summaryrefslogtreecommitdiff
path: root/plugins/micromega/RMicromega.v
blob: 2be99da1ebaa96aa49373d68f92d44dbf9f7e9d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.


Require Setoid.
(*Declare ML Module "micromega_plugin".*)

Definition Rsrt : ring_theory R0 R1 Rplus Rmult Rminus Ropp (@eq R).
Proof.
  constructor.
  exact Rplus_0_l.
  exact Rplus_comm.
  intros. rewrite Rplus_assoc. auto.
  exact Rmult_1_l.
  exact Rmult_comm.
  intros ; rewrite Rmult_assoc ; auto.
  intros. rewrite Rmult_comm. rewrite Rmult_plus_distr_l.
   rewrite (Rmult_comm z).    rewrite (Rmult_comm z). auto.
  reflexivity.
  exact Rplus_opp_r.
Qed.

Add Ring Rring : Rsrt.
Open Scope R_scope.

Lemma Rmult_neutral : forall x:R , 0 * x = 0.
Proof.
  intro ; ring.
Qed.


Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R)  Rle Rlt.
Proof.
  constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
  constructor.
  constructor.
  unfold RelationClasses.Symmetric. auto.
  unfold RelationClasses.Transitive. intros. subst. reflexivity.
  apply Rsrt.
  eapply Rle_trans ; eauto.
  apply (Rlt_irrefl m) ; auto.
  apply Rnot_le_lt. auto with real.
  destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
  intros.
  rewrite <- (Rmult_neutral m).
  apply (Rmult_lt_compat_r) ; auto.
Qed.

Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.


Lemma Rinv_elim : forall x y z, 
  y <> 0 -> (z * y = x <->   x * / y = z).
Proof.
  intros.
  split ; intros.
  subst.
  rewrite Rmult_assoc.
  rewrite Rinv_r; auto.
  ring.
  subst.
  rewrite Rmult_assoc.
  rewrite (Rmult_comm (/ y)).
  rewrite Rinv_r ; auto.
  ring.
Qed.  

Ltac INR_nat_of_P :=
  match goal with
    | H : context[INR (nat_of_P ?X)] |- _ => 
      revert H ; 
      let HH := fresh in
        assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X))
    | |- context[INR (nat_of_P ?X)] =>
      let HH := fresh in
        assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X))
  end.

Ltac add_eq expr val := set (temp := expr) ; 
  generalize (refl_equal temp) ; 
    unfold temp at 1 ; generalize temp ; intro val ; clear temp.

Ltac Rinv_elim :=
  match goal with
    | |- context[?x * / ?y] => 
      let z := fresh "v" in 
      add_eq (x * / y) z  ;
      let H := fresh in intro H ; rewrite <- Rinv_elim in H
  end.

Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
Proof.
  red. intros.
  subst.
  apply (Rlt_irrefl 0 H).  
Qed.


Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
  intro.
  Rinv_elim.
  subst ; ring.
  apply R1_neq_R0.
Qed.

Lemma Qeq_true : forall x y,  
  Qeq_bool x y = true -> 
   IQR x = IQR y.
Proof.
  unfold IQR.
  simpl.
  intros.
  apply Qeq_bool_eq in H.
  unfold Qeq in H.
  assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
     rewrite H. reflexivity.
  repeat rewrite mult_IZR in H0.
  simpl in H0.
  revert H0.
  repeat INR_nat_of_P.
  intros.
  apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
  rewrite <- H2.
  field.
  split ; apply Rlt_neq ; auto.
Qed.

Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
  intros.
  apply Qeq_bool_neq  in H.
  intro. apply H.   clear H.
  unfold Qeq,IQR in *.
  simpl in *.
  revert H0.
  repeat Rinv_elim.
  intros.
  subst.
  assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
  repeat rewrite mult_IZR.  
  simpl.
  rewrite <- H0. rewrite <- H.
  ring.
  apply eq_IZR ; auto.
  INR_nat_of_P; intros; apply Rlt_neq ; auto. 
  INR_nat_of_P; intros ; apply Rlt_neq ; auto. 
Qed.

  

Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
  intros.
  apply Qle_bool_imp_le in H.
  unfold Qle in H.
  unfold IQR.
  simpl in *.
  apply IZR_le in H.
  repeat rewrite mult_IZR in H.
  simpl in H.
  repeat INR_nat_of_P; intros.
  assert (Hr := Rlt_neq r H).
  assert (Hr0 := Rlt_neq r0 H0).
  replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
  replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
  apply Rmult_le_compat_r ; auto.
  apply Rmult_le_pos.
  unfold Rle. left. apply Rinv_0_lt_compat ; auto.
  unfold Rle. left. apply Rinv_0_lt_compat ; auto.
  field ; intuition.
  field ; intuition.
Qed.



Lemma IQR_0 : IQR 0 = 0.
Proof.
  compute. apply Rinv_1.
Qed.

Lemma IQR_1 : IQR 1 = 1.
Proof.
  compute. apply Rinv_1.
Qed.

Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
Proof.
  intros.
  unfold IQR.
  simpl in *.
  rewrite plus_IZR in *.
  rewrite mult_IZR in *.
  simpl.  
  rewrite nat_of_P_mult_morphism.
  rewrite mult_INR.
  rewrite mult_IZR.
  simpl.
  repeat INR_nat_of_P.
  intros. field. 
  split ; apply Rlt_neq ; auto.
Qed.

Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
Proof.
  intros.
  unfold IQR.
  simpl.
  rewrite opp_IZR.
  ring.  
Qed.

Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
Proof.
  intros.
  unfold Qminus.
  rewrite IQR_plus.
  rewrite IQR_opp.
  ring.
Qed.


Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
Proof.
  unfold IQR ; intros.
  simpl.
  repeat rewrite mult_IZR.
  simpl.  
  rewrite nat_of_P_mult_morphism.
  rewrite mult_INR.
  repeat INR_nat_of_P.
  intros. field ; split ; apply Rlt_neq ; auto.
Qed.

Lemma IQR_inv_lt : forall x, (0 < x)%Q -> 
  IQR (/ x) =  / IQR x.
Proof.
  unfold IQR ; simpl.
  intros.
  unfold Qlt in H.
  revert H.
  simpl.
  intros.
  unfold Qinv.
  destruct x ; simpl in *.
  destruct Qnum ; simpl.
  exfalso. auto with zarith.
  clear H.
  repeat INR_nat_of_P.
  intros.
  assert (HH := Rlt_neq _ H).
  assert (HH0 := Rlt_neq _ H0).
  rewrite Rinv_mult_distr ; auto.
  rewrite Rinv_involutive ; auto.
  ring.
  apply Rinv_0_lt_compat in H0.
  apply Rlt_neq ; auto.
  simpl in H.
  exfalso.
  rewrite Pmult_comm  in H.
  compute in H.
  discriminate.
Qed.

Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
Proof.
  destruct x ; destruct Qnum ; reflexivity.
Qed.

Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
Proof.
  intros.
  destruct x.
  unfold Qopp.
  simpl.
  rewrite Zopp_involutive.
  reflexivity.
Qed.

Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
Proof.
  intros.
  rewrite <- (Ropp_involutive r).
  apply Ropp_eq_0_compat ; auto.
Qed.

Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
Proof.
  destruct x ; simpl.
  unfold IQR.
  simpl.
  INR_nat_of_P.
  intros.
  apply Rmult_integral in H0.  
  destruct H0.
  apply eq_IZR_R0 in H0.
  subst.
  reflexivity.
  exfalso.
  apply Rinv_0_lt_compat in H.
  rewrite <- H0 in H.
  apply Rlt_irrefl in H. auto.
Qed.
  

Lemma IQR_inv_gt : forall x, (0 > x)%Q -> 
  IQR (/ x) =  / IQR x.
Proof.
  intros.
  rewrite <- (Qopp_involutive_strong x).
  rewrite <- Qinv_opp.
  rewrite IQR_opp.
  rewrite IQR_inv_lt.
  repeat rewrite IQR_opp.
  rewrite Ropp_inv_permute.
  auto.
  intro.
  apply Ropp_0 in H0.
  apply IQR_x_0 in H0.
  rewrite H0 in H.
  compute in H. discriminate.
  unfold Qlt in *.
  destruct x ; simpl in *.
  auto with zarith.
Qed.

Lemma IQR_inv : forall x, ~ x ==  0 -> 
  IQR (/ x) =  / IQR x.
Proof.
  intros.
  assert ( 0 > x \/ 0 < x)%Q.
   destruct x ; unfold Qlt, Qeq in * ; simpl in *.
   rewrite Zmult_1_r in *.
   destruct Qnum ; simpl in * ; intuition auto.
   right. reflexivity.
   left ; reflexivity.
  destruct H0.
  apply IQR_inv_gt ; auto.
  apply IQR_inv_lt ; auto.
Qed.

Lemma IQR_inv_ext : forall x, 
  IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
  intros.
  case_eq (Qeq_bool x 0).
  intros.
  apply Qeq_bool_eq in H.
  destruct x ; simpl.
  unfold Qeq in H.
  simpl in H.
  replace Qnum with 0%Z.
  compute. rewrite Rinv_1.
  reflexivity.
  rewrite <- H. ring.
  intros.
  apply IQR_inv.
  intro.
  rewrite <- Qeq_bool_iff in H0.
  congruence.
Qed.


Notation to_nat := N.to_nat. (*Nnat.nat_of_N*)

Lemma QSORaddon :
  @SORaddon R
  R0 R1 Rplus Rmult Rminus Ropp  (@eq R)  Rle (* ring elements *)
  Q 0%Q 1%Q Qplus Qmult Qminus Qopp (* coefficients *)
  Qeq_bool Qle_bool
  IQR nat to_nat pow.
Proof.
  constructor.
  constructor ; intros ; try reflexivity.
  apply IQR_0.
  apply IQR_1.
  apply IQR_plus.
  apply IQR_minus.
  apply IQR_mult.
  apply IQR_opp.
  apply Qeq_true ; auto.
  apply R_power_theory.
  apply Qeq_false.
  apply Qle_true.
Qed.


(* Syntactic ring coefficients. 
   For computing, we use Q. *)
Inductive Rcst :=
| C0
| C1
| CQ (r : Q)
| CZ (r : Z)
| CPlus (r1 r2 : Rcst)
| CMinus (r1  r2 : Rcst)
| CMult (r1 r2 : Rcst)
| CInv  (r : Rcst)
| COpp  (r : Rcst).


Fixpoint Q_of_Rcst (r : Rcst) : Q :=
  match r with
    | C0 => 0 # 1
    | C1 => 1 # 1
    | CZ z => z # 1
    | CQ q => q
    | CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
    | CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
    | CMult r1 r2  => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
    | CInv r        => Qinv (Q_of_Rcst r)
    | COpp r       => Qopp (Q_of_Rcst r)
  end.


Fixpoint R_of_Rcst (r : Rcst) : R :=
  match r with
    | C0 => R0
    | C1 => R1
    | CZ z => IZR z
    | CQ q => IQR q
    | CPlus r1 r2  => (R_of_Rcst r1) + (R_of_Rcst r2)
    | CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
    | CMult r1 r2  => (R_of_Rcst r1) * (R_of_Rcst r2)
    | CInv r       => 
      if Qeq_bool (Q_of_Rcst r) (0 # 1)
        then R0 
        else Rinv (R_of_Rcst r)
      | COpp r       => - (R_of_Rcst r)
  end.

Lemma Q_of_RcstR : forall c, IQR (Q_of_Rcst c) = R_of_Rcst c.
Proof.
    induction c ; simpl ; try (rewrite <- IHc1 ; rewrite <- IHc2).
    apply IQR_0. 
    apply IQR_1. 
    reflexivity.
    unfold IQR. simpl. rewrite Rinv_1. reflexivity.
    apply IQR_plus.
    apply IQR_minus.
    apply IQR_mult.
    rewrite <- IHc.
    apply IQR_inv_ext.
    rewrite <- IHc.
    apply IQR_opp.
  Qed.

Require Import EnvRing.

Definition INZ (n:N) : R :=
  match n with
    | N0 => IZR 0%Z
    | Npos p => IZR (Zpos p)
  end.

Definition Reval_expr := eval_pexpr  Rplus Rmult Rminus Ropp R_of_Rcst nat_of_N pow.


Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
    match o with
      | OpEq =>  @eq R
      | OpNEq => fun x y  => ~ x = y
      | OpLe => Rle
      | OpGe => Rge
      | OpLt => Rlt
      | OpGt => Rgt
    end.


Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
  let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).


Definition Reval_formula' :=
  eval_sformula  Rplus Rmult Rminus Ropp (@eq R) Rle Rlt nat_of_N pow R_of_Rcst.

Definition QReval_formula := 
  eval_formula  Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR nat_of_N pow .

Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Proof.
  intros.
  unfold Reval_formula.
  destruct f.
  unfold Reval_formula'.
  unfold Reval_expr.
  split ; destruct Fop ; simpl ; auto.
  apply Rge_le.
  apply Rle_ge.
Qed.

Definition Qeval_nformula :=
  eval_nformula 0 Rplus Rmult  (@eq R) Rle Rlt IQR.


Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
  exact (fun env d =>eval_nformula_dec Rsor IQR env d).
Qed.

Definition RWitness := Psatz Q.

Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult  Qeq_bool Qle_bool.

Require Import List.

Lemma RWeakChecker_sound :   forall (l : list (NFormula Q)) (cm : RWitness),
  RWeakChecker l cm = true ->
  forall env, make_impl (Qeval_nformula env) l False.
Proof.
  intros l cm H.
  intro.
  unfold Qeval_nformula.
  apply (checker_nf_sound Rsor QSORaddon l cm).
  unfold RWeakChecker in H.
  exact H.
Qed.

Require Import Tauto.

Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.

Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.

Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.

Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness)  : bool :=
  @tauto_checker (Formula Q) (NFormula Q)
  runsat rdeduce
  Rnormalise Rnegate
  RWitness RWeakChecker (map_bformula (map_Formula Q_of_Rcst)  f) w.

Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_f  (Reval_formula env)  f.
Proof.
  intros f w.
  unfold RTautoChecker.
  intros TC env.
  apply (tauto_checker_sound  QReval_formula Qeval_nformula) with (env := env) in TC.
  rewrite eval_f_map in TC.
  rewrite eval_f_morph with (ev':= Reval_formula env) in TC ; auto.
  intro.
  unfold QReval_formula.
  rewrite <- eval_formulaSC  with (phiS := R_of_Rcst).
  rewrite Reval_formula_compat.
  tauto.
  intro. rewrite Q_of_RcstR. reflexivity.
  apply Reval_nformula_dec.
  destruct t.
  apply (check_inconsistent_sound Rsor QSORaddon) ; auto.
  unfold rdeduce. apply (nformula_plus_nformula_correct Rsor QSORaddon).
  now apply (cnf_normalise_correct Rsor QSORaddon).  
  intros. now apply (cnf_negate_correct Rsor QSORaddon).
  intros t w0.
  apply RWeakChecker_sound.
Qed.



(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)