1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import List.
Require Import Refl.
Require Import Bool.
Set Implicit Arguments.
Inductive BFormula (A:Type) : Type :=
| TT : BFormula A
| FF : BFormula A
| X : Prop -> BFormula A
| A : A -> BFormula A
| Cj : BFormula A -> BFormula A -> BFormula A
| D : BFormula A-> BFormula A -> BFormula A
| N : BFormula A -> BFormula A
| I : BFormula A-> BFormula A-> BFormula A.
Fixpoint eval_f (A:Type) (ev:A -> Prop ) (f:BFormula A) {struct f}: Prop :=
match f with
| TT => True
| FF => False
| A a => ev a
| X p => p
| Cj e1 e2 => (eval_f ev e1) /\ (eval_f ev e2)
| D e1 e2 => (eval_f ev e1) \/ (eval_f ev e2)
| N e => ~ (eval_f ev e)
| I f1 f2 => (eval_f ev f1) -> (eval_f ev f2)
end.
Lemma map_simpl : forall A B f l, @map A B f l = match l with
| nil => nil
| a :: l=> (f a) :: (@map A B f l)
end.
Proof.
destruct l ; reflexivity.
Qed.
Section S.
Variable Env : Type.
Variable Term : Type.
Variable eval : Env -> Term -> Prop.
Variable Term' : Type.
Variable eval' : Env -> Term' -> Prop.
Variable no_middle_eval' : forall env d, (eval' env d) \/ ~ (eval' env d).
Definition clause := list Term'.
Definition cnf := list clause.
Variable normalise : Term -> cnf.
Variable negate : Term -> cnf.
Definition tt : cnf := @nil clause.
Definition ff : cnf := cons (@nil Term') nil.
Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
List.map (fun x => (t++x)) f.
Fixpoint or_cnf (f : cnf) (f' : cnf) {struct f}: cnf :=
match f with
| nil => tt
| e :: rst => (or_cnf rst f') ++ (or_clause_cnf e f')
end.
Definition and_cnf (f1 : cnf) (f2 : cnf) : cnf :=
f1 ++ f2.
Fixpoint xcnf (pol : bool) (f : BFormula Term) {struct f}: cnf :=
match f with
| TT => if pol then tt else ff
| FF => if pol then ff else tt
| X p => if pol then ff else ff (* This is not complete - cannot negate any proposition *)
| A x => if pol then normalise x else negate x
| N e => xcnf (negb pol) e
| Cj e1 e2 =>
(if pol then and_cnf else or_cnf) (xcnf pol e1) (xcnf pol e2)
| D e1 e2 => (if pol then or_cnf else and_cnf) (xcnf pol e1) (xcnf pol e2)
| I e1 e2 => (if pol then or_cnf else and_cnf) (xcnf (negb pol) e1) (xcnf pol e2)
end.
Definition eval_cnf (env : Term' -> Prop) (f:cnf) := make_conj (fun cl => ~ make_conj env cl) f.
Lemma eval_cnf_app : forall env x y, eval_cnf (eval' env) (x++y) -> eval_cnf (eval' env) x /\ eval_cnf (eval' env) y.
Proof.
unfold eval_cnf.
intros.
rewrite make_conj_app in H ; auto.
Qed.
Lemma or_clause_correct : forall env t f, eval_cnf (eval' env) (or_clause_cnf t f) -> (~ make_conj (eval' env) t) \/ (eval_cnf (eval' env) f).
Proof.
unfold eval_cnf.
unfold or_clause_cnf.
induction f.
simpl.
intros ; right;auto.
(**)
rewrite map_simpl.
intros.
rewrite make_conj_cons in H.
destruct H as [HH1 HH2].
generalize (IHf HH2) ; clear IHf ; intro.
destruct H.
left ; auto.
rewrite make_conj_cons.
destruct (not_make_conj_app _ _ _ (no_middle_eval' env) HH1).
tauto.
tauto.
Qed.
Lemma eval_cnf_cons : forall env a f, (~ make_conj (eval' env) a) -> eval_cnf (eval' env) f -> eval_cnf (eval' env) (a::f).
Proof.
intros.
unfold eval_cnf in *.
rewrite make_conj_cons ; eauto.
Qed.
Lemma or_cnf_correct : forall env f f', eval_cnf (eval' env) (or_cnf f f') -> (eval_cnf (eval' env) f) \/ (eval_cnf (eval' env) f').
Proof.
induction f.
unfold eval_cnf.
simpl.
tauto.
(**)
intros.
simpl in H.
destruct (eval_cnf_app _ _ _ H).
clear H.
destruct (IHf _ H0).
destruct (or_clause_correct _ _ _ H1).
left.
apply eval_cnf_cons ; auto.
right ; auto.
right ; auto.
Qed.
Variable normalise_correct : forall env t, eval_cnf (eval' env) (normalise t) -> eval env t.
Variable negate_correct : forall env t, eval_cnf (eval' env) (negate t) -> ~ eval env t.
Lemma xcnf_correct : forall f pol env, eval_cnf (eval' env) (xcnf pol f) -> eval_f (eval env) (if pol then f else N f).
Proof.
induction f.
(* TT *)
unfold eval_cnf.
simpl.
destruct pol ; simpl ; auto.
(* FF *)
unfold eval_cnf.
destruct pol; simpl ; auto.
(* P *)
simpl.
destruct pol ; intros ;simpl.
unfold eval_cnf in H.
(* Here I have to drop the proposition *)
simpl in H.
tauto.
(* Here, I could store P in the clause *)
unfold eval_cnf in H;simpl in H.
tauto.
(* A *)
simpl.
destruct pol ; simpl.
intros.
apply normalise_correct ; auto.
(* A 2 *)
intros.
apply negate_correct ; auto.
auto.
(* Cj *)
destruct pol ; simpl.
(* pol = true *)
intros.
unfold and_cnf in H.
destruct (eval_cnf_app _ _ _ H).
clear H.
split.
apply (IHf1 _ _ H0).
apply (IHf2 _ _ H1).
(* pol = false *)
intros.
destruct (or_cnf_correct _ _ _ H).
generalize (IHf1 false env H0).
simpl.
tauto.
generalize (IHf2 false env H0).
simpl.
tauto.
(* D *)
simpl.
destruct pol.
(* pol = true *)
intros.
destruct (or_cnf_correct _ _ _ H).
generalize (IHf1 _ env H0).
simpl.
tauto.
generalize (IHf2 _ env H0).
simpl.
tauto.
(* pol = true *)
unfold and_cnf.
intros.
destruct (eval_cnf_app _ _ _ H).
clear H.
simpl.
generalize (IHf1 _ _ H0).
generalize (IHf2 _ _ H1).
simpl.
tauto.
(**)
simpl.
destruct pol ; simpl.
intros.
apply (IHf false) ; auto.
intros.
generalize (IHf _ _ H).
tauto.
(* I *)
simpl; intros.
destruct pol.
simpl.
intro.
destruct (or_cnf_correct _ _ _ H).
generalize (IHf1 _ _ H1).
simpl in *.
tauto.
generalize (IHf2 _ _ H1).
auto.
(* pol = false *)
unfold and_cnf in H.
simpl in H.
destruct (eval_cnf_app _ _ _ H).
generalize (IHf1 _ _ H0).
generalize (IHf2 _ _ H1).
simpl.
tauto.
Qed.
Variable Witness : Type.
Variable checker : list Term' -> Witness -> bool.
Variable checker_sound : forall t w, checker t w = true -> forall env, make_impl (eval' env) t False.
Fixpoint cnf_checker (f : cnf) (l : list Witness) {struct f}: bool :=
match f with
| nil => true
| e::f => match l with
| nil => false
| c::l => match checker e c with
| true => cnf_checker f l
| _ => false
end
end
end.
Lemma cnf_checker_sound : forall t w, cnf_checker t w = true -> forall env, eval_cnf (eval' env) t.
Proof.
unfold eval_cnf.
induction t.
(* bc *)
simpl.
auto.
(* ic *)
simpl.
destruct w.
intros ; discriminate.
case_eq (checker a w) ; intros ; try discriminate.
generalize (@checker_sound _ _ H env).
generalize (IHt _ H0 env) ; intros.
destruct t.
red ; intro.
rewrite <- make_conj_impl in H2.
tauto.
rewrite <- make_conj_impl in H2.
tauto.
Qed.
Definition tauto_checker (f:BFormula Term) (w:list Witness) : bool :=
cnf_checker (xcnf true f) w.
Lemma tauto_checker_sound : forall t w, tauto_checker t w = true -> forall env, eval_f (eval env) t.
Proof.
unfold tauto_checker.
intros.
change (eval_f (eval env) t) with (eval_f (eval env) (if true then t else TT Term)).
apply (xcnf_correct t true).
eapply cnf_checker_sound ; eauto.
Qed.
End S.
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|