summaryrefslogtreecommitdiff
path: root/plugins/micromega/mfourier.ml
blob: 6250e324a5abd13d8bba6e4f511920f2098c7727 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
open Num
module Utils = Mutils

let map_option = Utils.map_option
let from_option = Utils.from_option

let debug = false
type ('a,'b) lr = Inl of 'a | Inr of 'b


module Vect =
  struct
    (** [t] is the type of vectors.
	A vector [(x1,v1) ; ... ; (xn,vn)] is such that:
	- variables indexes are ordered (x1 < ... < xn
	- values are all non-zero
    *)
    type var = int
    type t = (var * num) list

(** [equal v1 v2 = true] if the vectors are syntactically equal.
    ([num] is not handled by  [Pervasives.equal] *)

    let rec equal v1 v2 =
      match v1 , v2 with
	| [] , []   -> true
	| [] , _    -> false
	| _::_ , [] -> false
	| (i1,n1)::v1 , (i2,n2)::v2 ->
	    (i1 = i2) && n1 =/ n2 && equal v1 v2

    let hash v =
      let rec hash i = function
	| [] -> i
	| (vr,vl)::l ->  hash (i + (Hashtbl.hash (vr, float_of_num vl))) l in
	Hashtbl.hash (hash 0 v )


    let null = []

    let pp_vect o vect =
      List.iter (fun (v,n) -> Printf.printf "%sx%i + " (string_of_num n) v) vect

    let from_list (l: num list) =
      let rec xfrom_list i l =
	match l with
	  | [] -> []
	  | e::l ->
	      if e <>/ Int 0
	      then (i,e)::(xfrom_list (i+1) l)
	      else xfrom_list (i+1) l in

	xfrom_list 0 l

    let zero_num = Int 0
    let unit_num = Int 1


    let to_list m =
      let rec xto_list i l =
	match l with
	  | [] -> []
	  |	(x,v)::l' ->
		  if i = x then v::(xto_list (i+1) l') else zero_num ::(xto_list (i+1) l) in
	xto_list 0 m


    let cons i v rst = if v =/ Int 0 then rst else (i,v)::rst

    let rec update i f t =
      match t with
	| [] -> cons i (f zero_num) []
	| (k,v)::l ->
	    match Pervasives.compare i k with
	  | 0 -> cons k (f v) l
	  | -1 -> cons i (f zero_num) t
	  |  1 -> (k,v) ::(update i f l)
	  |  _  -> failwith "compare_num"

    let rec set i n t =
      match t with
	| [] -> cons i n []
	| (k,v)::l ->
	    match Pervasives.compare i k with
	      | 0 -> cons k n l
	      | -1 -> cons i n t
	      |  1 -> (k,v) :: (set i n l)
	      |  _  -> failwith "compare_num"

    let gcd m =
      let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int  x (Utils.numerator e))  Big_int.zero_big_int m in
	if Big_int.compare_big_int res Big_int.zero_big_int = 0
	then Big_int.unit_big_int else res

    let rec mul z t =
      match z with
	| Int 0 -> []
	| Int 1 -> t
	|  _    -> List.map (fun (i,n) -> (i, mult_num z n)) t

    let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical
      [
	(fun () -> Pervasives.compare (fst x) (fst y));
	(fun () -> compare_num (snd x) (snd y))])

    (** [tail v vect] returns
	- [None] if [v] is not a variable of the vector [vect]
	- [Some(vl,rst)]  where [vl] is the value of [v] in vector [vect]
        and [rst] is the remaining of the vector
	We exploit that vectors are ordered lists
    *)
    let rec tail (v:var) (vect:t) =
      match vect with
	| [] -> None
	| (v',vl)::vect' ->
	    match Pervasives.compare v' v with
	      | 0 -> Some (vl,vect) (* Ok, found *)
	      | -1 -> tail v vect' (* Might be in the tail *)
	      | _  -> None (* Hopeless *)

    let get v vect =
      match tail v vect with
	| None -> None
	| Some(vl,_) -> Some vl


    let rec fresh v =
	match v with
	  | [] -> 1
	  | [v,_] -> v + 1
	  | _::v  -> fresh v

  end
open Vect

(** Implementation of intervals *)
module Itv =
struct

  (** The type of intervals is *)
  type interval = num option * num option
      (** None models the absence of bound i.e. infinity *)
      (** As a result,
	  - None , None   -> ]-oo,+oo[
	  - None , Some v -> ]-oo,v]
	  - Some v, None  -> [v,+oo[
	  - Some v, Some v' -> [v,v']
      Intervals needs to be explicitely normalised.
      *)

  type who = Left | Right


  (** if then interval [itv] is empty, [norm_itv itv] returns [None]
      otherwise, it returns [Some itv] *)

  let norm_itv itv =
    match itv with
      | Some a , Some b -> if a <=/ b then Some itv else None
      |   _             -> Some itv

  (** [opp_itv itv] computes the opposite interval *)
  let opp_itv itv =
  let (l,r) = itv in
    (map_option minus_num r, map_option minus_num l)




(** [inter i1 i2 = None] if the intersection of intervals is empty
    [inter i1 i2 = Some i] if [i] is the intersection of the intervals [i1] and [i2] *)
  let inter i1 i2 =
    let (l1,r1) = i1
    and (l2,r2) = i2 in

    let inter f o1 o2 =
      match o1 , o2 with
	| None , None -> None
	| Some _ , None -> o1
	| None  , Some _ -> o2
	| Some n1 , Some n2 -> Some (f n1 n2) in

    norm_itv (inter max_num l1 l2 , inter min_num r1 r2)

  let range = function
    | None,_ | _,None -> None
    | Some i,Some j -> Some (floor_num j -/ceiling_num i +/ (Int 1))


  let smaller_itv i1 i2 =
    match  range i1 ,  range i2  with
      | None , _ -> false
      |  _   , None -> true
      | Some i , Some j -> i <=/ j


(** [in_bound bnd v] checks whether [v] is within the bounds [bnd] *)
let in_bound bnd v =
  let (l,r) = bnd in
  match l , r with
    | None , None -> true
    | None , Some a -> v <=/ a
    | Some a , None -> a <=/ v
    | Some a , Some b -> a <=/ v && v <=/ b

end
open Itv
type vector = Vect.t

type cstr = { coeffs : vector ; bound : interval }
(** 'cstr' is the type of constraints.
    {coeffs = v ; bound = (l,r) } models the constraints l <= v <= r
**)

module ISet = Set.Make(struct type t = int let compare = Pervasives.compare end)


module PSet = ISet


module System = Hashtbl.Make(Vect)

  type proof =
      | Hyp of int
      | Elim of  var * proof * proof
      | And of proof * proof



type system = {
  sys : cstr_info ref System.t ;
  vars : ISet.t
}
and cstr_info = {
  bound : interval ;
  prf : proof ;
  pos : int ;
  neg : int ;
}


(** A system of constraints has the form [{sys = s ; vars = v}].
    [s] is a hashtable mapping a normalised vector to a [cstr_info] record where
    - [bound] is an interval
    - [prf_idx] is the set of hypothese indexes (i.e. constraints in the initial system) used to obtain the current constraint.
       In the initial system, each constraint is given an unique singleton proof_idx.
       When a new constraint c is computed by a function f(c1,...,cn), its proof_idx is ISet.fold union (List.map (fun x -> x.proof_idx) [c1;...;cn]
    - [pos] is the number of positive values of the vector
    - [neg] is the number of negative values of the vector
    ( [neg] + [pos] is therefore the length of the vector)
    [v] is an upper-bound of the set of variables which appear in [s].
*)

(** To be thrown when a system has no solution *)
exception SystemContradiction of proof
let hyps prf =
  let rec hyps prf acc =
    match prf with
      | Hyp i -> ISet.add i acc
      | Elim(_,prf1,prf2)
      | And(prf1,prf2) -> hyps prf1 (hyps prf2 acc) in
    hyps prf ISet.empty


(** Pretty printing *)
  let rec pp_proof o prf =
    match prf with
      | Hyp i -> Printf.fprintf o "H%i" i
      | Elim(v, prf1,prf2) -> Printf.fprintf o "E(%i,%a,%a)" v pp_proof prf1 pp_proof prf2
      | And(prf1,prf2)   -> Printf.fprintf o "A(%a,%a)"  pp_proof prf1 pp_proof prf2

let pp_bound o  = function
  | None -> output_string o "oo"
  | Some a -> output_string o (string_of_num a)

let pp_itv o (l,r) = Printf.fprintf o "(%a,%a)" pp_bound l pp_bound r

let rec pp_list f o l =
  match l with
    | [] -> ()
    | e::l -> f o e ; output_string o ";" ; pp_list f o l

let pp_iset o s =
  output_string o "{" ;
  ISet.fold (fun i _ -> Printf.fprintf o "%i " i) s ();
  output_string o "}"

let pp_pset o s =
  output_string o "{" ;
  PSet.fold (fun i _ -> Printf.fprintf o "%i " i) s ();
  output_string o "}"


let pp_info o i = pp_itv o i.bound

let pp_cstr o (vect,bnd) =
    let (l,r) = bnd in
      (match l with
	| None -> ()
	| Some n -> Printf.fprintf o "%s <= " (string_of_num n))
      ;
      pp_vect o vect ;
      (match r with
	      | None -> output_string o"\n"
	      | Some n -> Printf.fprintf o "<=%s\n" (string_of_num n))


let pp_system o sys=
  System.iter (fun vect ibnd ->
    pp_cstr o (vect,(!ibnd).bound)) sys



let pp_split_cstr o (vl,v,c,_) =
  Printf.fprintf o "(val x = %s ,%a,%s)" (string_of_num vl) pp_vect  v  (string_of_num c)

(** [merge_cstr_info] takes:
    - the intersection of bounds and
    - the union of proofs
    - [pos] and [neg] fields should be identical *)

let merge_cstr_info i1 i2 =
  let { pos = p1 ; neg = n1 ; bound = i1 ; prf = prf1 } = i1
  and { pos = p2 ; neg = n2 ; bound = i2 ; prf = prf2 } = i2 in
    assert (p1 = p2 && n1 = n2) ;
    match inter i1 i2 with
      | None -> None (* Could directly raise a system contradiction exception *)
      | Some bnd ->
	  Some { pos = p1 ; neg = n1 ; bound = bnd ; prf = And(prf1,prf2) }

(** [xadd_cstr vect cstr_info] loads an constraint into the system.
    The constraint is neither redundant nor contradictory.
    @raise SystemContradiction if [cstr_info] returns [None]
*)

let xadd_cstr vect cstr_info sys =
  if debug && System.length sys mod 1000 = 0 then (print_string "*" ; flush stdout) ;
  try
    let info = System.find sys vect in
      match merge_cstr_info cstr_info !info with
	  | None       -> raise (SystemContradiction  (And(cstr_info.prf, (!info).prf)))
	  | Some info' -> info := info'
      with
	| Not_found -> System.replace  sys vect (ref cstr_info)


type cstr_ext =
    | Contradiction (** The constraint is contradictory.
			Typically, a [SystemContradiction] exception will be raised. *)
    | Redundant  (** The constrain is redundant.
		     Typically, the constraint will be dropped *)
    | Cstr of vector * cstr_info (** Taken alone, the constraint is neither contradictory nor redundant.
				     Typically, it will be added to the constraint system. *)

(** [normalise_cstr] : vector -> cstr_info -> cstr_ext *)
let normalise_cstr vect cinfo =
  match norm_itv cinfo.bound with
    | None -> Contradiction
    | Some (l,r) ->
	match vect with
	  | [] -> if Itv.in_bound (l,r) (Int 0) then Redundant else Contradiction
	  | (_,n)::_ ->  Cstr(
	      (if n <>/ Int 1 then List.map (fun (x,nx) -> (x,nx // n)) vect else vect),
			     let divn x = x // n in
			       if sign_num n = 1
			       then{cinfo with bound = (map_option divn l , map_option  divn r) }
			       else {cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (map_option divn r , map_option divn l)})

(** For compatibility, there an external representation of constraints *)

type cstr_compat = {coeffs : vector ; op : op ; cst : num}
and op = |Eq | Ge

let string_of_op = function Eq -> "=" | Ge -> ">="


let eval_op = function
  | Eq -> (=/)
  | Ge ->  (>=/)

let count v =
  let rec count n p v =
    match v with
      | [] -> (n,p)
      | (_,vl)::v -> let sg = sign_num vl in
		       assert (sg <> 0) ;
	  if sg = 1 then count n (p+1) v else count (n+1) p v in
    count 0 0 v


let norm_cstr {coeffs = v ; op = o ; cst = c} idx =
  let (n,p) = count v in

  normalise_cstr v {pos = p ; neg = n ; bound =
  (match o with
	| Eq -> Some c , Some c
	| Ge -> Some c , None) ;
	    prf = Hyp idx }


(** [load_system l] takes a list of constraints of type [cstr_compat]
    @return a system of constraints
    @raise SystemContradiction if a contradiction is found
*)
let load_system l =

  let sys = System.create 1000 in

  let li = Mutils.mapi (fun e i -> (e,i)) l in

  let vars = List.fold_left (fun vrs (cstr,i) ->
    match norm_cstr cstr i with
      | Contradiction -> raise (SystemContradiction (Hyp i))
      | Redundant      -> vrs
      | Cstr(vect,info) ->
	  xadd_cstr  vect info sys ;
	  List.fold_left (fun s (v,_) -> ISet.add v s) vrs cstr.coeffs) ISet.empty li   in

    {sys = sys ;vars = vars}

let system_list sys =
  let { sys = s ; vars  = v } = sys in
    System.fold (fun k bi l -> (k, !bi)::l) s []


(** [add (v1,c1)  (v2,c2)  ]
    precondition:  (c1 <>/ Int 0 && c2 <>/ Int 0)
    @return a pair [(v,ln)] such that
    [v] is the sum of vector [v1] divided by [c1] and vector [v2] divided by [c2]
    Note that the resulting vector is not normalised.
*)

let add (v1,c1)  (v2,c2)  =
    assert (c1 <>/ Int 0 && c2 <>/ Int 0) ;

  let rec xadd v1 v2  =
    match v1 , v2 with
      | (x1,n1)::v1' , (x2,n2)::v2' ->
	  if x1 = x2
	  then
	    let n' = (n1 // c1) +/ (n2 // c2) in
	      if n' =/ Int 0 then xadd v1' v2'
	      else
		let res = xadd v1' v2'  in
		  (x1,n') ::res
	  else if x1 < x2
	  then let res = xadd v1' v2   in
		 (x1, n1 // c1)::res
	  else let res = xadd v1 v2'  in
		 (x2, n2 // c2)::res
      |  [] , [] -> []
      |  [] ,  _ -> List.map (fun (x,vl) -> (x,vl // c2)) v2
      |  _  , [] -> List.map (fun (x,vl) -> (x,vl // c1)) v1 in

  let res = xadd v1 v2 in
    (res, count res)

let add (v1,c1)   (v2,c2)  =
  let res = add (v1,c1)   (v2,c2)  in
    (*    Printf.printf "add(%a,%s,%a,%s) -> %a\n" pp_vect v1 (string_of_num c1) pp_vect v2 (string_of_num c2) pp_vect (fst res) ;*)
    res

type tlr = (num * vector * cstr_info) list
type tm = (vector * cstr_info ) list

(** To perform Fourier elimination, constraints are categorised depending on the sign of the variable to eliminate. *)

(** [split x vect info (l,m,r)]
    @param v is the variable to eliminate
    @param l contains constraints such that (e + a*x) // a >= c / a
    @param r contains constraints such that (e + a*x) // - a >= c / -a
    @param m contains constraints which do not mention [x]
*)

let split x (vect: vector) info (l,m,r) =
    match get x vect with
      | None -> (* The constraint does not mention [x], store it in m *)
	  (l,(vect,info)::m,r)
      | Some vl -> (* otherwise *)

          let cons_bound lst bd =
            match  bd with
              | None -> lst
              | Some bnd -> (vl,vect,{info with bound = Some bnd,None})::lst in

          let lb,rb = info.bound in
            if sign_num vl = 1
            then  (cons_bound l lb,m,cons_bound r rb)
            else (* sign_num vl = -1 *)
              (cons_bound l rb,m,cons_bound r lb)


(** [project vr sys] projects system [sys] over the set of variables [ISet.remove vr sys.vars ].
    This is a one step Fourier elimination.
*)
let project vr sys =

  let (l,m,r)  = System.fold (fun vect rf l_m_r -> split vr vect !rf l_m_r) sys.sys  ([],[],[])  in

  let new_sys = System.create (System.length sys.sys) in

    (* Constraints in [m] belong to the projection - for those [vr] is already projected out *)
    List.iter (fun  (vect,info) -> System.replace new_sys vect (ref info) )  m ;

    let elim (v1,vect1,info1) (v2,vect2,info2) =
      let {neg = n1 ; pos = p1 ; bound = bound1 ; prf = prf1} = info1
      and {neg = n2 ; pos = p2 ; bound = bound2 ; prf = prf2} = info2 in

      let bnd1 = from_option (fst bound1)
      and bnd2 = from_option (fst bound2) in
      let bound = (bnd1 // v1) +/ (bnd2 // minus_num v2) in
      let vres,(n,p) = add (vect1,v1) (vect2,minus_num v2)  in
        (vres,{neg = n ; pos = p ; bound = (Some bound, None); prf = Elim(vr,info1.prf,info2.prf)}) in

      List.iter(fun  l_elem -> List.iter (fun r_elem ->
        let (vect,info) = elim l_elem r_elem in
	  match normalise_cstr vect info with
	    | Redundant -> ()
	    | Contradiction -> raise (SystemContradiction  info.prf)
	    | Cstr(vect,info)   -> xadd_cstr vect info new_sys) r ) l;
      {sys = new_sys ; vars = ISet.remove  vr sys.vars}


(** [project_using_eq] performs elimination by pivoting using an equation.
    This is the counter_part of the [elim] sub-function of [!project].
    @param vr is the variable to be used as pivot
    @param c is the coefficient of variable [vr] in vector [vect]
    @param len is the length of the equation
    @param bound is the bound of the equation
    @param prf is the proof of the equation
*)

let project_using_eq vr c vect bound  prf (vect',info') =
    match get vr vect' with
    | Some c2 ->
	let c1 = if c2 >=/ Int 0 then minus_num c else c in

	let c2 = abs_num c2 in

	let (vres,(n,p)) = add (vect,c1) (vect', c2)  in

	let cst = bound // c1 in

	let bndres =
	  let f x = cst +/ x // c2 in
	  let (l,r) = info'.bound in
	    (map_option f l , map_option f r) in

	  (vres,{neg = n ; pos = p ; bound = bndres ; prf = Elim(vr,prf,info'.prf)})
    | None -> (vect',info')

let elim_var_using_eq vr vect cst  prf sys =
  let c = from_option (get vr vect) in

  let elim_var = project_using_eq vr c vect cst prf  in

  let  new_sys  =  System.create (System.length sys.sys) in

    System.iter(fun vect iref ->
      let (vect',info') = elim_var (vect,!iref) in
	match normalise_cstr vect' info' with
	    | Redundant -> ()
	    | Contradiction -> raise (SystemContradiction info'.prf)
	    | Cstr(vect,info')   -> xadd_cstr vect info' new_sys) sys.sys ;

    {sys = new_sys ; vars = ISet.remove  vr sys.vars}


(** [size sys] computes the number of entries in the system of constraints *)
let size sys = System.fold (fun v iref s -> s + (!iref).neg + (!iref).pos) sys 0

module IMap = Map.Make(struct type t = int let compare : int -> int -> int = Pervasives.compare end)

let pp_map o map = IMap.fold (fun k elt () -> Printf.fprintf o "%i -> %s\n" k (string_of_num elt)) map ()

(** [eval_vect map vect] evaluates vector [vect] using the values of [map].
    If [map] binds all the variables of [vect], we get
    [eval_vect map [(x1,v1);...;(xn,vn)] = (IMap.find x1 map * v1) + ... + (IMap.find xn map) * vn , []]
    The function returns as second argument, a sub-vector consisting in the variables that are not in [map]. *)

let  eval_vect map vect =
  let rec xeval_vect vect sum rst =
    match vect with
      | [] -> (sum,rst)
      | (v,vl)::vect ->
	  try
	    let val_v = IMap.find v map in
	      xeval_vect vect (sum +/ (val_v */ vl)) rst
	  with
	      Not_found -> xeval_vect vect sum ((v,vl)::rst) in
    xeval_vect vect (Int 0) []


(** [restrict_bound n sum itv] returns the interval of [x]
    given that (fst itv) <=  x * n + sum <= (snd itv) *)
let restrict_bound n sum (itv:interval) =
  let f x  = (x -/ sum) // n in
  let l,r = itv in
    match sign_num n with
      | 0 -> if in_bound itv sum
	then (None,None) (* redundant *)
	else failwith "SystemContradiction"
      | 1 ->  map_option f l , map_option f r
      | _ -> map_option f r , map_option f l


(** [bound_of_variable map v sys] computes the interval of [v] in
    [sys] given a mapping [map] binding all the other variables *)
let bound_of_variable map v sys =
  System.fold (fun vect iref bnd  ->
    let sum,rst = eval_vect  map vect in
    let vl = match get v rst with
      | None -> Int 0
      | Some v -> v in
      match inter bnd (restrict_bound vl sum (!iref).bound) with
	| None -> failwith "bound_of_variable: impossible"
	| Some itv -> itv) sys  (None,None)


(** [pick_small_value bnd] picks a value being closed to zero within the interval *)
let pick_small_value bnd =
  match bnd with
    | None , None   ->  Int 0
    | None , Some i ->  if  (Int 0) <=/ (floor_num  i) then Int 0 else floor_num i
    | Some i,None   ->  if i <=/ (Int 0) then Int 0 else ceiling_num i
    | Some i,Some j ->
	if i <=/ Int 0 && Int 0 <=/ j
	then Int 0
	else if ceiling_num i <=/ floor_num j
	then ceiling_num i (* why not *) else i


(** [solution s1 sys_l  = Some(sn,[(vn-1,sn-1);...; (v1,s1)]@sys_l)]
    then [sn] is a  system which contains only [black_v] -- if it existed in [s1]
    and [sn+1] is obtained by projecting [vn] out of [sn]
    @raise SystemContradiction if  system [s] has no solution
*)

let solve_sys black_v choose_eq choose_variable sys sys_l =

  let rec solve_sys sys sys_l =
    if debug then Printf.printf "S #%i size %i\n" (System.length sys.sys) (size sys.sys);

    let eqs = choose_eq sys in
      try
	let (v,vect,cst,ln) =  fst (List.find (fun ((v,_,_,_),_) -> v <> black_v) eqs) in
	  if debug then
	    (Printf.printf "\nE %a = %s variable %i\n" pp_vect vect (string_of_num cst) v ;
	     flush stdout);
	  let sys' = elim_var_using_eq v vect cst ln sys in
	    solve_sys sys' ((v,sys)::sys_l)
    with Not_found ->
      let vars = choose_variable  sys in
	try
	  let (v,est) =  (List.find (fun (v,_) -> v <> black_v) vars) in
	    if debug then (Printf.printf "\nV : %i esimate %f\n" v est ; flush stdout) ;
	    let sys' =  project v sys in
	      solve_sys sys' ((v,sys)::sys_l)
	with Not_found ->  (* we are done *) Inl (sys,sys_l)  in
    solve_sys sys sys_l




let  solve black_v choose_eq choose_variable cstrs =

  try
    let sys = load_system cstrs in
(*      Printf.printf "solve :\n %a" pp_system sys.sys ; *)
      solve_sys black_v choose_eq choose_variable sys []
  with SystemContradiction prf -> Inr prf


(** The  purpose of module [EstimateElimVar] is to try to estimate the cost of eliminating a variable.
    The output is an ordered list of (variable,cost).
*)

module EstimateElimVar =
struct
  type sys_list = (vector * cstr_info) list

  let abstract_partition (v:int) (l: sys_list) =

    let rec xpart (l:sys_list) (ltl:sys_list) (n:int list) (z:int) (p:int list) =
      match l with
        | [] -> (ltl, n,z,p)
        | (l1,info) ::rl ->
            match  l1 with
            | [] -> xpart rl (([],info)::ltl) n (info.neg+info.pos+z) p
            | (vr,vl)::rl1 ->
		if v = vr
		then
		  let cons_bound lst bd =
		    match  bd with
		      | None -> lst
		      | Some bnd -> info.neg+info.pos::lst in

		  let lb,rb = info.bound in
		    if sign_num vl = 1
		    then  xpart rl ((rl1,info)::ltl) (cons_bound n lb) z (cons_bound p rb)
		    else  xpart rl ((rl1,info)::ltl) (cons_bound n rb) z (cons_bound p lb)
		else
		  (* the variable is greater *)
		  xpart rl ((l1,info)::ltl) n (info.neg+info.pos+z) p

    in
    let (sys',n,z,p) =  xpart l [] [] 0 []  in

    let ln = float_of_int (List.length n) in
    let sn = float_of_int (List.fold_left (+) 0 n) in
    let lp = float_of_int (List.length p) in
    let sp = float_of_int (List.fold_left (+) 0 p) in
      (sys',  float_of_int z +.  lp *.  sn +.  ln *.  sp -. lp*.ln)


  let choose_variable   sys =
    let {sys = s ; vars = v} = sys in

    let sl = system_list sys in

    let evals  = fst
      (ISet.fold (fun v (eval,s) -> let ts,vl = abstract_partition v s  in
                                      ((v,vl)::eval, ts)) v ([],sl)) in

      List.sort (fun x y -> Pervasives.compare (snd x) (snd y) ) evals


end
open EstimateElimVar

(** The  module [EstimateElimEq] is similar to [EstimateElimVar] but it orders equations.
*)
module EstimateElimEq =
struct

  let itv_point bnd =
    match bnd with
      |(Some a, Some b) -> a =/ b
      | _   -> false

  let eq_bound bnd c =
    match bnd with
      |(Some a, Some b) -> a =/ b && c =/ b
      | _   -> false


  let rec unroll_until v l =
    match l with
      | [] -> (false,[])
      | (i,_)::rl -> if i = v
	then (true,rl)
	else if i < v then unroll_until v rl else (false,l)


  let choose_primal_equation eqs sys_l =

    let is_primal_equation_var v =
      List.fold_left (fun (nb_eq,nb_cst) (vect,info) ->
	if fst (unroll_until v vect)
	then if itv_point  info.bound then (nb_eq +  1,nb_cst) else (nb_eq,nb_cst)
	else (nb_eq,nb_cst)) (0,0) sys_l in

    let rec find_var vect =
      match vect with
	| [] -> None
	| (i,_)::vect ->
	    let (nb_eq,nb_cst) = is_primal_equation_var i in
	      if nb_eq = 2 && nb_cst = 0
	      then Some i else find_var vect in

    let rec find_eq_var eqs =
      match eqs with
	| [] -> None
	| (vect,a,prf,ln)::l ->
	    match find_var vect with
		| None -> find_eq_var l
		| Some r -> Some (r,vect,a,prf,ln)
    in


      find_eq_var eqs




  let choose_equality_var  sys =

    let sys_l = system_list sys in

    let equalities = List.fold_left
      (fun  l (vect,info) ->
	match  info.bound with
	  | Some a , Some b ->
	      if a =/ b then (* This an equation *)
		(vect,a,info.prf,info.neg+info.pos)::l else l
	  |   _ -> l
      ) [] sys_l  in

    let rec estimate_cost v ct sysl acc tlsys =
      match sysl with
	| [] -> (acc,tlsys)
	| (l,info)::rsys ->
	    let ln = info.pos + info.neg in
	    let (b,l) = unroll_until v l in
	    match b with
	      | true ->
		  if itv_point info.bound
		  then estimate_cost  v ct rsys (acc+ln) ((l,info)::tlsys) (* this is free *)
		  else estimate_cost v ct rsys (acc+ln+ct) ((l,info)::tlsys)  (* should be more ? *)
	      | false -> estimate_cost v ct rsys (acc+ln) ((l,info)::tlsys) in

      match choose_primal_equation equalities sys_l with
	| None ->
	    let cost_eq eq const prf ln acc_costs =

	      let rec cost_eq eqr sysl costs =
		match eqr with
		  | [] -> costs
		  | (v,_) ::eqr -> let (cst,tlsys) = estimate_cost v (ln-1) sysl 0 [] in
				     cost_eq eqr tlsys (((v,eq,const,prf),cst)::costs) in
		cost_eq eq sys_l acc_costs     in

	    let all_costs = List.fold_left (fun all_costs (vect,const,prf,ln) -> cost_eq vect const prf ln all_costs) [] equalities in

	      (*      pp_list (fun o ((v,eq,_,_),cst) -> Printf.fprintf o "((%i,%a),%i)\n" v pp_vect eq cst) stdout all_costs ; *)

	      List.sort (fun x y -> Pervasives.compare (snd x) (snd y) ) all_costs
	| Some (v,vect, const,prf,_) -> [(v,vect,const,prf),0]


end
open EstimateElimEq

module Fourier =
struct

  let optimise vect l =
    (* We add a dummy (fresh) variable for vector *)
    let fresh =
      List.fold_left (fun fr c -> Pervasives.max fr (Vect.fresh c.coeffs)) 0 l in
    let cstr = {
      coeffs = Vect.set fresh (Int (-1)) vect ;
      op = Eq ;
      cst = (Int 0)} in
      match solve fresh choose_equality_var choose_variable (cstr::l) with
	| Inr prf -> None (* This is an unsatisfiability proof *)
	| Inl (s,_) ->
	    try
	      Some (bound_of_variable IMap.empty fresh s.sys)
	    with
		x -> Printf.printf "optimise Exception : %s" (Printexc.to_string x) ; None


  let find_point cstrs =

    match solve max_int choose_equality_var choose_variable cstrs with
      | Inr prf -> Inr prf
      | Inl (_,l) ->

	let rec rebuild_solution l map =
	  match l with
	    | [] -> map
	    | (v,e)::l ->
		let itv = bound_of_variable map v e.sys in
		let map = IMap.add v (pick_small_value itv) map in
		  rebuild_solution l map
	in

	let map = rebuild_solution l IMap.empty in
	  let vect = List.rev (IMap.fold (fun v i vect -> (v,i)::vect) map []) in
(*	    Printf.printf "SOLUTION %a" pp_vect vect ; *)
	  let res = Inl vect in
	    res


end


module Proof =
struct




(** A proof term in the sense of a ZMicromega.RatProof is a positive combination of the hypotheses which leads to a contradiction.
    The proofs constructed by Fourier elimination are more like execution traces:
         - certain facts are recorded but are useless
         - certain inferences are implicit.
    The following code implements proof reconstruction.
*)
  let add x y = fst (add x y)


  let forall_pairs f l1 l2 =
    List.fold_left (fun acc e1 ->
      List.fold_left (fun acc e2 ->
	match f e1 e2 with
	  | None -> acc
	  | Some v -> v::acc) acc l2) [] l1


  let add_op x y =
    match x , y with
      | Eq , Eq -> Eq
      |     _   -> Ge


  let pivot v (p1,c1) (p2,c2) =
    let {coeffs = v1 ; op = op1 ; cst = n1} = c1
    and {coeffs = v2 ; op = op2 ; cst = n2} = c2 in

      match Vect.get v v1 , Vect.get v v2 with
        | None , _ | _ , None -> None
        | Some a   , Some b   ->
            if (sign_num a) * (sign_num b) = -1
            then Some (add (p1,abs_num a) (p2,abs_num b) ,
                      {coeffs = add (v1,abs_num a) (v2,abs_num b) ;
                       op = add_op op1 op2 ;
                       cst = n1 // (abs_num a) +/ n2 // (abs_num b) })
            else if op1 = Eq
            then Some (add (p1,minus_num (a // b)) (p2,Int 1),
                      {coeffs = add (v1,minus_num (a// b)) (v2 ,Int 1) ;
                       op     = add_op op1 op2;
                       cst    = n1 // (minus_num (a// b)) +/ n2 // (Int 1)})
            else if op2 = Eq
	    then
	      Some (add (p2,minus_num (b // a)) (p1,Int 1),
                   {coeffs = add (v2,minus_num (b// a)) (v1 ,Int 1) ;
                    op     = add_op op1 op2;
                    cst    = n2 // (minus_num (b// a)) +/ n1 // (Int 1)})
	    else  None (* op2 could be Eq ... this might happen *)


  let normalise_proofs l =
    List.fold_left (fun acc (prf,cstr) ->
      match acc with
        | Inr _ -> acc (* I already found a contradiction *)
        | Inl acc ->
            match norm_cstr cstr 0 with
              | Redundant -> Inl acc
              | Contradiction -> Inr (prf,cstr)
              | Cstr(v,info)  -> Inl ((prf,cstr,v,info)::acc)) (Inl []) l


  type oproof = (vector * cstr_compat * num) option

  let merge_proof (oleft:oproof) (prf,cstr,v,info) (oright:oproof) =
    let (l,r) = info.bound in

    let keep p ob bd =
      match ob , bd with
        | None , None -> None
        | None , Some b -> Some(prf,cstr,b)
        | Some _ , None -> ob
        | Some(prfl,cstrl,bl) , Some b -> if p bl b then Some(prf,cstr, b) else ob in

    let oleft  = keep (<=/) oleft l in
    let oright = keep (>=/) oright r in
      (* Now, there might be a contradiction *)
      match oleft , oright with
        | None , _ | _ , None -> Inl (oleft,oright)
        | Some(prfl,cstrl,l) , Some(prfr,cstrr,r) ->
            if l <=/ r
            then Inl (oleft,oright)
            else (* There is a contradiction - it should show up by scaling up the vectors - any pivot should do*)
              match cstrr.coeffs with
                | [] -> Inr (add (prfl,Int 1) (prfr,Int 1), cstrr) (* this is wrong *)
                | (v,_)::_ ->
                    match pivot v (prfl,cstrl) (prfr,cstrr) with
                      | None -> failwith "merge_proof : pivot is not possible"
                      | Some x -> Inr x

let  mk_proof hyps prf =
  (* I am keeping list - I might have a proof for the left bound and a proof for the right bound.
     If I perform aggressive elimination of redundancies, I expect the list to be of length at most 2.
     For each proof list, all the vectors should be of the form a.v for different constants a.
  *)

  let rec mk_proof prf =
    match prf with
      | Hyp i -> [ ([i, Int 1] , List.nth hyps i) ]

      | Elim(v,prf1,prf2) ->
          let prfsl = mk_proof prf1
          and prfsr = mk_proof prf2 in
            (* I take only the pairs for which the elimination is meaningfull *)
            forall_pairs (pivot v) prfsl prfsr
      | And(prf1,prf2) ->
          let prfsl1 = mk_proof prf1
          and prfsl2 = mk_proof prf2 in
          (* detect trivial redundancies and contradictions *)
            match normalise_proofs (prfsl1@prfsl2) with
              | Inr x -> [x] (* This is a contradiction - this should be the end of the proof *)
              | Inl l -> (* All the vectors are the same *)
                  let prfs =
                    List.fold_left (fun acc e ->
                      match acc with
                        | Inr _ -> acc (* I have a contradiction *)
                        | Inl (oleft,oright) -> merge_proof oleft e oright) (Inl(None,None)) l in
                    match prfs with
                      | Inr x -> [x]
                      | Inl (oleft,oright) ->
			  match oleft , oright with
			    | None , None -> []
			    | None , Some(prf,cstr,_) | Some(prf,cstr,_) , None -> [prf,cstr]
			    | Some(prf1,cstr1,_) , Some(prf2,cstr2,_) -> [prf1,cstr1;prf2,cstr2] in

    mk_proof prf


end