1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*
Tactic nsatz: proofs of polynomials equalities in a domain (ring without zero divisor).
Reification is done by type classes, following a technique shown by Mathieu
Sozeau. Verification of certificate is done by a code written by Benjamin
Gregoire, following an idea of Laurent Théry.
Examples: see test-suite/success/Nsatz.v
Loïc Pottier, july 2010
*)
Require Import List.
Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
Require Import Ring_polynom Ring_tac InitialRing.
Require Export Morphisms Setoid Bool.
Declare ML Module "nsatz_plugin".
Class Zero (A : Type) := {zero : A}.
Notation "0" := zero.
Class One (A : Type) := {one : A}.
Notation "1" := one.
Class Addition (A : Type) := {addition : A -> A -> A}.
Notation "x + y" := (addition x y).
Class Multiplication (A : Type) := {multiplication : A -> A -> A}.
Notation "x * y" := (multiplication x y).
Class Subtraction (A : Type) := {subtraction : A -> A -> A}.
Notation "x - y" := (subtraction x y).
Class Opposite (A : Type) := {opposite : A -> A}.
Notation "- x" := (opposite x).
Class Ring (R:Type) := {
ring0: R; ring1: R;
ring_plus: R->R->R; ring_mult: R->R->R;
ring_sub: R->R->R; ring_opp: R->R;
ring_eq : R -> R -> Prop;
ring_ring:
ring_theory ring0 ring1 ring_plus ring_mult ring_sub
ring_opp ring_eq;
ring_setoid: Equivalence ring_eq;
ring_plus_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_plus;
ring_mult_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_mult;
ring_sub_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_sub;
ring_opp_comp: Proper (ring_eq==>ring_eq) ring_opp
}.
Class Domain (R : Type) := {
domain_ring:> Ring R;
domain_axiom_product:
forall x y, ring_eq (ring_mult x y) ring0 -> (ring_eq x ring0) \/ (ring_eq y ring0);
domain_axiom_one_zero: not (ring_eq ring1 ring0)}.
Section domain.
Variable R: Type.
Variable Rd: Domain R.
Existing Instance ring_setoid.
Existing Instance ring_plus_comp.
Existing Instance ring_mult_comp.
Existing Instance ring_sub_comp.
Existing Instance ring_opp_comp.
Add Ring Rr: (@ring_ring R (@domain_ring R Rd)).
Instance zero_ring : Zero R := {zero := ring0}.
Instance one_ring : One R := {one := ring1}.
Instance addition_ring : Addition R := {addition x y := ring_plus x y}.
Instance multiplication_ring : Multiplication R := {multiplication x y := ring_mult x y}.
Instance subtraction_ring : Subtraction R := {subtraction x y := ring_sub x y}.
Instance opposite_ring : Opposite R := {opposite x := ring_opp x}.
Infix "==" := ring_eq (at level 70, no associativity).
Lemma psos_r1b: forall x y:R, x - y == 0 -> x == y.
intros x y H; setoid_replace x with ((x - y) + y); simpl;
[setoid_rewrite H | idtac]; simpl; ring.
Qed.
Lemma psos_r1: forall x y, x == y -> x - y == 0.
intros x y H; simpl; setoid_rewrite H; simpl; ring.
Qed.
Lemma nsatzR_diff: forall x y:R, not (x == y) -> not (x - y == 0).
intros.
intro; apply H.
simpl; setoid_replace x with ((x - y) + y). simpl.
setoid_rewrite H0.
simpl; ring.
simpl. simpl; ring.
Qed.
(* adpatation du code de Benjamin aux setoides *)
Require Import ZArith.
Definition PolZ := Pol Z.
Definition PEZ := PExpr Z.
Definition P0Z : PolZ := @P0 Z 0%Z.
Definition PolZadd : PolZ -> PolZ -> PolZ :=
@Padd Z 0%Z Zplus Zeq_bool.
Definition PolZmul : PolZ -> PolZ -> PolZ :=
@Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool.
Definition PolZeq := @Peq Z Zeq_bool.
Definition norm :=
@norm_aux Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ :=
match la, lp with
| a::la, p::lp => PolZadd (PolZmul (norm a) p) (mult_l la lp)
| _, _ => P0Z
end.
Fixpoint compute_list (lla: list (list PEZ)) (lp:list PolZ) :=
match lla with
| List.nil => lp
| la::lla => compute_list lla ((mult_l la lp)::lp)
end.
Definition check (lpe:list PEZ) (qe:PEZ) (certif: list (list PEZ) * list PEZ) :=
let (lla, lq) := certif in
let lp := List.map norm lpe in
PolZeq (norm qe) (mult_l lq (compute_list lla lp)).
(* Correction *)
Definition PhiR : list R -> PolZ -> R :=
(Pphi 0 ring_plus ring_mult (gen_phiZ 0 1 ring_plus ring_mult ring_opp)).
Definition pow (r : R) (n : nat) := pow_N 1 ring_mult r (Nnat.N_of_nat n).
Definition PEevalR : list R -> PEZ -> R :=
PEeval 0 ring_plus ring_mult ring_sub ring_opp
(gen_phiZ 0 1 ring_plus ring_mult ring_opp)
Nnat.nat_of_N pow.
Lemma P0Z_correct : forall l, PhiR l P0Z = 0.
Proof. trivial. Qed.
Lemma Rext: ring_eq_ext ring_plus ring_mult ring_opp ring_eq.
apply mk_reqe. intros. setoid_rewrite H; rewrite H0; ring.
intros. setoid_rewrite H; setoid_rewrite H0; ring.
intros. setoid_rewrite H; ring. Qed.
Lemma Rset : Setoid_Theory R ring_eq.
apply ring_setoid.
Qed.
Lemma PolZadd_correct : forall P' P l,
PhiR l (PolZadd P P') == ((PhiR l P) + (PhiR l P')).
Proof.
simpl.
refine (Padd_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
(gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
Qed.
Lemma PolZmul_correct : forall P P' l,
PhiR l (PolZmul P P') == ((PhiR l P) * (PhiR l P')).
Proof.
refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
(gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
Qed.
Lemma R_power_theory
: power_theory 1 ring_mult ring_eq Nnat.nat_of_N pow.
apply mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. ring. Qed.
Lemma norm_correct :
forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe).
Proof.
intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
(gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))) R_power_theory)
with (lmp:= List.nil).
compute;trivial.
Qed.
Lemma PolZeq_correct : forall P P' l,
PolZeq P P' = true ->
PhiR l P == PhiR l P'.
Proof.
intros;apply
(Peq_ok Rset Rext (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))));trivial.
Qed.
Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop :=
match l with
| List.nil => True
| a::l => Interp a == 0 /\ Cond0 A Interp l
end.
Lemma mult_l_correct : forall l la lp,
Cond0 PolZ (PhiR l) lp ->
PhiR l (mult_l la lp) == 0.
Proof.
induction la;simpl;intros. ring.
destruct lp;trivial. simpl. ring.
simpl in H;destruct H.
setoid_rewrite PolZadd_correct.
simpl. setoid_rewrite PolZmul_correct. simpl. setoid_rewrite H.
setoid_rewrite IHla. unfold zero. simpl. ring. trivial.
Qed.
Lemma compute_list_correct : forall l lla lp,
Cond0 PolZ (PhiR l) lp ->
Cond0 PolZ (PhiR l) (compute_list lla lp).
Proof.
induction lla;simpl;intros;trivial.
apply IHlla;simpl;split;trivial.
apply mult_l_correct;trivial.
Qed.
Lemma check_correct :
forall l lpe qe certif,
check lpe qe certif = true ->
Cond0 PEZ (PEevalR l) lpe ->
PEevalR l qe == 0.
Proof.
unfold check;intros l lpe qe (lla, lq) H2 H1.
apply PolZeq_correct with (l:=l) in H2.
rewrite norm_correct, H2.
apply mult_l_correct.
apply compute_list_correct.
clear H2 lq lla qe;induction lpe;simpl;trivial.
simpl in H1;destruct H1.
rewrite <- norm_correct;auto.
Qed.
(* fin *)
Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0.
induction n. unfold pow; simpl. intros. absurd (1 == 0).
simpl. apply domain_axiom_one_zero.
trivial. setoid_replace (pow p (S n)) with (p * (pow p n)). intros.
case (@domain_axiom_product _ _ _ _ H). trivial. trivial.
unfold pow; simpl.
clear IHn. induction n; simpl; try ring.
rewrite pow_pos_Psucc. ring. exact Rset.
intros. setoid_rewrite H; setoid_rewrite H0; ring.
intros. simpl; ring. intros. simpl; ring. Qed.
Lemma Rdomain_pow: forall c p r, ~c == ring0 -> ring_mult c (pow p r) == ring0 -> p == ring0.
intros. case (@domain_axiom_product _ _ _ _ H0). intros; absurd (c == ring0); auto.
intros. apply pow_not_zero with r. trivial. Qed.
Definition R2:= ring_plus ring1 ring1.
Fixpoint IPR p {struct p}: R :=
match p with
xH => ring1
| xO xH => ring_plus ring1 ring1
| xO p1 => ring_mult R2 (IPR p1)
| xI xH => ring_plus ring1 (ring_plus ring1 ring1)
| xI p1 => ring_plus ring1 (ring_mult R2 (IPR p1))
end.
Definition IZR1 z :=
match z with Z0 => ring0
| Zpos p => IPR p
| Zneg p => ring_opp(IPR p)
end.
Fixpoint interpret3 t fv {struct t}: R :=
match t with
| (PEadd t1 t2) =>
let v1 := interpret3 t1 fv in
let v2 := interpret3 t2 fv in (ring_plus v1 v2)
| (PEmul t1 t2) =>
let v1 := interpret3 t1 fv in
let v2 := interpret3 t2 fv in (ring_mult v1 v2)
| (PEsub t1 t2) =>
let v1 := interpret3 t1 fv in
let v2 := interpret3 t2 fv in (ring_sub v1 v2)
| (PEopp t1) =>
let v1 := interpret3 t1 fv in (ring_opp v1)
| (PEpow t1 t2) =>
let v1 := interpret3 t1 fv in pow v1 (Nnat.nat_of_N t2)
| (PEc t1) => (IZR1 t1)
| (PEX n) => List.nth (pred (nat_of_P n)) fv 0
end.
End domain.
Ltac equalities_to_goal :=
lazymatch goal with
| H: (@ring_eq _ _ ?x ?y) |- _ =>
try generalize (@psos_r1 _ _ _ _ H); clear H
end.
Ltac nsatz_domain_begin tacsimpl :=
intros;
try apply (@psos_r1b _ _);
repeat equalities_to_goal;
tacsimpl.
Ltac generalise_eq_hyps:=
repeat
(match goal with
|h : (@ring_eq _ _ ?p ?q)|- _ => revert h
end).
Ltac lpol_goal t :=
match t with
| ?a = ring0 -> ?b =>
let r:= lpol_goal b in
constr:(a::r)
| ?a = ring0 => constr:(a::nil)
end.
(* lp est incluse dans fv. La met en tete. *)
Ltac parametres_en_tete fv lp :=
match fv with
| (@nil _) => lp
| (@cons _ ?x ?fv1) =>
let res := AddFvTail x lp in
parametres_en_tete fv1 res
end.
Ltac append1 a l :=
match l with
| (@nil _) => constr:(cons a l)
| (cons ?x ?l) => let l' := append1 a l in constr:(cons x l')
end.
Ltac rev l :=
match l with
|(@nil _) => l
| (cons ?x ?l) => let l' := rev l in append1 x l'
end.
Ltac nsatz_call_n info nparam p rr lp kont :=
(*idtac "Trying power: " rr;*)
let ll := constr:(PEc info :: PEc nparam :: PEpow p rr :: lp) in
nsatz_compute ll;
(*idtac "done";*)
match goal with
| |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ =>
intros _;
set (lci:=lci0);
set (lq:=lq0);
kont c rr lq lci
end.
Ltac nsatz_call radicalmax info nparam p lp kont :=
let rec try_n n :=
lazymatch n with
| 0%N => fail
| _ =>
(let r := eval compute in (Nminus radicalmax (Npred n)) in
nsatz_call_n info nparam p r lp kont) ||
let n' := eval compute in (Npred n) in try_n n'
end in
try_n radicalmax.
Set Implicit Arguments.
Class Cclosed_seq T (l:list T) := {}.
Instance Iclosed_nil T : Cclosed_seq (T:=T) nil.
Instance Iclosed_cons T t l `{Cclosed_seq (T:=T) l} : Cclosed_seq (T:=T) (t::l).
Class Cfind_at (R:Type) (b:R) (l:list R) (i:nat) := {}.
Instance Ifind0 (R:Type) (b:R) l: Cfind_at b (b::l) 0.
Instance IfindS (R:Type) (b2 b1:R) l i `{Cfind_at R b1 l i} : Cfind_at b1 (b2::l) (S i) | 1.
Definition Ifind0' := Ifind0.
Definition IfindS' := IfindS.
Definition li_find_at (R:Type) (b:R) l i `{Cfind_at R b l i} {H:Cclosed_seq (T:=R) l} := (l,i).
Class Creify (R:Type) (e:PExpr Z) (l:list R) (b:R) := {}.
Instance Ireify_zero (R:Type) (Rd:Domain R) l : Creify (PEc 0%Z) l ring0.
Instance Ireify_one (R:Type) (Rd:Domain R) l : Creify (PEc 1%Z) l ring1.
Instance Ireify_plus (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
: Creify (PEadd e1 e2) l (ring_plus b1 b2).
Instance Ireify_mult (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
: Creify (PEmul e1 e2) l (ring_mult b1 b2).
Instance Ireify_sub (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
: Creify (PEsub e1 e2) l (ring_sub b1 b2).
Instance Ireify_opp (R:Type) (Rd:Domain R) e1 l b1 `{Creify R e1 l b1}
: Creify (PEopp e1) l (ring_opp b1).
Instance Ireify_var (R:Type) b l i `{Cfind_at R b l i}
: Creify (PEX _ (P_of_succ_nat i)) l b | 100.
Class Creifylist (R:Type) (le:list (PExpr Z)) (l:list R) (lb:list R) := {}.
Instance Creify_nil (R:Type) l : Creifylist nil l (@nil R).
Instance Creify_cons (R:Type) e1 l b1 le2 lb2 `{Creify R e1 l b1} `{Creifylist R le2 l lb2}
: Creifylist (e1::le2) l (b1::lb2).
Definition li_reifyl (R:Type) le l lb `{Creifylist R le l lb}
{H:Cclosed_seq (T:=R) l} := (l,le).
Unset Implicit Arguments.
Ltac lterm_goal g :=
match g with
ring_eq ?b1 ?b2 => constr:(b1::b2::nil)
| ring_eq ?b1 ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
end.
Ltac reify_goal l le lb Rd:=
match le with
nil => idtac
| ?e::?le1 =>
match lb with
?b::?lb1 => (* idtac "b="; idtac b;*)
let x := fresh "B" in
set (x:= b) at 1;
change x with (@interpret3 _ Rd e l);
clear x;
reify_goal l le1 lb1 Rd
end
end.
Ltac get_lpol g :=
match g with
ring_eq (interpret3 _ _ ?p _) _ => constr:(p::nil)
| ring_eq (interpret3 _ _ ?p _) _ -> ?g =>
let l := get_lpol g in constr:(p::l)
end.
Ltac nsatz_domain_generic radicalmax info lparam lvar tacsimpl Rd :=
match goal with
|- ?g => let lb := lterm_goal g in
(*idtac "lb"; idtac lb;*)
match eval red in (li_reifyl (lb:=lb)) with
| (?fv, ?le) =>
let fv := match lvar with
(@nil _) => fv
| _ => lvar
end in
(* idtac "variables:";idtac fv;*)
let nparam := eval compute in (Z_of_nat (List.length lparam)) in
let fv := parametres_en_tete fv lparam in
(*idtac "variables:"; idtac fv;
idtac "nparam:"; idtac nparam; *)
match eval red in (li_reifyl (l:=fv) (lb:=lb)) with
| (?fv, ?le) =>
(*idtac "variables:";idtac fv; idtac le; idtac lb;*)
reify_goal fv le lb Rd;
match goal with
|- ?g =>
let lp := get_lpol g in
let lpol := eval compute in (List.rev lp) in
(*idtac "polynomes:"; idtac lpol;*)
tacsimpl; intros;
let SplitPolyList kont :=
match lpol with
| ?p2::?lp2 => kont p2 lp2
| _ => idtac "polynomial not in the ideal"
end in
tacsimpl;
SplitPolyList ltac:(fun p lp =>
set (p21:=p) ;
set (lp21:=lp);
(*idtac "lp:"; idtac lp; *)
nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci =>
set (q := PEmul c (PEpow p21 r));
let Hg := fresh "Hg" in
assert (Hg:check lp21 q (lci,lq) = true);
[ (vm_compute;reflexivity) || idtac "invalid nsatz certificate"
| let Hg2 := fresh "Hg" in
assert (Hg2: ring_eq (interpret3 _ Rd q fv) ring0);
[ tacsimpl;
apply (@check_correct _ Rd fv lp21 q (lci,lq) Hg);
tacsimpl;
repeat (split;[assumption|idtac]); exact I
| simpl in Hg2; tacsimpl;
apply Rdomain_pow with (interpret3 _ Rd c fv) (Nnat.nat_of_N r); auto with domain;
tacsimpl; apply domain_axiom_one_zero
|| (simpl) || idtac "could not prove discrimination result"
]
]
)
)
end end end end .
Ltac nsatz_domainpv pretac radicalmax info lparam lvar tacsimpl rd :=
pretac;
nsatz_domain_begin tacsimpl; auto with domain;
nsatz_domain_generic radicalmax info lparam lvar tacsimpl rd.
Ltac nsatz_domain:=
intros;
match goal with
|- (@ring_eq _ (@domain_ring ?r ?rd) _ _ ) =>
nsatz_domainpv ltac:idtac 6%N 1%Z (@nil r) (@nil r) ltac:(simpl) rd
end.
(* Dans R *)
Require Import Reals.
Require Import RealField.
Instance Rri : Ring R := {
ring0 := 0%R;
ring1 := 1%R;
ring_plus := Rplus;
ring_mult := Rmult;
ring_sub := Rminus;
ring_opp := Ropp;
ring_eq := @eq R;
ring_ring := RTheory}.
Lemma Raxiom_one_zero: 1%R <> 0%R.
discrR.
Qed.
Instance Rdi : Domain R := {
domain_ring := Rri;
domain_axiom_product := Rmult_integral;
domain_axiom_one_zero := Raxiom_one_zero}.
Hint Resolve ring_setoid ring_plus_comp ring_mult_comp ring_sub_comp ring_opp_comp: domain.
Ltac replaceR:=
replace 0%R with (@ring0 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
replace 1%R with (@ring1 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
replace Rplus with (@ring_plus _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
replace Rmult with (@ring_mult _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
replace Rminus with (@ring_sub _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
replace Ropp with (@ring_opp _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
replace (@eq R) with (@ring_eq _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity].
Ltac simplR:=
simpl; replaceR.
Ltac pretacR:=
replaceR;
replace Rri with (@domain_ring _ Rdi) in *; [idtac | reflexivity].
Ltac nsatz_domainR:=
nsatz_domainpv ltac:pretacR 6%N 1%Z (@Datatypes.nil R) (@Datatypes.nil R)
ltac:simplR Rdi;
discrR.
Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
nsatz_domainR.
Qed.
(* Dans Z *)
Instance Zri : Ring Z := {
ring0 := 0%Z;
ring1 := 1%Z;
ring_plus := Zplus;
ring_mult := Zmult;
ring_sub := Zminus;
ring_opp := Zopp;
ring_eq := (@eq Z);
ring_ring := Zth}.
Lemma Zaxiom_one_zero: 1%Z <> 0%Z.
discriminate.
Qed.
Instance Zdi : Domain Z := {
domain_ring := Zri;
domain_axiom_product := Zmult_integral;
domain_axiom_one_zero := Zaxiom_one_zero}.
Ltac replaceZ :=
replace 0%Z with (@ring0 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
replace 1%Z with (@ring1 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
replace Zplus with (@ring_plus _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
replace Zmult with (@ring_mult _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
replace Zminus with (@ring_sub _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
replace Zopp with (@ring_opp _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
replace (@eq Z) with (@ring_eq _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity].
Ltac simplZ:=
simpl; replaceZ.
Ltac pretacZ :=
replaceZ;
replace Zri with (@domain_ring _ Zdi) in *; [idtac | reflexivity].
Ltac nsatz_domainZ:=
nsatz_domainpv ltac:pretacZ 6%N 1%Z (@Datatypes.nil Z) (@Datatypes.nil Z) ltac:simplZ Zdi.
(* Dans Q *)
Require Import QArith.
Instance Qri : Ring Q := {
ring0 := 0%Q;
ring1 := 1%Q;
ring_plus := Qplus;
ring_mult := Qmult;
ring_sub := Qminus;
ring_opp := Qopp;
ring_eq := Qeq;
ring_ring := Qsrt}.
Lemma Qaxiom_one_zero: not (Qeq 1%Q 0%Q).
discriminate.
Qed.
Instance Qdi : Domain Q := {
domain_ring := Qri;
domain_axiom_product := Qmult_integral;
domain_axiom_one_zero := Qaxiom_one_zero}.
Ltac replaceQ :=
replace 0%Q with (@ring0 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
replace 1%Q with (@ring1 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
replace Qplus with (@ring_plus _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
replace Qmult with (@ring_mult _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
replace Qminus with (@ring_sub _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
replace Qopp with (@ring_opp _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
replace Qeq with (@ring_eq _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity].
Ltac simplQ:=
simpl; replaceQ.
Ltac pretacQ :=
replaceQ;
replace Qri with (@domain_ring _ Qdi) in *; [idtac | reflexivity].
Ltac nsatz_domainQ:=
nsatz_domainpv ltac:pretacQ 6%N 1%Z (@Datatypes.nil Q) (@Datatypes.nil Q) ltac:simplQ Qdi.
(* tactique générique *)
Ltac nsatz :=
intros;
match goal with
| |- (@eq R _ _) => nsatz_domainR
| |- (@eq Z _ _) => nsatz_domainZ
| |- (@Qeq _ _) => nsatz_domainQ
| |- _ => nsatz_domain
end.
(*
Goal forall x y:Q, Qeq x y -> Qeq (x*x-x+1)%Q ((y*y-y)+1+0)%Q.
nsatz.
Qed.
Goal forall x y:Z, x = y -> (x*x-x+1)%Z = ((y*y-y)+1+0)%Z.
nsatz.
Qed.
Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
nsatz.
Qed.
*)
|