1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Util
open Term
open Names
open Pp
open Topconstr
open Indfun_common
open Indfun
open Genarg
open Pcoq
open Tacticals
open Constr
let pr_binding prc = function
| loc, Glob_term.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ cut () ++ prc c)
| loc, Glob_term.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ cut () ++ prc c)
let pr_bindings prc prlc = function
| Glob_term.ImplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc prc l
| Glob_term.ExplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc (fun b -> str"(" ++ pr_binding prlc b ++ str")") l
| Glob_term.NoBindings -> mt ()
let pr_with_bindings prc prlc (c,bl) =
prc c ++ hv 0 (pr_bindings prc prlc bl)
let pr_fun_ind_using prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b -> spc () ++ hov 2 (str "using" ++ spc () ++ pr_with_bindings prc prlc b)
(* Duplication of printing functions because "'a with_bindings" is
(internally) not uniform in 'a: indeed constr_with_bindings at the
"typed" level has type "open_constr with_bindings" instead of
"constr with_bindings"; hence, its printer cannot be polymorphic in
(prc,prlc)... *)
let pr_with_bindings_typed prc prlc (c,bl) =
prc c ++
hv 0 (pr_bindings prc prlc bl)
let pr_fun_ind_using_typed prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b -> spc () ++ hov 2 (str "using" ++ spc () ++ pr_with_bindings_typed prc prlc b.Evd.it)
ARGUMENT EXTEND fun_ind_using
PRINTED BY pr_fun_ind_using_typed
RAW_TYPED AS constr_with_bindings_opt
RAW_PRINTED BY pr_fun_ind_using
GLOB_TYPED AS constr_with_bindings_opt
GLOB_PRINTED BY pr_fun_ind_using
| [ "using" constr_with_bindings(c) ] -> [ Some c ]
| [ ] -> [ None ]
END
TACTIC EXTEND newfuninv
[ "functional" "inversion" quantified_hypothesis(hyp) reference_opt(fname) ] ->
[
Invfun.invfun hyp fname
]
END
let pr_intro_as_pat prc _ _ pat =
match pat with
| Some pat -> spc () ++ str "as" ++ spc () ++ pr_intro_pattern pat
| None -> mt ()
ARGUMENT EXTEND with_names TYPED AS intro_pattern_opt PRINTED BY pr_intro_as_pat
| [ "as" simple_intropattern(ipat) ] -> [ Some ipat ]
| [] ->[ None ]
END
TACTIC EXTEND newfunind
["functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
[
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> applist(c,cl)
in
Extratactics.onSomeWithHoles (fun x -> functional_induction true c x pat) princl ]
END
(***** debug only ***)
TACTIC EXTEND snewfunind
["soft" "functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
[
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> applist(c,cl)
in
Extratactics.onSomeWithHoles (fun x -> functional_induction false c x pat) princl ]
END
let pr_constr_coma_sequence prc _ _ = Util.prlist_with_sep Util.pr_comma prc
ARGUMENT EXTEND constr_coma_sequence'
TYPED AS constr_list
PRINTED BY pr_constr_coma_sequence
| [ constr(c) "," constr_coma_sequence'(l) ] -> [ c::l ]
| [ constr(c) ] -> [ [c] ]
END
let pr_auto_using prc _prlc _prt = Pptactic.pr_auto_using prc
ARGUMENT EXTEND auto_using'
TYPED AS constr_list
PRINTED BY pr_auto_using
| [ "using" constr_coma_sequence'(l) ] -> [ l ]
| [ ] -> [ [] ]
END
module Gram = Pcoq.Gram
module Vernac = Pcoq.Vernac_
module Tactic = Pcoq.Tactic
module FunctionGram =
struct
let gec s = Gram.entry_create ("Function."^s)
(* types *)
let function_rec_definition_loc : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) located Gram.entry = gec "function_rec_definition_loc"
end
open FunctionGram
GEXTEND Gram
GLOBAL: function_rec_definition_loc ;
function_rec_definition_loc:
[ [ g = Vernac.rec_definition -> loc, g ]]
;
END
type 'a function_rec_definition_loc_argtype = ((Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) located, 'a) Genarg.abstract_argument_type
let (wit_function_rec_definition_loc : Genarg.tlevel function_rec_definition_loc_argtype),
(globwit_function_rec_definition_loc : Genarg.glevel function_rec_definition_loc_argtype),
(rawwit_function_rec_definition_loc : Genarg.rlevel function_rec_definition_loc_argtype) =
Genarg.create_arg None "function_rec_definition_loc"
VERNAC COMMAND EXTEND Function
["Function" ne_function_rec_definition_loc_list_sep(recsl,"with")] ->
[
do_generate_principle false (List.map snd recsl);
]
END
let pr_fun_scheme_arg (princ_name,fun_name,s) =
Nameops.pr_id princ_name ++ str " :=" ++ spc() ++ str "Induction for " ++
Libnames.pr_reference fun_name ++ spc() ++ str "Sort " ++
Ppconstr.pr_glob_sort s
VERNAC ARGUMENT EXTEND fun_scheme_arg
PRINTED BY pr_fun_scheme_arg
| [ ident(princ_name) ":=" "Induction" "for" reference(fun_name) "Sort" sort(s) ] -> [ (princ_name,fun_name,s) ]
END
let warning_error names e =
let e = Cerrors.process_vernac_interp_error e in
match e with
| Building_graph e ->
Pp.msg_warning
(str "Cannot define graph(s) for " ++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Libnames.pr_reference names) ++
if do_observe () then (spc () ++ Errors.print e) else mt ())
| Defining_principle e ->
Pp.msg_warning
(str "Cannot define principle(s) for "++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Libnames.pr_reference names) ++
if do_observe () then Errors.print e else mt ())
| _ -> raise e
VERNAC COMMAND EXTEND NewFunctionalScheme
["Functional" "Scheme" ne_fun_scheme_arg_list_sep(fas,"with") ] ->
[
begin
try
Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
begin
match fas with
| (_,fun_name,_)::_ ->
begin
begin
make_graph (Nametab.global fun_name)
end
;
try Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
Util.error ("Cannot generate induction principle(s)")
| e when Errors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
| _ -> assert false (* we can only have non empty list *)
end
| e when Errors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
]
END
(***** debug only ***)
VERNAC COMMAND EXTEND NewFunctionalCase
["Functional" "Case" fun_scheme_arg(fas) ] ->
[
Functional_principles_types.build_case_scheme fas
]
END
(***** debug only ***)
VERNAC COMMAND EXTEND GenerateGraph
["Generate" "graph" "for" reference(c)] -> [ make_graph (Nametab.global c) ]
END
(* FINDUCTION *)
(* comment this line to see debug msgs *)
let msg x = () ;; let pr_lconstr c = str ""
(* uncomment this to see debugging *)
let prconstr c = msg (str" " ++ Printer.pr_lconstr c ++ str"\n")
let prlistconstr lc = List.iter prconstr lc
let prstr s = msg(str s)
let prNamedConstr s c =
begin
msg(str "");
msg(str(s^"==>\n ") ++ Printer.pr_lconstr c ++ str "\n<==\n");
msg(str "");
end
(** Information about an occurrence of a function call (application)
inside a term. *)
type fapp_info = {
fname: constr; (** The function applied *)
largs: constr list; (** List of arguments *)
free: bool; (** [true] if all arguments are debruijn free *)
max_rel: int; (** max debruijn index in the funcall *)
onlyvars: bool (** [true] if all arguments are variables (and not debruijn) *)
}
(** [constr_head_match(a b c) a] returns true, false otherwise. *)
let constr_head_match u t=
if isApp u
then
let uhd,args= destApp u in
uhd=t
else false
(** [hdMatchSub inu t] returns the list of occurrences of [t] in
[inu]. DeBruijn are not pushed, so some of them may be unbound in
the result. *)
let rec hdMatchSub inu (test: constr -> bool) : fapp_info list =
let subres =
match kind_of_term inu with
| Lambda (nm,tp,cstr) | Prod (nm,tp,cstr) ->
hdMatchSub tp test @ hdMatchSub (lift 1 cstr) test
| Fix (_,(lna,tl,bl)) -> (* not sure Fix is correct *)
Array.fold_left
(fun acc cstr -> acc @ hdMatchSub (lift (Array.length tl) cstr) test)
[] bl
| _ -> (* Cofix will be wrong *)
fold_constr
(fun l cstr ->
l @ hdMatchSub cstr test) [] inu in
if not (test inu) then subres
else
let f,args = decompose_app inu in
let freeset = Termops.free_rels inu in
let max_rel = try Util.Intset.max_elt freeset with Not_found -> -1 in
{fname = f; largs = args; free = Util.Intset.is_empty freeset;
max_rel = max_rel; onlyvars = List.for_all isVar args }
::subres
let mkEq typ c1 c2 =
mkApp (Coqlib.build_coq_eq(),[| typ; c1; c2|])
let poseq_unsafe idunsafe cstr gl =
let typ = Tacmach.pf_type_of gl cstr in
tclTHEN
(Tactics.letin_tac None (Name idunsafe) cstr None allHypsAndConcl)
(tclTHENFIRST
(Tactics.assert_tac Anonymous (mkEq typ (mkVar idunsafe) cstr))
Tactics.reflexivity)
gl
let poseq id cstr gl =
let x = Tactics.fresh_id [] id gl in
poseq_unsafe x cstr gl
(* dirty? *)
let list_constr_largs = ref []
let rec poseq_list_ids_rec lcstr gl =
match lcstr with
| [] -> tclIDTAC gl
| c::lcstr' ->
match kind_of_term c with
| Var _ ->
(list_constr_largs:=c::!list_constr_largs ; poseq_list_ids_rec lcstr' gl)
| _ ->
let _ = prstr "c = " in
let _ = prconstr c in
let _ = prstr "\n" in
let typ = Tacmach.pf_type_of gl c in
let cname = Namegen.id_of_name_using_hdchar (Global.env()) typ Anonymous in
let x = Tactics.fresh_id [] cname gl in
let _ = list_constr_largs:=mkVar x :: !list_constr_largs in
let _ = prstr " list_constr_largs = " in
let _ = prlistconstr !list_constr_largs in
let _ = prstr "\n" in
tclTHEN
(poseq_unsafe x c)
(poseq_list_ids_rec lcstr')
gl
let poseq_list_ids lcstr gl =
let _ = list_constr_largs := [] in
poseq_list_ids_rec lcstr gl
(** [find_fapp test g] returns the list of [app_info] of all calls to
functions that satisfy [test] in the conclusion of goal g. Trivial
repetition (not modulo conversion) are deleted. *)
let find_fapp (test:constr -> bool) g : fapp_info list =
let pre_res = hdMatchSub (Tacmach.pf_concl g) test in
let res =
List.fold_right (fun x acc -> if List.mem x acc then acc else x::acc) pre_res [] in
(prlistconstr (List.map (fun x -> applist (x.fname,x.largs)) res);
res)
(** [finduction id filter g] tries to apply functional induction on
an occurence of function [id] in the conclusion of goal [g]. If
[id]=[None] then calls to any function are selected. In any case
[heuristic] is used to select the most pertinent occurrence. *)
let finduction (oid:identifier option) (heuristic: fapp_info list -> fapp_info list)
(nexttac:Proof_type.tactic) g =
let test = match oid with
| Some id ->
let idconstr = mkConst (const_of_id id) in
(fun u -> constr_head_match u idconstr) (* select only id *)
| None -> (fun u -> isApp u) in (* select calls to any function *)
let info_list = find_fapp test g in
let ordered_info_list = heuristic info_list in
prlistconstr (List.map (fun x -> applist (x.fname,x.largs)) ordered_info_list);
if List.length ordered_info_list = 0 then Util.error "function not found in goal\n";
let taclist: Proof_type.tactic list =
List.map
(fun info ->
(tclTHEN
(tclTHEN (poseq_list_ids info.largs)
(
fun gl ->
(functional_induction
true (applist (info.fname, List.rev !list_constr_largs))
None None) gl))
nexttac)) ordered_info_list in
(* we try each (f t u v) until one does not fail *)
(* TODO: try also to mix functional schemes *)
tclFIRST taclist g
(** [chose_heuristic oi x] returns the heuristic for reordering
(and/or forgetting some elts of) a list of occurrences of
function calls infos to chose first with functional induction. *)
let chose_heuristic (oi:int option) : fapp_info list -> fapp_info list =
match oi with
| Some i -> (fun l -> [ List.nth l (i-1) ]) (* occurrence was given by the user *)
| None ->
(* Default heuristic: put first occurrences where all arguments
are *bound* (meaning already introduced) variables *)
let ordering x y =
if x.free && x.onlyvars && y.free && y.onlyvars then 0 (* both pertinent *)
else if x.free && x.onlyvars then -1
else if y.free && y.onlyvars then 1
else 0 (* both not pertinent *)
in
List.sort ordering
TACTIC EXTEND finduction
["finduction" ident(id) natural_opt(oi)] ->
[
match oi with
| Some(n) when n<=0 -> Util.error "numerical argument must be > 0"
| _ ->
let heuristic = chose_heuristic oi in
finduction (Some id) heuristic tclIDTAC
]
END
TACTIC EXTEND fauto
[ "fauto" tactic(tac)] ->
[
let heuristic = chose_heuristic None in
finduction None heuristic (Tacinterp.eval_tactic tac)
]
|
[ "fauto" ] ->
[
let heuristic = chose_heuristic None in
finduction None heuristic tclIDTAC
]
END
TACTIC EXTEND poseq
[ "poseq" ident(x) constr(c) ] ->
[ poseq x c ]
END
VERNAC COMMAND EXTEND Showindinfo
[ "showindinfo" ident(x) ] -> [ Merge.showind x ]
END
VERNAC COMMAND EXTEND MergeFunind
[ "Mergeschemes" "(" ident(id1) ne_ident_list(cl1) ")"
"with" "(" ident(id2) ne_ident_list(cl2) ")" "using" ident(id) ] ->
[
let f1 = Constrintern.interp_constr Evd.empty (Global.env())
(CRef (Libnames.Ident (Util.dummy_loc,id1))) in
let f2 = Constrintern.interp_constr Evd.empty (Global.env())
(CRef (Libnames.Ident (Util.dummy_loc,id2))) in
let f1type = Typing.type_of (Global.env()) Evd.empty f1 in
let f2type = Typing.type_of (Global.env()) Evd.empty f2 in
let ar1 = List.length (fst (decompose_prod f1type)) in
let ar2 = List.length (fst (decompose_prod f2type)) in
let _ =
if ar1 <> List.length cl1 then
Util.error ("not the right number of arguments for " ^ string_of_id id1) in
let _ =
if ar2 <> List.length cl2 then
Util.error ("not the right number of arguments for " ^ string_of_id id2) in
Merge.merge id1 id2 (Array.of_list cl1) (Array.of_list cl2) id
]
END
|