blob: a65efac2731c5eaa7d7956fec17598a7fb101bfa (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Reals ZArith.
Require Export NsatzR.
Open Scope Z_scope.
Lemma nsatzZhypR: forall x y:Z, x=y -> IZR x = IZR y.
Proof IZR_eq. (* or f_equal ... *)
Lemma nsatzZconclR: forall x y:Z, IZR x = IZR y -> x = y.
Proof eq_IZR.
Lemma nsatzZhypnotR: forall x y:Z, x<>y -> IZR x <> IZR y.
Proof IZR_neq.
Lemma nsatzZconclnotR: forall x y:Z, IZR x <> IZR y -> x <> y.
Proof.
intros x y H. contradict H. f_equal. assumption.
Qed.
Ltac nsatzZtoR1 :=
repeat
(match goal with
| H:(@eq Z ?x ?y) |- _ =>
generalize (@nsatzZhypR _ _ H); clear H; intro H
| |- (@eq Z ?x ?y) => apply nsatzZconclR
| H:not (@eq Z ?x ?y) |- _ =>
generalize (@nsatzZhypnotR _ _ H); clear H; intro H
| |- not (@eq Z ?x ?y) => apply nsatzZconclnotR
end).
Lemma nsatzZR1: forall x y:Z, IZR(x+y) = (IZR x + IZR y)%R.
Proof plus_IZR.
Lemma nsatzZR2: forall x y:Z, IZR(x*y) = (IZR x * IZR y)%R.
Proof mult_IZR.
Lemma nsatzZR3: forall x y:Z, IZR(x-y) = (IZR x - IZR y)%R.
Proof.
intros; symmetry. apply Z_R_minus.
Qed.
Lemma nsatzZR4: forall (x:Z) p, IZR(x ^ Zpos p) = (IZR x ^ nat_of_P p)%R.
Proof.
intros. rewrite pow_IZR.
do 2 f_equal.
apply Zpos_eq_Z_of_nat_o_nat_of_P.
Qed.
Ltac nsatzZtoR2:=
repeat
(rewrite nsatzZR1 in * ||
rewrite nsatzZR2 in * ||
rewrite nsatzZR3 in * ||
rewrite nsatzZR4 in *).
Ltac nsatzZ_begin :=
intros;
nsatzZtoR1;
nsatzZtoR2;
simpl in *.
(*cbv beta iota zeta delta [nat_of_P Pmult_nat plus mult] in *.*)
Ltac nsatzZ :=
nsatzZ_begin; (*idtac "nsatzZ_begin;";*)
nsatzR.
|