1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
(*open Micromega.Polynomial*)
open Big_int
open Num
open Sos_lib
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
let (<+>) = add_num
let (<->) = minus_num
let (<*>) = mult_num
type var = Mc.positive
module Monomial :
sig
type t
val const : t
val var : var -> t
val find : var -> t -> int
val mult : var -> t -> t
val prod : t -> t -> t
val compare : t -> t -> int
val pp : out_channel -> t -> unit
val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
end
=
struct
(* A monomial is represented by a multiset of variables *)
module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
open Map
type t = int Map.t
(* The monomial that corresponds to a constant *)
let const = Map.empty
(* The monomial 'x' *)
let var x = Map.add x 1 Map.empty
(* Get the degre of a variable in a monomial *)
let find x m = try find x m with Not_found -> 0
(* Multiply a monomial by a variable *)
let mult x m = add x ( (find x m) + 1) m
(* Product of monomials *)
let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
(* Total ordering of monomials *)
let compare m1 m2 = Map.compare Pervasives.compare m1 m2
let pp o m = Map.iter (fun k v ->
if v = 1 then Printf.fprintf o "x%i." (C2Ml.index k)
else Printf.fprintf o "x%i^%i." (C2Ml.index k) v) m
let fold = fold
end
module Poly :
(* A polynomial is a map of monomials *)
(*
This is probably a naive implementation
(expected to be fast enough - Coq is probably the bottleneck)
*The new ring contribution is using a sparse Horner representation.
*)
sig
type t
val get : Monomial.t -> t -> num
val variable : var -> t
val add : Monomial.t -> num -> t -> t
val constant : num -> t
val mult : Monomial.t -> num -> t -> t
val product : t -> t -> t
val addition : t -> t -> t
val uminus : t -> t
val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
val pp : out_channel -> t -> unit
val compare : t -> t -> int
val is_null : t -> bool
end =
struct
(*normalisation bug : 0*x ... *)
module P = Map.Make(Monomial)
open P
type t = num P.t
let pp o p = P.iter (fun k v ->
if compare_num v (Int 0) <> 0
then
if Monomial.compare Monomial.const k = 0
then Printf.fprintf o "%s " (string_of_num v)
else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
(* Get the coefficient of monomial mn *)
let get : Monomial.t -> t -> num =
fun mn p -> try find mn p with Not_found -> (Int 0)
(* The polynomial 1.x *)
let variable : var -> t =
fun x -> add (Monomial.var x) (Int 1) empty
(*The constant polynomial *)
let constant : num -> t =
fun c -> add (Monomial.const) c empty
(* The addition of a monomial *)
let add : Monomial.t -> num -> t -> t =
fun mn v p ->
let vl = (get mn p) <+> v in
add mn vl p
(** Design choice: empty is not a polynomial
I do not remember why ....
**)
(* The product by a monomial *)
let mult : Monomial.t -> num -> t -> t =
fun mn v p ->
fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
let addition : t -> t -> t =
fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
let product : t -> t -> t =
fun p1 p2 ->
fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
let uminus : t -> t =
fun p -> map (fun v -> minus_num v) p
let fold = P.fold
let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
let compare = compare compare_num
end
open Mutils
type 'a number_spec = {
bigint_to_number : big_int -> 'a;
number_to_num : 'a -> num;
zero : 'a;
unit : 'a;
mult : 'a -> 'a -> 'a;
eqb : 'a -> 'a -> bool
}
let z_spec = {
bigint_to_number = Ml2C.bigint ;
number_to_num = (fun x -> Big_int (C2Ml.z_big_int x));
zero = Mc.Z0;
unit = Mc.Zpos Mc.XH;
mult = Mc.zmult;
eqb = Mc.zeq_bool
}
let q_spec = {
bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH});
number_to_num = C2Ml.q_to_num;
zero = {Mc.qnum = Mc.Z0;Mc.qden = Mc.XH};
unit = {Mc.qnum = (Mc.Zpos Mc.XH) ; Mc.qden = Mc.XH};
mult = Mc.qmult;
eqb = Mc.qeq_bool
}
let r_spec = z_spec
let dev_form n_spec p =
let rec dev_form p =
match p with
| Mc.PEc z -> Poly.constant (n_spec.number_to_num z)
| Mc.PEX v -> Poly.variable v
| Mc.PEmul(p1,p2) ->
let p1 = dev_form p1 in
let p2 = dev_form p2 in
Poly.product p1 p2
| Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2)
| Mc.PEopp p -> Poly.uminus (dev_form p)
| Mc.PEsub(p1,p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
| Mc.PEpow(p,n) ->
let p = dev_form p in
let n = C2Ml.n n in
let rec pow n =
if n = 0
then Poly.constant (n_spec.number_to_num n_spec.unit)
else Poly.product p (pow (n-1)) in
pow n in
dev_form p
let monomial_to_polynomial mn =
Monomial.fold
(fun v i acc ->
let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
if acc = Mc.PEc (Mc.Zpos Mc.XH)
then mn
else Mc.PEmul(mn,acc))
mn
(Mc.PEc (Mc.Zpos Mc.XH))
let list_to_polynomial vars l =
assert (List.for_all (fun x -> ceiling_num x =/ x) l);
let var x = monomial_to_polynomial (List.nth vars x) in
let rec xtopoly p i = function
| [] -> p
| c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
let mn =
if c = Mc.PEc (Mc.Zpos Mc.XH)
then var i
else Mc.PEmul (c,var i) in
let p' = if p = Mc.PEc Mc.Z0 then mn else
Mc.PEadd (mn, p) in
xtopoly p' (i+1) l in
xtopoly (Mc.PEc Mc.Z0) 0 l
let rec fixpoint f x =
let y' = f x in
if y' = x then y'
else fixpoint f y'
let rec_simpl_cone n_spec e =
let simpl_cone =
Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in
let rec rec_simpl_cone = function
| Mc.PsatzMulE(t1, t2) ->
simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
| Mc.PsatzAdd(t1,t2) ->
simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
| x -> simpl_cone x in
rec_simpl_cone e
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
type cone_prod =
Const of cone
| Ideal of cone *cone
| Mult of cone * cone
| Other of cone
and cone = Mc.zWitness
let factorise_linear_cone c =
let rec cone_list c l =
match c with
| Mc.PsatzAdd (x,r) -> cone_list r (x::l)
| _ -> c :: l in
let factorise c1 c2 =
match c1 , c2 with
| Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None
| Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None
| _ -> None in
let rec rebuild_cone l pending =
match l with
| [] -> (match pending with
| None -> Mc.PsatzZ
| Some p -> p
)
| e::l ->
(match pending with
| None -> rebuild_cone l (Some e)
| Some p -> (match factorise p e with
| None -> Mc.PsatzAdd(p, rebuild_cone l (Some e))
| Some f -> rebuild_cone l (Some f) )
) in
(rebuild_cone (List.sort Pervasives.compare (cone_list c [])) None)
(* The binding with Fourier might be a bit obsolete
-- how does it handle equalities ? *)
(* Certificates are elements of the cone such that P = 0 *)
(* To begin with, we search for certificates of the form:
a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
where pi >= 0 qi > 0
ai >= 0
bi >= 0
Sum bi + c >= 1
This is a linear problem: each monomial is considered as a variable.
Hence, we can use fourier.
The variable c is at index 0
*)
open Mfourier
(*module Fourier = Fourier(Vector.VList)(SysSet(Vector.VList))*)
(*module Fourier = Fourier(Vector.VSparse)(SysSetAlt(Vector.VSparse))*)
(*module Fourier = Mfourier.Fourier(Vector.VSparse)(*(SysSetAlt(Vector.VMap))*)*)
(*module Vect = Fourier.Vect*)
(*open Fourier.Cstr*)
(* fold_left followed by a rev ! *)
let constrain_monomial mn l =
let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in
if mn = Monomial.const
then
{ coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
op = Eq ;
cst = Big_int zero_big_int }
else
{ coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
op = Eq ;
cst = Big_int zero_big_int }
let positivity l =
let rec xpositivity i l =
match l with
| [] -> []
| (_,Mc.Equal)::l -> xpositivity (i+1) l
| (_,_)::l ->
{coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
op = Ge ;
cst = Int 0 } :: (xpositivity (i+1) l)
in
xpositivity 0 l
let string_of_op = function
| Mc.Strict -> "> 0"
| Mc.NonStrict -> ">= 0"
| Mc.Equal -> "= 0"
| Mc.NonEqual -> "<> 0"
(* If the certificate includes at least one strict inequality,
the obtained polynomial can also be 0 *)
let build_linear_system l =
(* Gather the monomials: HINT add up of the polynomials *)
let l' = List.map fst l in
let monomials =
List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l'
in (* For each monomial, compute a constraint *)
let s0 =
Poly.fold (fun mn _ res -> (constrain_monomial mn l')::res) monomials [] in
(* I need at least something strictly positive *)
let strict = {
coeffs = Vect.from_list ((Big_int unit_big_int)::
(List.map (fun (x,y) ->
match y with Mc.Strict ->
Big_int unit_big_int
| _ -> Big_int zero_big_int) l));
op = Ge ; cst = Big_int unit_big_int } in
(* Add the positivity constraint *)
{coeffs = Vect.from_list ([Big_int unit_big_int]) ;
op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
let big_int_to_z = Ml2C.bigint
(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
let make_certificate n_spec (cert,li) =
let bint_to_cst = n_spec.bigint_to_number in
match cert with
| [] -> failwith "empty_certificate"
| e::cert' ->
let cst = match compare_big_int e zero_big_int with
| 0 -> Mc.PsatzZ
| 1 -> Mc.PsatzC (bint_to_cst e)
| _ -> failwith "positivity error"
in
let rec scalar_product cert l =
match cert with
| [] -> Mc.PsatzZ
| c::cert -> match l with
| [] -> failwith "make_certificate(1)"
| i::l ->
let r = scalar_product cert l in
match compare_big_int c zero_big_int with
| -1 -> Mc.PsatzAdd (
Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
r)
| 0 -> r
| _ -> Mc.PsatzAdd (
Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
r) in
((factorise_linear_cone
(simplify_cone n_spec (Mc.PsatzAdd (cst, scalar_product cert' li)))))
exception Found of Monomial.t
exception Strict
let primal l =
let vr = ref 0 in
let module Mmn = Map.Make(Monomial) in
let vect_of_poly map p =
Poly.fold (fun mn vl (map,vect) ->
if mn = Monomial.const
then (map,vect)
else
let (mn,m) = try (Mmn.find mn map,map) with Not_found -> let res = (!vr, Mmn.add mn !vr map) in incr vr ; res in
(m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in
let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in
let cmp x y = Pervasives.compare (fst x) (fst y) in
snd (List.fold_right (fun (p,op) (map,l) ->
let (mp,vect) = vect_of_poly map p in
let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in
(mp,cstr::l)) l (Mmn.empty,[]))
let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
(* List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *)
let sys = build_linear_system l in
try
match Fourier.find_point sys with
| Inr _ -> None
| Inl cert -> Some (rats_to_ints (Vect.to_list cert))
(* should not use rats_to_ints *)
with x ->
if debug
then (Printf.printf "raw certificate %s" (Printexc.to_string x);
flush stdout) ;
None
let raw_certificate l =
try
let p = primal l in
match Fourier.find_point p with
| Inr prf ->
if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in
if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
Some (rats_to_ints (Vect.to_list cert))
| Inl _ -> None
with Strict ->
(* Fourier elimination should handle > *)
dual_raw_certificate l
let simple_linear_prover (*to_constant*) l =
let (lc,li) = List.split l in
match raw_certificate lc with
| None -> None (* No certificate *)
| Some cert -> (* make_certificate to_constant*)Some (cert,li)
let linear_prover n_spec l =
let li = List.combine l (interval 0 (List.length l -1)) in
let (l1,l') = List.partition
(fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
let l' = List.map
(fun ((x,y),i) -> match y with
Mc.NonEqual -> failwith "cannot happen"
| y -> ((dev_form n_spec x, y),i)) l' in
simple_linear_prover (*n_spec*) l'
let linear_prover n_spec l =
try linear_prover n_spec l with
x -> (print_string (Printexc.to_string x); None)
let linear_prover_with_cert spec l =
match linear_prover spec l with
| None -> None
| Some cert -> Some (make_certificate spec cert)
(* zprover.... *)
(* I need to gather the set of variables --->
Then go for fold
Once I have an interval, I need a certificate : 2 other fourier elims.
(I could probably get the certificate directly
as it is done in the fourier contrib.)
*)
let make_linear_system l =
let l' = List.map fst l in
let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
(Poly.constant (Int 0)) l' in
let monomials = Poly.fold
(fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in
(List.map (fun (c,op) ->
{coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
op = op ;
cst = minus_num ( (Poly.get Monomial.const c))}) l
,monomials)
let pplus x y = Mc.PEadd(x,y)
let pmult x y = Mc.PEmul(x,y)
let pconst x = Mc.PEc x
let popp x = Mc.PEopp x
let debug = false
(* keep track of enumerated vectors *)
let rec mem p x l =
match l with [] -> false | e::l -> if p x e then true else mem p x l
let rec remove_assoc p x l =
match l with [] -> [] | e::l -> if p x (fst e) then
remove_assoc p x l else e::(remove_assoc p x l)
let eq x y = Vect.compare x y = 0
let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
let candidates sys =
let ll = List.fold_right (
fun (e,k) r ->
match k with
| Mc.NonStrict -> (dev_form z_spec e , Ge)::r
| Mc.Equal -> (dev_form z_spec e , Eq)::r
(* we already know the bound -- don't compute it again *)
| _ -> failwith "Cannot happen candidates") sys [] in
let (sys,var_mn) = make_linear_system ll in
let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in
(List.fold_left (fun l cstr ->
let gcd = Big_int (Vect.gcd cstr.coeffs) in
if gcd =/ (Int 1) && cstr.op = Eq
then l
else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars
let rec xzlinear_prover planes sys =
match linear_prover z_spec sys with
| Some prf -> Some (Mc.RatProof (make_certificate z_spec prf,Mc.DoneProof))
| None -> (* find the candidate with the smallest range *)
(* Grrr - linear_prover is also calling 'make_linear_system' *)
let ll = List.fold_right (fun (e,k) r -> match k with
Mc.NonEqual -> r
| k -> (dev_form z_spec e ,
match k with
Mc.NonStrict -> Ge
| Mc.Equal -> Eq
| Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in
let (ll,var) = make_linear_system ll in
let candidates = List.fold_left (fun acc vect ->
match Fourier.optimise vect ll with
| None -> acc
| Some i ->
(* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *)
flush stdout ;
(vect,i) ::acc) [] planes in
let smallest_interval =
match List.fold_left (fun (x1,i1) (x2,i2) ->
if Itv.smaller_itv i1 i2
then (x1,i1) else (x2,i2)) (Vect.null,(None,None)) candidates
with
| (x,(Some i, Some j)) -> Some(i,x,j)
| x -> None (* This might be a cutting plane *)
in
match smallest_interval with
| Some (lb,e,ub) ->
let (lbn,lbd) =
(Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
Ml2C.bigint (denominator lb)) in
let (ubn,ubd) =
(Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
Ml2C.bigint (denominator ub)) in
let expr = list_to_polynomial var (Vect.to_list e) in
(match
(*x <= ub -> x > ub *)
linear_prover z_spec
((pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
Mc.NonStrict) :: sys),
(* lb <= x -> lb > x *)
linear_prover z_spec
((pplus (popp (pmult (pconst lbd) expr)) (pconst lbn),
Mc.NonStrict)::sys)
with
| Some cub , Some clb ->
(match zlinear_enum (remove e planes) expr
(ceiling_num lb) (floor_num ub) sys
with
| None -> None
| Some prf ->
let bound_proof (c,l) = make_certificate z_spec (List.tl c , List.tl (List.map (fun x -> x -1) l)) in
Some (Mc.EnumProof((*Ml2C.q lb,expr,Ml2C.q ub,*) bound_proof clb, bound_proof cub,prf)))
| _ -> None
)
| _ -> None
and zlinear_enum planes expr clb cub l =
if clb >/ cub
then Some []
else
let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in
let sys' = (pexpr, Mc.Equal)::l in
(*let enum = *)
match xzlinear_prover planes sys' with
| None -> if debug then print_string "zlp?"; None
| Some prf -> if debug then print_string "zlp!";
match zlinear_enum planes expr (clb +/ (Int 1)) cub l with
| None -> None
| Some prfl -> Some (prf :: prfl)
let zlinear_prover sys =
let candidates = candidates sys in
(* Printf.printf "candidates %d" (List.length candidates) ; *)
(*let t0 = Sys.time () in*)
let res = xzlinear_prover candidates sys in
(*Printf.printf "Time prover : %f" (Sys.time () -. t0) ;*) res
open Sos_types
open Mutils
let rec scale_term t =
match t with
| Zero -> unit_big_int , Zero
| Const n -> (denominator n) , Const (Big_int (numerator n))
| Var n -> unit_big_int , Var n
| Inv _ -> failwith "scale_term : not implemented"
| Opp t -> let s, t = scale_term t in s, Opp t
| Add(t1,t2) -> let s1,y1 = scale_term t1 and s2,y2 = scale_term t2 in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
let e = mult_big_int g (mult_big_int s1' s2') in
if (compare_big_int e unit_big_int) = 0
then (unit_big_int, Add (y1,y2))
else e, Add (Mul(Const (Big_int s2'), y1),
Mul (Const (Big_int s1'), y2))
| Sub _ -> failwith "scale term: not implemented"
| Mul(y,z) -> let s1,y1 = scale_term y and s2,y2 = scale_term z in
mult_big_int s1 s2 , Mul (y1, y2)
| Pow(t,n) -> let s,t = scale_term t in
power_big_int_positive_int s n , Pow(t,n)
| _ -> failwith "scale_term : not implemented"
let scale_term t =
let (s,t') = scale_term t in
s,t'
let get_index_of_ith_match f i l =
let rec get j res l =
match l with
| [] -> failwith "bad index"
| e::l -> if f e
then
(if j = i then res else get (j+1) (res+1) l )
else get j (res+1) l in
get 0 0 l
let rec scale_certificate pos = match pos with
| Axiom_eq i -> unit_big_int , Axiom_eq i
| Axiom_le i -> unit_big_int , Axiom_le i
| Axiom_lt i -> unit_big_int , Axiom_lt i
| Monoid l -> unit_big_int , Monoid l
| Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
| Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
| Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
| Square t -> let s,t' = scale_term t in
mult_big_int s s , Square t'
| Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
mult_big_int s1 s2 , Eqmul (y1,y2)
| Sum (y, z) -> let s1,y1 = scale_certificate y
and s2,y2 = scale_certificate z in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
mult_big_int g (mult_big_int s1' s2'),
Sum (Product(Rational_le (Big_int s2'), y1),
Product (Rational_le (Big_int s1'), y2))
| Product (y, z) ->
let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
mult_big_int s1 s2 , Product (y1,y2)
open Micromega
let rec term_to_q_expr = function
| Const n -> PEc (Ml2C.q n)
| Zero -> PEc ( Ml2C.q (Int 0))
| Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2)
| Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2)
| Opp p -> PEopp (term_to_q_expr p)
| Pow(t,n) -> PEpow (term_to_q_expr t,Ml2C.n n)
| Sub(t1,t2) -> PEsub (term_to_q_expr t1, term_to_q_expr t2)
| _ -> failwith "term_to_q_expr: not implemented"
let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e)
let rec product l =
match l with
| [] -> Mc.PsatzZ
| [i] -> Mc.PsatzIn (Ml2C.nat i)
| i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l)
let q_cert_of_pos pos =
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
| Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.q n)
| Square t -> Mc.PsatzSquare (term_to_q_pol t)
| Eqmul (t, y) -> Mc.PsatzMulC(term_to_q_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone q_spec (_cert_of_pos pos)
let rec term_to_z_expr = function
| Const n -> PEc (Ml2C.bigint (big_int_of_num n))
| Zero -> PEc ( Z0)
| Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2)
| Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2)
| Opp p -> PEopp (term_to_z_expr p)
| Pow(t,n) -> PEpow (term_to_z_expr t,Ml2C.n n)
| Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)
| _ -> failwith "term_to_z_expr: not implemented"
let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.zplus Mc.zmult Mc.zminus Mc.zopp Mc.zeq_bool (term_to_z_expr e)
let z_cert_of_pos pos =
let s,pos = (scale_certificate pos) in
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
| Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.bigint (big_int_of_num n))
| Square t -> Mc.PsatzSquare (term_to_z_pol t)
| Eqmul (t, y) -> Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone z_spec (_cert_of_pos pos)
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|