summaryrefslogtreecommitdiff
path: root/plugins/micromega/csdpcert.ml
blob: dfda59845f6b6d8a92612b40834aba8ad4546a36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

open Big_int
open Num
open Sos
open Sos_types
open Sos_lib


module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml

type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option


let debug = false
let flags = [Open_append;Open_binary;Open_creat]

let chan = open_out_gen flags 0o666 "trace"


module M =
struct
 open Mc

 let rec expr_to_term = function
  |  PEc z ->  Const  (C2Ml.q_to_num z)
  |  PEX v ->  Var ("x"^(string_of_int (C2Ml.index v)))
  |  PEmul(p1,p2) ->
      let p1 = expr_to_term p1 in
      let p2 = expr_to_term p2 in
      let res = Mul(p1,p2) in 	   res

  | PEadd(p1,p2) -> Add(expr_to_term p1, expr_to_term p2)
  | PEsub(p1,p2) -> Sub(expr_to_term p1, expr_to_term p2)
  | PEpow(p,n)   -> Pow(expr_to_term p , C2Ml.n n)
  |  PEopp p ->  Opp (expr_to_term p)


end
open M

open List
open Mutils




let rec canonical_sum_to_string = function s -> failwith "not implemented"

let print_canonical_sum m = Format.print_string (canonical_sum_to_string m)

let print_list_term o l =
  output_string o "print_list_term\n";
 List.iter (fun (e,k) -> Printf.fprintf o "q: %s %s ;"
  (string_of_poly (poly_of_term (expr_to_term e)))
  (match k with
    Mc.Equal -> "= "
   | Mc.Strict -> "> "
   | Mc.NonStrict -> ">= "
   | _ -> failwith "not_implemented")) (List.map (fun (e, o) -> Mc.denorm e , o) l) ;
 output_string o "\n"


let partition_expr l =
 let rec f i = function
  | [] -> ([],[],[])
  | (e,k)::l ->
     let (eq,ge,neq) = f (i+1) l in
      match k with
       | Mc.Equal -> ((e,i)::eq,ge,neq)
       | Mc.NonStrict -> (eq,(e,Axiom_le i)::ge,neq)
       | Mc.Strict    -> (* e > 0 == e >= 0 /\ e <> 0 *)
	  (eq, (e,Axiom_lt i)::ge,(e,Axiom_lt i)::neq)
       | Mc.NonEqual -> (eq,ge,(e,Axiom_eq i)::neq)
	  (* Not quite sure -- Coq interface has changed *)
 in f 0 l


let rec sets_of_list l =
 match l with
  | [] -> [[]]
  | e::l -> let s = sets_of_list l in
	     s@(List.map (fun s0 -> e::s0) s)

(* The exploration is probably not complete - for simple cases, it works... *)
let real_nonlinear_prover d l =
  let l = List.map (fun (e,op) -> (Mc.denorm e,op)) l in
 try
  let (eq,ge,neq) = partition_expr l in

  let rec elim_const  = function
    [] ->  []
   | (x,y)::l -> let p = poly_of_term (expr_to_term x) in
		  if poly_isconst p
		  then elim_const l
		  else (p,y)::(elim_const l) in

  let eq = elim_const eq in
  let peq = List.map  fst eq in

  let pge = List.map
   (fun (e,psatz) -> poly_of_term (expr_to_term e),psatz) ge in

  let monoids = List.map (fun m ->  (List.fold_right (fun (p,kd) y ->
   let p = poly_of_term (expr_to_term p) in
    match kd with
     | Axiom_lt i -> poly_mul p y
     | Axiom_eq i -> poly_mul (poly_pow p 2) y
     |   _        -> failwith "monoids") m (poly_const (Int 1)) , map  snd m))
   (sets_of_list neq) in

  let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d ->
   list_try_find (fun m -> let (ci,cc) =
    real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in
		      (ci,cc,snd m)) monoids) 0 in

  let proofs_ideal = map2 (fun q i -> Eqmul(term_of_poly q,Axiom_eq i))
   cert_ideal (List.map snd eq) in

  let proofs_cone = map term_of_sos cert_cone in

  let proof_ne =
   let (neq , lt) = List.partition
    (function  Axiom_eq _ -> true | _ -> false ) monoid in
   let sq = match
     (List.map (function Axiom_eq i -> i | _ -> failwith "error") neq)
    with
    | []  -> Rational_lt (Int 1)
    | l   -> Monoid l in
    List.fold_right (fun x y -> Product(x,y)) lt sq in

  let proof = list_fold_right_elements
   (fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
   S (Some proof)
 with
  | Sos_lib.TooDeep -> S None
  |    x        ->   F (Printexc.to_string x)

(* This is somewhat buggy, over Z, strict inequality vanish... *)
let pure_sos  l =
  let l = List.map (fun (e,o) -> Mc.denorm e, o) l in

 (* If there is no strict inequality,
    I should nonetheless be able to try something - over Z  > is equivalent to -1  >= *)
 try
  let l = List.combine l (interval 0 (length l -1)) in
  let (lt,i) =  try (List.find (fun (x,_) -> snd x =  Mc.Strict) l)
   with Not_found -> List.hd l in
  let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in
  let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *)
  let pos = Product (Rational_lt n,
		    List.fold_right (fun (c,p) rst -> Sum (Product (Rational_lt c, Square
		     (term_of_poly p)), rst))
		     polys (Rational_lt (Int 0))) in
  let proof = Sum(Axiom_lt i, pos) in
(*  let s,proof' = scale_certificate proof in
  let cert  = snd (cert_of_pos proof') in *)
    S (Some proof)
 with
(*   | Sos.CsdpNotFound -> F "Sos.CsdpNotFound" *)
   |  x        -> (* May be that could be refined *) S None



let run_prover prover pb =
    match prover with
    | "real_nonlinear_prover", Some d -> real_nonlinear_prover d pb
    | "pure_sos", None -> pure_sos pb
    | prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1)


let output_csdp_certificate o = function
  | S None -> output_string o "S None"
  | S (Some p) -> Printf.fprintf o "S (Some %a)" output_psatz p
  | F s        -> Printf.fprintf o "F %s" s


let main () =
  try
    let (prover,poly) = (input_value stdin : provername * micromega_polys) in
    let cert = run_prover prover poly in
(*      Printf.fprintf chan "%a -> %a" print_list_term poly output_csdp_certificate cert ;
      close_out chan ;   *)

      output_value stdout (cert:csdp_certificate);
      flush stdout ;
      Marshal.to_channel  chan (cert:csdp_certificate) [] ;
      flush chan ;
      exit 0
  with  x -> (Printf.fprintf chan "error %s" (Printexc.to_string x)  ; exit 1)

;;

let _ = main () in ()

(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)