1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: rules.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
open Util
open Names
open Term
open Tacmach
open Tactics
open Tacticals
open Termops
open Declarations
open Formula
open Sequent
open Libnames
type seqtac= (Sequent.t -> tactic) -> Sequent.t -> tactic
type lseqtac= global_reference -> seqtac
type 'a with_backtracking = tactic -> 'a
let wrap n b continue seq gls=
check_for_interrupt ();
let nc=pf_hyps gls in
let env=pf_env gls in
let rec aux i nc ctx=
if i<=0 then seq else
match nc with
[]->anomaly "Not the expected number of hyps"
| ((id,_,typ) as nd)::q->
if occur_var env id (pf_concl gls) ||
List.exists (occur_var_in_decl env id) ctx then
(aux (i-1) q (nd::ctx))
else
add_formula Hyp (VarRef id) typ (aux (i-1) q (nd::ctx)) gls in
let seq1=aux n nc [] in
let seq2=if b then
add_formula Concl dummy_id (pf_concl gls) seq1 gls else seq1 in
continue seq2 gls
let basename_of_global=function
VarRef id->id
| _->assert false
let clear_global=function
VarRef id->clear [id]
| _->tclIDTAC
(* connection rules *)
let axiom_tac t seq=
try exact_no_check (constr_of_global (find_left t seq))
with Not_found->tclFAIL 0 (Pp.str "No axiom link")
let ll_atom_tac a backtrack id continue seq=
tclIFTHENELSE
(try
tclTHENLIST
[generalize [mkApp(constr_of_global id,
[|constr_of_global (find_left a seq)|])];
clear_global id;
intro]
with Not_found->tclFAIL 0 (Pp.str "No link"))
(wrap 1 false continue seq) backtrack
(* right connectives rules *)
let and_tac backtrack continue seq=
tclIFTHENELSE simplest_split (wrap 0 true continue seq) backtrack
let or_tac backtrack continue seq=
tclORELSE
(any_constructor false (Some (tclCOMPLETE (wrap 0 true continue seq))))
backtrack
let arrow_tac backtrack continue seq=
tclIFTHENELSE intro (wrap 1 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 1 true continue seq)))
backtrack)
(* left connectives rules *)
let left_and_tac ind backtrack id continue seq gls=
let n=(construct_nhyps ind gls).(0) in
tclIFTHENELSE
(tclTHENLIST
[simplest_elim (constr_of_global id);
clear_global id;
tclDO n intro])
(wrap n false continue seq)
backtrack gls
let left_or_tac ind backtrack id continue seq gls=
let v=construct_nhyps ind gls in
let f n=
tclTHENLIST
[clear_global id;
tclDO n intro;
wrap n false continue seq] in
tclIFTHENSVELSE
(simplest_elim (constr_of_global id))
(Array.map f v)
backtrack gls
let left_false_tac id=
simplest_elim (constr_of_global id)
(* left arrow connective rules *)
(* We use this function for false, and, or, exists *)
let ll_ind_tac ind largs backtrack id continue seq gl=
let rcs=ind_hyps 0 ind largs gl in
let vargs=Array.of_list largs in
(* construire le terme H->B, le generaliser etc *)
let myterm i=
let rc=rcs.(i) in
let p=List.length rc in
let cstr=mkApp ((mkConstruct (ind,(i+1))),vargs) in
let vars=Array.init p (fun j->mkRel (p-j)) in
let capply=mkApp ((lift p cstr),vars) in
let head=mkApp ((lift p (constr_of_global id)),[|capply|]) in
it_mkLambda_or_LetIn head rc in
let lp=Array.length rcs in
let newhyps=list_tabulate myterm lp in
tclIFTHENELSE
(tclTHENLIST
[generalize newhyps;
clear_global id;
tclDO lp intro])
(wrap lp false continue seq) backtrack gl
let ll_arrow_tac a b c backtrack id continue seq=
let cc=mkProd(Anonymous,a,(lift 1 b)) in
let d=mkLambda (Anonymous,b,
mkApp ((constr_of_global id),
[|mkLambda (Anonymous,(lift 1 a),(mkRel 2))|])) in
tclORELSE
(tclTHENS (cut c)
[tclTHENLIST
[introf;
clear_global id;
wrap 1 false continue seq];
tclTHENS (cut cc)
[exact_no_check (constr_of_global id);
tclTHENLIST
[generalize [d];
clear_global id;
introf;
introf;
tclCOMPLETE (wrap 2 true continue seq)]]])
backtrack
(* quantifier rules (easy side) *)
let forall_tac backtrack continue seq=
tclORELSE
(tclIFTHENELSE intro (wrap 0 true continue seq)
(tclORELSE
(tclTHEN introf (tclCOMPLETE (wrap 0 true continue seq)))
backtrack))
(if !qflag then
tclFAIL 0 (Pp.str "reversible in 1st order mode")
else
backtrack)
let left_exists_tac ind backtrack id continue seq gls=
let n=(construct_nhyps ind gls).(0) in
tclIFTHENELSE
(simplest_elim (constr_of_global id))
(tclTHENLIST [clear_global id;
tclDO n intro;
(wrap (n-1) false continue seq)])
backtrack
gls
let ll_forall_tac prod backtrack id continue seq=
tclORELSE
(tclTHENS (cut prod)
[tclTHENLIST
[intro;
(fun gls->
let id0=pf_nth_hyp_id gls 1 in
let term=mkApp((constr_of_global id),[|mkVar(id0)|]) in
tclTHEN (generalize [term]) (clear [id0]) gls);
clear_global id;
intro;
tclCOMPLETE (wrap 1 false continue (deepen seq))];
tclCOMPLETE (wrap 0 true continue (deepen seq))])
backtrack
(* rules for instantiation with unification moved to instances.ml *)
(* special for compatibility with old Intuition *)
let constant str = Coqlib.gen_constant "User" ["Init";"Logic"] str
let defined_connectives=lazy
[all_occurrences,EvalConstRef (destConst (constant "not"));
all_occurrences,EvalConstRef (destConst (constant "iff"))]
let normalize_evaluables=
onAllHypsAndConcl
(function
None->unfold_in_concl (Lazy.force defined_connectives)
| Some id ->
unfold_in_hyp (Lazy.force defined_connectives) (id,InHypTypeOnly))
|