critere3 ((i,j),m) lp lpc2
	  then (info "c"; pbuchf (lp, lpc2))
	  else    
	    let a = spol !allpol.(i) !allpol.(j) in
	    if !homogeneous && (ppol a)<>[] && deg_hom (ppol a)
		> deg_hom (ppol !pol_courant)
	    then (info "h"; pbuchf (lp, lpc2))
	    else
(*	      let sa = a.sugar in*)
              let (ca,a0)= reduce2 (ppol a) lp in
              match a0 with
		[] -> info "0";pbuchf (lp, lpc2)
              | _ ->
(*		info "pair reduced\n";*)
		  a.pol := emultP ca (ppol a);
		  let (lca,a0) = reduce2_trace (ppol a) lp
		      (map (fun q -> emultP ca (coefpoldep_find a q))
			 !poldep) in
(*		info "paire re-reduced";*)
		  a.pol := a0;
(*		  let a0 = new_allpol a0 sa in*)
		  iter2 (fun c q ->
		    coefpoldep_remove a q;
		    coefpoldep_set a q c) lca !poldep;
		  let a0 = a in
		  info ("\nnew polynomials: "^(stringPcut (ppol a0))^"\n");
		  let ct = coef1 (* contentP a0 *) in
		  (*info ("content: "^(string_of_coef ct)^"\n");*)
		  poldep:=addS a0 lp;
		  poldepcontent:=addS ct (!poldepcontent);
		  
		  try test_dans_ideal (ppol p) (addS a0 lp) lp0
		  with NotInIdeal ->
		    let newlpc = add_cpairs a0 lp lpc2 in
		    pbuchf (((addS a0 lp), newlpc))
  in pbuchf pq
    
let is_homogeneous p =
  match p with
  | [] -> true
  | (a,m)::p1 -> let d = m.(0) in
    for_all (fun (b,m') -> m'.(0)=d) p1
    
(* returns
   c
   lp = [pn;...;p1]
   p
   lci = [[a(n+1,n);...;a(n+1,1)];
   [a(n+2,n+1);...;a(n+2,1)];
   ...
   [a(n+m,n+m-1);...;a(n+m,1)]]
   lc = [qn+m; ... q1]

   such that
   c*p = sum qi*pi 
   where pn+k = a(n+k,n+k-1)*pn+k-1 + ... + a(n+k,1)* p1
 *)

let in_ideal d lp p =
  Hashtbl.clear hmon;
  Hashtbl.clear coefpoldep;
  nallpol := 0;
  allpol := Array.create 1000 polynom0;
  homogeneous := for_all is_homogeneous (p::lp);
  if !homogeneous then info "homogeneous polynomials\n";
  info ("p: "^(stringPcut p)^"\n");
  info ("lp:\n"^(fold_left (fun r p -> r^(stringPcut p)^"\n") "" lp));
  (*info ("p: "^(stringP p)^"\n");
  info ("lp:\n"^(fold_left (fun r p -> r^(stringP p)^"\n") "" lp));*)

  let lp = map mk_polynom lp in
  let p = mk_polynom p in
  initcoefpoldep d lp;
  coef_courant:=coef1;
  pol_courant:=p;

  let (lp1,p1,cert) =
    try test_dans_ideal (ppol p) lp lp
    with NotInIdeal -> pbuchf (lp, (cpairs lp)) p lp in
  info "computed\n";

  (map ppol lp1, p1, cert)
    
(* *)
end