1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
Require Import NArith.
Require Import Relation_Definitions.
Require Import Setoid.
(*****)
Require Import Env.
Require Import EnvRing.
(*****)
Require Import List.
Require Import Bool.
Require Import OrderedRing.
Require Import Refl.
Set Implicit Arguments.
Import OrderedRingSyntax.
Section Micromega.
(* Assume we have a strict(ly?) ordered ring *)
Variable R : Type.
Variables rO rI : R.
Variables rplus rtimes rminus: R -> R -> R.
Variable ropp : R -> R.
Variables req rle rlt : R -> R -> Prop.
Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
Notation "0" := rO.
Notation "1" := rI.
Notation "x + y" := (rplus x y).
Notation "x * y " := (rtimes x y).
Notation "x - y " := (rminus x y).
Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
Notation "x ~= y" := (~ req x y).
Notation "x <= y" := (rle x y).
Notation "x < y" := (rlt x y).
(* Assume we have a type of coefficients C and a morphism from C to R *)
Variable C : Type.
Variables cO cI : C.
Variables cplus ctimes cminus: C -> C -> C.
Variable copp : C -> C.
Variables ceqb cleb : C -> C -> bool.
Variable phi : C -> R.
(* Power coefficients *)
Variable E : Set. (* the type of exponents *)
Variable pow_phi : N -> E.
Variable rpow : R -> E -> R.
Notation "[ x ]" := (phi x).
Notation "x [=] y" := (ceqb x y).
Notation "x [<=] y" := (cleb x y).
(* Let's collect all hypotheses in addition to the ordered ring axioms into
one structure *)
Record SORaddon := mk_SOR_addon {
SORrm : ring_morph 0 1 rplus rtimes rminus ropp req cO cI cplus ctimes cminus copp ceqb phi;
SORpower : power_theory rI rtimes req pow_phi rpow;
SORcneqb_morph : forall x y : C, x [=] y = false -> [x] ~= [y];
SORcleb_morph : forall x y : C, x [<=] y = true -> [x] <= [y]
}.
Variable addon : SORaddon.
Add Relation R req
reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _ )
symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _ )
transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _ )
as micomega_sor_setoid.
Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
Proof.
exact sor.(SORplus_wd).
Qed.
Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
Proof.
exact sor.(SORtimes_wd).
Qed.
Add Morphism ropp with signature req ==> req as ropp_morph.
Proof.
exact sor.(SORopp_wd).
Qed.
Add Morphism rle with signature req ==> req ==> iff as rle_morph.
Proof.
exact sor.(SORle_wd).
Qed.
Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
Proof.
exact sor.(SORlt_wd).
Qed.
Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
Proof.
exact (rminus_morph sor). (* We already proved that minus is a morphism in OrderedRing.v *)
Qed.
Definition cneqb (x y : C) := negb (ceqb x y).
Definition cltb (x y : C) := (cleb x y) && (cneqb x y).
Notation "x [~=] y" := (cneqb x y).
Notation "x [<] y" := (cltb x y).
Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
Ltac le_elim H := rewrite (Rle_lt_eq sor) in H; destruct H as [H | H].
Lemma cleb_sound : forall x y : C, x [<=] y = true -> [x] <= [y].
Proof.
exact addon.(SORcleb_morph).
Qed.
Lemma cneqb_sound : forall x y : C, x [~=] y = true -> [x] ~= [y].
Proof.
intros x y H1. apply addon.(SORcneqb_morph). unfold cneqb, negb in H1.
destruct (ceqb x y); now try discriminate.
Qed.
Lemma cltb_sound : forall x y : C, x [<] y = true -> [x] < [y].
Proof.
intros x y H. unfold cltb in H. apply andb_prop in H. destruct H as [H1 H2].
apply cleb_sound in H1. apply cneqb_sound in H2. apply <- (Rlt_le_neq sor). now split.
Qed.
(* Begin Micromega *)
Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom or EnvRing *)
Definition PolEnv := Env R. (* For interpreting PolC *)
Definition eval_pol (env : PolEnv) (p:PolC) : R :=
Pphi 0 rplus rtimes phi env p.
Inductive Op1 : Set := (* relations with 0 *)
| Equal (* == 0 *)
| NonEqual (* ~= 0 *)
| Strict (* > 0 *)
| NonStrict (* >= 0 *).
Definition NFormula := (PolC * Op1)%type. (* normalized formula *)
Definition eval_op1 (o : Op1) : R -> Prop :=
match o with
| Equal => fun x => x == 0
| NonEqual => fun x : R => x ~= 0
| Strict => fun x : R => 0 < x
| NonStrict => fun x : R => 0 <= x
end.
Definition eval_nformula (env : PolEnv) (f : NFormula) : Prop :=
let (p, op) := f in eval_op1 op (eval_pol env p).
(** Rule of "signs" for addition and multiplication.
An arbitrary result is coded buy None. *)
Definition OpMult (o o' : Op1) : option Op1 :=
match o with
| Equal => Some Equal
| NonStrict =>
match o' with
| Equal => Some Equal
| NonEqual => None
| Strict => Some NonStrict
| NonStrict => Some NonStrict
end
| Strict => match o' with
| NonEqual => None
| _ => Some o'
end
| NonEqual => match o' with
| Equal => Some Equal
| NonEqual => Some NonEqual
| _ => None
end
end.
Definition OpAdd (o o': Op1) : option Op1 :=
match o with
| Equal => Some o'
| NonStrict =>
match o' with
| Strict => Some Strict
| NonEqual => None
| _ => Some NonStrict
end
| Strict => match o' with
| NonEqual => None
| _ => Some Strict
end
| NonEqual => match o' with
| Equal => Some NonEqual
| _ => None
end
end.
Lemma OpMult_sound :
forall (o o' om: Op1) (x y : R),
eval_op1 o x -> eval_op1 o' y -> OpMult o o' = Some om -> eval_op1 om (x * y).
Proof.
unfold eval_op1; destruct o; simpl; intros o' om x y H1 H2 H3.
(* x == 0 *)
inversion H3. rewrite H1. now rewrite (Rtimes_0_l sor).
(* x ~= 0 *)
destruct o' ; inversion H3.
(* y == 0 *)
rewrite H2. now rewrite (Rtimes_0_r sor).
(* y ~= 0 *)
apply (Rtimes_neq_0 sor) ; auto.
(* 0 < x *)
destruct o' ; inversion H3.
(* y == 0 *)
rewrite H2; now rewrite (Rtimes_0_r sor).
(* 0 < y *)
now apply (Rtimes_pos_pos sor).
(* 0 <= y *)
apply (Rtimes_nonneg_nonneg sor); [le_less | assumption].
(* 0 <= x *)
destruct o' ; inversion H3.
(* y == 0 *)
rewrite H2; now rewrite (Rtimes_0_r sor).
(* 0 < y *)
apply (Rtimes_nonneg_nonneg sor); [assumption | le_less ].
(* 0 <= y *)
now apply (Rtimes_nonneg_nonneg sor).
Qed.
Lemma OpAdd_sound :
forall (o o' oa : Op1) (e e' : R),
eval_op1 o e -> eval_op1 o' e' -> OpAdd o o' = Some oa -> eval_op1 oa (e + e').
Proof.
unfold eval_op1; destruct o; simpl; intros o' oa e e' H1 H2 Hoa.
(* e == 0 *)
inversion Hoa. rewrite <- H0.
destruct o' ; rewrite H1 ; now rewrite (Rplus_0_l sor).
(* e ~= 0 *)
destruct o'.
(* e' == 0 *)
inversion Hoa.
rewrite H2. now rewrite (Rplus_0_r sor).
(* e' ~= 0 *)
discriminate.
(* 0 < e' *)
discriminate.
(* 0 <= e' *)
discriminate.
(* 0 < e *)
destruct o'.
(* e' == 0 *)
inversion Hoa.
rewrite H2. now rewrite (Rplus_0_r sor).
(* e' ~= 0 *)
discriminate.
(* 0 < e' *)
inversion Hoa.
now apply (Rplus_pos_pos sor).
(* 0 <= e' *)
inversion Hoa.
now apply (Rplus_pos_nonneg sor).
(* 0 <= e *)
destruct o'.
(* e' == 0 *)
inversion Hoa.
now rewrite H2, (Rplus_0_r sor).
(* e' ~= 0 *)
discriminate.
(* 0 < e' *)
inversion Hoa.
now apply (Rplus_nonneg_pos sor).
(* 0 <= e' *)
inversion Hoa.
now apply (Rplus_nonneg_nonneg sor).
Qed.
Inductive Psatz : Type :=
| PsatzIn : nat -> Psatz
| PsatzSquare : PolC -> Psatz
| PsatzMulC : PolC -> Psatz -> Psatz
| PsatzMulE : Psatz -> Psatz -> Psatz
| PsatzAdd : Psatz -> Psatz -> Psatz
| PsatzC : C -> Psatz
| PsatzZ : Psatz.
(** Given a list [l] of NFormula and an extended polynomial expression
[e], if [eval_Psatz l e] succeeds (= Some f) then [f] is a
logic consequence of the conjunction of the formulae in l.
Moreover, the polynomial expression is obtained by replacing the (PsatzIn n)
by the nth polynomial expression in [l] and the sign is computed by the "rule of sign" *)
(* Might be defined elsewhere *)
Definition map_option (A B:Type) (f : A -> option B) (o : option A) : option B :=
match o with
| None => None
| Some x => f x
end.
Implicit Arguments map_option [A B].
Definition map_option2 (A B C : Type) (f : A -> B -> option C)
(o: option A) (o': option B) : option C :=
match o , o' with
| None , _ => None
| _ , None => None
| Some x , Some x' => f x x'
end.
Implicit Arguments map_option2 [A B C].
Definition Rops_wd := mk_reqe rplus rtimes ropp req
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd).
Definition pexpr_times_nformula (e: PolC) (f : NFormula) : option NFormula :=
let (ef,o) := f in
match o with
| Equal => Some (Pmul cO cI cplus ctimes ceqb e ef , Equal)
| _ => None
end.
Definition nformula_times_nformula (f1 f2 : NFormula) : option NFormula :=
let (e1,o1) := f1 in
let (e2,o2) := f2 in
map_option (fun x => (Some (Pmul cO cI cplus ctimes ceqb e1 e2,x))) (OpMult o1 o2).
Definition nformula_plus_nformula (f1 f2 : NFormula) : option NFormula :=
let (e1,o1) := f1 in
let (e2,o2) := f2 in
map_option (fun x => (Some (Padd cO cplus ceqb e1 e2,x))) (OpAdd o1 o2).
Fixpoint eval_Psatz (l : list NFormula) (e : Psatz) {struct e} : option NFormula :=
match e with
| PsatzIn n => Some (nth n l (Pc cO, Equal))
| PsatzSquare e => Some (Psquare cO cI cplus ctimes ceqb e , NonStrict)
| PsatzMulC re e => map_option (pexpr_times_nformula re) (eval_Psatz l e)
| PsatzMulE f1 f2 => map_option2 nformula_times_nformula (eval_Psatz l f1) (eval_Psatz l f2)
| PsatzAdd f1 f2 => map_option2 nformula_plus_nformula (eval_Psatz l f1) (eval_Psatz l f2)
| PsatzC c => if cltb cO c then Some (Pc c, Strict) else None
(* This could be 0, or <> 0 -- but these cases are useless *)
| PsatzZ => Some (Pc cO, Equal) (* Just to make life easier *)
end.
Lemma pexpr_times_nformula_correct : forall (env: PolEnv) (e: PolC) (f f' : NFormula),
eval_nformula env f -> pexpr_times_nformula e f = Some f' ->
eval_nformula env f'.
Proof.
unfold pexpr_times_nformula.
destruct f.
intros. destruct o ; inversion H0 ; try discriminate.
simpl in *. unfold eval_pol in *.
rewrite (Pmul_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
rewrite H. apply (Rtimes_0_r sor).
Qed.
Lemma nformula_times_nformula_correct : forall (env:PolEnv)
(f1 f2 f : NFormula),
eval_nformula env f1 -> eval_nformula env f2 ->
nformula_times_nformula f1 f2 = Some f ->
eval_nformula env f.
Proof.
unfold nformula_times_nformula.
destruct f1 ; destruct f2.
case_eq (OpMult o o0) ; simpl ; try discriminate.
intros. inversion H2 ; simpl.
unfold eval_pol.
destruct o1; simpl;
rewrite (Pmul_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
apply OpMult_sound with (3:= H);assumption.
Qed.
Lemma nformula_plus_nformula_correct : forall (env:PolEnv)
(f1 f2 f : NFormula),
eval_nformula env f1 -> eval_nformula env f2 ->
nformula_plus_nformula f1 f2 = Some f ->
eval_nformula env f.
Proof.
unfold nformula_plus_nformula.
destruct f1 ; destruct f2.
case_eq (OpAdd o o0) ; simpl ; try discriminate.
intros. inversion H2 ; simpl.
unfold eval_pol.
destruct o1; simpl;
rewrite (Padd_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
apply OpAdd_sound with (3:= H);assumption.
Qed.
Lemma eval_Psatz_Sound :
forall (l : list NFormula) (env : PolEnv),
(forall (f : NFormula), In f l -> eval_nformula env f) ->
forall (e : Psatz) (f : NFormula), eval_Psatz l e = Some f ->
eval_nformula env f.
Proof.
induction e.
(* PsatzIn *)
simpl ; intros.
destruct (nth_in_or_default n l (Pc cO, Equal)).
(* index is in bounds *)
apply H ; congruence.
(* index is out-of-bounds *)
inversion H0.
rewrite e. simpl.
now apply addon.(SORrm).(morph0).
(* PsatzSquare *)
simpl. intros. inversion H0.
simpl. unfold eval_pol.
rewrite (Psquare_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
now apply (Rtimes_square_nonneg sor).
(* PsatzMulC *)
simpl.
intro.
case_eq (eval_Psatz l e) ; simpl ; intros.
apply IHe in H0.
apply pexpr_times_nformula_correct with (1:=H0) (2:= H1).
discriminate.
(* PsatzMulC *)
simpl ; intro.
case_eq (eval_Psatz l e1) ; simpl ; try discriminate.
case_eq (eval_Psatz l e2) ; simpl ; try discriminate.
intros.
apply IHe1 in H1. apply IHe2 in H0.
apply (nformula_times_nformula_correct env n0 n) ; assumption.
(* PsatzAdd *)
simpl ; intro.
case_eq (eval_Psatz l e1) ; simpl ; try discriminate.
case_eq (eval_Psatz l e2) ; simpl ; try discriminate.
intros.
apply IHe1 in H1. apply IHe2 in H0.
apply (nformula_plus_nformula_correct env n0 n) ; assumption.
(* PsatzC *)
simpl.
intro. case_eq (cO [<] c).
intros. inversion H1. simpl.
rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
discriminate.
(* PsatzZ *)
simpl. intros. inversion H0.
simpl. apply addon.(SORrm).(morph0).
Qed.
Fixpoint ge_bool (n m : nat) : bool :=
match n with
| O => match m with
| O => true
| S _ => false
end
| S n => match m with
| O => true
| S m => ge_bool n m
end
end.
Lemma ge_bool_cases : forall n m, (if ge_bool n m then n >= m else n < m)%nat.
Proof.
induction n ; simpl.
destruct m ; simpl.
constructor.
omega.
destruct m.
constructor.
omega.
generalize (IHn m).
destruct (ge_bool n m) ; omega.
Qed.
Fixpoint xhyps_of_psatz (base:nat) (acc : list nat) (prf : Psatz) : list nat :=
match prf with
| PsatzC _ | PsatzZ | PsatzSquare _ => acc
| PsatzMulC _ prf => xhyps_of_psatz base acc prf
| PsatzAdd e1 e2 | PsatzMulE e1 e2 => xhyps_of_psatz base (xhyps_of_psatz base acc e2) e1
| PsatzIn n => if ge_bool n base then (n::acc) else acc
end.
(* roughly speaking, normalise_pexpr_correct is a proof of
forall env p, eval_pexpr env p == eval_pol env (normalise_pexpr p) *)
(*****)
Definition paddC := PaddC cplus.
Definition psubC := PsubC cminus.
Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env P - [c] :=
let Rops_wd := mk_reqe rplus rtimes ropp req
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd) in
PsubC_ok sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
addon.(SORrm).
Definition PaddC_ok : forall c P env, eval_pol env (paddC P c) == eval_pol env P + [c] :=
let Rops_wd := mk_reqe rplus rtimes ropp req
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd) in
PaddC_ok sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
addon.(SORrm).
(* Check that a formula f is inconsistent by normalizing and comparing the
resulting constant with 0 *)
Definition check_inconsistent (f : NFormula) : bool :=
let (e, op) := f in
match e with
| Pc c =>
match op with
| Equal => cneqb c cO
| NonStrict => c [<] cO
| Strict => c [<=] cO
| NonEqual => c [=] cO
end
| _ => false (* not a constant *)
end.
Lemma check_inconsistent_sound :
forall (p : PolC) (op : Op1),
check_inconsistent (p, op) = true -> forall env, ~ eval_op1 op (eval_pol env p).
Proof.
intros p op H1 env. unfold check_inconsistent in H1.
destruct op; simpl ;
(*****)
destruct p ; simpl; try discriminate H1;
try rewrite <- addon.(SORrm).(morph0); trivial.
now apply cneqb_sound.
apply addon.(SORrm).(morph_eq) in H1. congruence.
apply cleb_sound in H1. now apply -> (Rle_ngt sor).
apply cltb_sound in H1. now apply -> (Rlt_nge sor).
Qed.
Definition check_normalised_formulas : list NFormula -> Psatz -> bool :=
fun l cm =>
match eval_Psatz l cm with
| None => false
| Some f => check_inconsistent f
end.
Lemma checker_nf_sound :
forall (l : list NFormula) (cm : Psatz),
check_normalised_formulas l cm = true ->
forall env : PolEnv, make_impl (eval_nformula env) l False.
Proof.
intros l cm H env.
unfold check_normalised_formulas in H.
revert H.
case_eq (eval_Psatz l cm) ; [|discriminate].
intros nf. intros.
rewrite <- make_conj_impl. intro.
assert (H1' := make_conj_in _ _ H1).
assert (Hnf := @eval_Psatz_Sound _ _ H1' _ _ H).
destruct nf.
apply (@check_inconsistent_sound _ _ H0 env Hnf).
Qed.
(** Normalisation of formulae **)
Inductive Op2 : Set := (* binary relations *)
| OpEq
| OpNEq
| OpLe
| OpGe
| OpLt
| OpGt.
Definition eval_op2 (o : Op2) : R -> R -> Prop :=
match o with
| OpEq => req
| OpNEq => fun x y : R => x ~= y
| OpLe => rle
| OpGe => fun x y : R => y <= x
| OpLt => fun x y : R => x < y
| OpGt => fun x y : R => y < x
end.
Definition eval_pexpr (l : PolEnv) (pe : PExpr C) : R := PEeval rplus rtimes rminus ropp phi pow_phi rpow l pe.
Record Formula : Type := {
Flhs : PExpr C;
Fop : Op2;
Frhs : PExpr C
}.
Definition eval_formula (env : PolEnv) (f : Formula) : Prop :=
let (lhs, op, rhs) := f in
(eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
(* We normalize Formulas by moving terms to one side *)
Definition norm := norm_aux cO cI cplus ctimes cminus copp ceqb.
Definition psub := Psub cO cplus cminus copp ceqb.
Definition padd := Padd cO cplus ceqb.
Definition normalise (f : Formula) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
match op with
| OpEq => (psub lhs rhs, Equal)
| OpNEq => (psub lhs rhs, NonEqual)
| OpLe => (psub rhs lhs, NonStrict)
| OpGe => (psub lhs rhs, NonStrict)
| OpGt => (psub lhs rhs, Strict)
| OpLt => (psub rhs lhs, Strict)
end.
Definition negate (f : Formula) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
match op with
| OpEq => (psub rhs lhs, NonEqual)
| OpNEq => (psub rhs lhs, Equal)
| OpLe => (psub lhs rhs, Strict) (* e <= e' == ~ e > e' *)
| OpGe => (psub rhs lhs, Strict)
| OpGt => (psub rhs lhs, NonStrict)
| OpLt => (psub lhs rhs, NonStrict)
end.
Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) == eval_pol env lhs - eval_pol env rhs.
Proof.
intros.
apply (Psub_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
Qed.
Lemma eval_pol_add : forall env lhs rhs, eval_pol env (padd lhs rhs) == eval_pol env lhs + eval_pol env rhs.
Proof.
intros.
apply (Padd_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
Qed.
Lemma eval_pol_norm : forall env lhs, eval_pexpr env lhs == eval_pol env (norm lhs).
Proof.
intros.
apply (norm_aux_spec sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm) addon.(SORpower) ).
Qed.
Theorem normalise_sound :
forall (env : PolEnv) (f : Formula),
eval_formula env f -> eval_nformula env (normalise f).
Proof.
intros env f H; destruct f as [lhs op rhs]; simpl in *.
destruct op; simpl in *; rewrite eval_pol_sub ; rewrite <- eval_pol_norm ; rewrite <- eval_pol_norm.
now apply <- (Rminus_eq_0 sor).
intros H1. apply -> (Rminus_eq_0 sor) in H1. now apply H.
now apply -> (Rle_le_minus sor).
now apply -> (Rle_le_minus sor).
now apply -> (Rlt_lt_minus sor).
now apply -> (Rlt_lt_minus sor).
Qed.
Theorem negate_correct :
forall (env : PolEnv) (f : Formula),
eval_formula env f <-> ~ (eval_nformula env (negate f)).
Proof.
intros env f; destruct f as [lhs op rhs]; simpl.
destruct op; simpl in *; rewrite eval_pol_sub ; rewrite <- eval_pol_norm ; rewrite <- eval_pol_norm.
symmetry. rewrite (Rminus_eq_0 sor).
split; intro H; [symmetry; now apply -> (Req_dne sor) | symmetry in H; now apply <- (Req_dne sor)].
rewrite (Rminus_eq_0 sor). split; intro; now apply (Rneq_symm sor).
rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
Qed.
(** Another normalistion - this is used for cnf conversion **)
Definition xnormalise (t:Formula) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq =>
(psub lhs rhs, Strict)::(psub rhs lhs , Strict)::nil
| OpNEq => (psub lhs rhs,Equal) :: nil
| OpGt => (psub rhs lhs,NonStrict) :: nil
| OpLt => (psub lhs rhs,NonStrict) :: nil
| OpGe => (psub rhs lhs , Strict) :: nil
| OpLe => (psub lhs rhs ,Strict) :: nil
end.
Require Import Tauto.
Definition cnf_normalise (t:Formula) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnormalise t).
Add Ring SORRing : sor.(SORrt).
Lemma cnf_normalise_correct : forall env t, eval_cnf (eval_nformula env) (cnf_normalise t) -> eval_formula env t.
Proof.
unfold cnf_normalise, xnormalise ; simpl ; intros env t.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros.
(**)
apply sor.(SORle_antisymm).
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
now rewrite <- (Rminus_eq_0 sor).
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
Qed.
Definition xnegate (t:Formula) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq => (psub lhs rhs,Equal) :: nil
| OpNEq => (psub lhs rhs ,Strict)::(psub rhs lhs,Strict)::nil
| OpGt => (psub lhs rhs,Strict) :: nil
| OpLt => (psub rhs lhs,Strict) :: nil
| OpGe => (psub lhs rhs,NonStrict) :: nil
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
Definition cnf_negate (t:Formula) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnegate t).
Lemma cnf_negate_correct : forall env t, eval_cnf (eval_nformula env) (cnf_negate t) -> ~ eval_formula env t.
Proof.
unfold cnf_negate, xnegate ; simpl ; intros env t.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros ; intuition.
(**)
apply H0.
rewrite H1 ; ring.
(**)
apply H1.
apply sor.(SORle_antisymm).
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
(**)
apply H0. now rewrite (Rle_le_minus sor) in H1.
apply H0. now rewrite (Rle_le_minus sor) in H1.
apply H0. now rewrite (Rlt_lt_minus sor) in H1.
apply H0. now rewrite (Rlt_lt_minus sor) in H1.
Qed.
Lemma eval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
Proof.
intros.
destruct d ; simpl.
generalize (eval_pol env p); intros.
destruct o ; simpl.
apply (Req_em sor r 0).
destruct (Req_em sor r 0) ; tauto.
rewrite <- (Rle_ngt sor r 0). generalize (Rle_gt_cases sor r 0). tauto.
rewrite <- (Rlt_nge sor r 0). generalize (Rle_gt_cases sor 0 r). tauto.
Qed.
(** Reverse transformation *)
Fixpoint xdenorm (jmp : positive) (p: Pol C) : PExpr C :=
match p with
| Pc c => PEc c
| Pinj j p => xdenorm (Pplus j jmp ) p
| PX p j q => PEadd
(PEmul (xdenorm jmp p) (PEpow (PEX _ jmp) (Npos j)))
(xdenorm (Psucc jmp) q)
end.
Lemma xdenorm_correct : forall p i env, eval_pol (jump i env) p == eval_pexpr env (xdenorm (Psucc i) p).
Proof.
unfold eval_pol.
induction p.
simpl. reflexivity.
(* Pinj *)
simpl.
intros.
rewrite Pplus_succ_permute_r.
rewrite <- IHp.
symmetry.
rewrite Pplus_comm.
rewrite Pjump_Pplus. reflexivity.
(* PX *)
simpl.
intros.
rewrite <- IHp1.
rewrite <- IHp2.
unfold Env.tail , Env.hd.
rewrite <- Pjump_Pplus.
rewrite <- Pplus_one_succ_r.
unfold Env.nth.
unfold jump at 2.
rewrite Pplus_one_succ_l.
rewrite addon.(SORpower).(rpow_pow_N).
unfold pow_N. ring.
Qed.
Definition denorm (p : Pol C) := xdenorm xH p.
Lemma denorm_correct : forall p env, eval_pol env p == eval_pexpr env (denorm p).
Proof.
unfold denorm.
induction p.
reflexivity.
simpl.
rewrite <- Pplus_one_succ_r.
apply xdenorm_correct.
simpl.
intros.
rewrite IHp1.
unfold Env.tail.
rewrite xdenorm_correct.
change (Psucc xH) with 2%positive.
rewrite addon.(SORpower).(rpow_pow_N).
simpl. reflexivity.
Qed.
(** Some syntactic simplifications of expressions *)
Definition simpl_cone (e:Psatz) : Psatz :=
match e with
| PsatzSquare t =>
match t with
| Pc c => if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
| _ => PsatzSquare t
end
| PsatzMulE t1 t2 =>
match t1 , t2 with
| PsatzZ , x => PsatzZ
| x , PsatzZ => PsatzZ
| PsatzC c , PsatzC c' => PsatzC (ctimes c c')
| PsatzC p1 , PsatzMulE (PsatzC p2) x => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzC p1 , PsatzMulE x (PsatzC p2) => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzMulE (PsatzC p2) x , PsatzC p1 => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzMulE x (PsatzC p2) , PsatzC p1 => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzC x , PsatzAdd y z => PsatzAdd (PsatzMulE (PsatzC x) y) (PsatzMulE (PsatzC x) z)
| PsatzC c , _ => if ceqb cI c then t2 else PsatzMulE t1 t2
| _ , PsatzC c => if ceqb cI c then t1 else PsatzMulE t1 t2
| _ , _ => e
end
| PsatzAdd t1 t2 =>
match t1 , t2 with
| PsatzZ , x => x
| x , PsatzZ => x
| x , y => PsatzAdd x y
end
| _ => e
end.
End Micromega.
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|