summaryrefslogtreecommitdiff
path: root/plugins/extraction/mlutil.ml
blob: 9fdb0205f5c1694f6f5d77a1f08734fa74b5e5f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i*)
open Util
open Names
open Libnames
open Globnames
open Table
open Miniml
(*i*)

(*s Exceptions. *)

exception Found
exception Impossible

(*S Names operations. *)

let anonymous_name = Id.of_string "x"
let dummy_name = Id.of_string "_"

let anonymous = Id anonymous_name

let id_of_name = function
  | Anonymous -> anonymous_name
  | Name id when Id.equal id dummy_name -> anonymous_name
  | Name id -> id

let id_of_mlid = function
  | Dummy -> dummy_name
  | Id id -> id
  | Tmp id -> id

let tmp_id = function
  | Id id -> Tmp id
  | a -> a

let is_tmp = function Tmp _ -> true | _ -> false

(*S Operations upon ML types (with meta). *)

let meta_count = ref 0

let reset_meta_count () = meta_count := 0

let new_meta _ =
  incr meta_count;
  Tmeta {id = !meta_count; contents = None}

let rec eq_ml_type t1 t2 = match t1, t2 with
| Tarr (tl1, tr1), Tarr (tl2, tr2) ->
  eq_ml_type tl1 tl2 && eq_ml_type tr1 tr2
| Tglob (gr1, t1), Tglob (gr2, t2) ->
  eq_gr gr1 gr2 && List.equal eq_ml_type t1 t2
| Tvar i1, Tvar i2 -> Int.equal i1 i2
| Tvar' i1, Tvar' i2 -> Int.equal i1 i2
| Tmeta m1, Tmeta m2 -> eq_ml_meta m1 m2
| Tdummy k1, Tdummy k2 -> k1 == k2
| Tunknown, Tunknown -> true
| Taxiom, Taxiom -> true
| _ -> false

and eq_ml_meta m1 m2 =
 Int.equal m1.id m2.id && Option.equal eq_ml_type m1.contents m2.contents

(* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *)

let type_subst_list l t =
  let rec subst t = match t with
    | Tvar j -> List.nth l (j-1)
    | Tmeta {contents=None} -> t
    | Tmeta {contents=Some u} -> subst u
    | Tarr (a,b) -> Tarr (subst a, subst b)
    | Tglob (r, l) -> Tglob (r, List.map subst l)
    | a -> a
  in subst t

(* Simultaneous substitution of [[|Tvar 1; ... ; Tvar n|]] by [v] in a ML type. *)

let type_subst_vect v t =
  let rec subst t = match t with
    | Tvar j -> v.(j-1)
    | Tmeta {contents=None} -> t
    | Tmeta {contents=Some u} -> subst u
    | Tarr (a,b) -> Tarr (subst a, subst b)
    | Tglob (r, l) -> Tglob (r, List.map subst l)
    | a -> a
  in subst t

(*s From a type schema to a type. All [Tvar] become fresh [Tmeta]. *)

let instantiation (nb,t) = type_subst_vect (Array.init nb new_meta) t

(*s Occur-check of a free meta in a type *)

let rec type_occurs alpha t =
  match t with
  | Tmeta {id=beta; contents=None} -> Int.equal alpha beta
  | Tmeta {contents=Some u} -> type_occurs alpha u
  | Tarr (t1, t2) -> type_occurs alpha t1 || type_occurs alpha t2
  | Tglob (r,l) -> List.exists (type_occurs alpha) l
  | _ -> false

(*s Most General Unificator *)

let rec mgu = function
  | Tmeta m, Tmeta m' when Int.equal m.id m'.id -> ()
  | Tmeta m, t | t, Tmeta m ->
    (match m.contents with
      | Some u -> mgu (u, t)
      | None when type_occurs m.id t -> raise Impossible
      | None -> m.contents <- Some t)
  | Tarr(a, b), Tarr(a', b') ->
      mgu (a, a'); mgu (b, b')
  | Tglob (r,l), Tglob (r',l') when Globnames.eq_gr r r' ->
       List.iter mgu (List.combine l l')
  | (Tdummy _, _ | _, Tdummy _) when lang() == Haskell -> ()
  | Tdummy _, Tdummy _ -> ()
  | Tvar i, Tvar j when Int.equal i j -> ()
  | Tvar' i, Tvar' j when  Int.equal i j -> ()
  | Tunknown, Tunknown -> ()
  | Taxiom, Taxiom -> ()
  | _ -> raise Impossible

let needs_magic p = try mgu p; false with Impossible -> true

let put_magic_if b a = if b && lang () != Scheme then MLmagic a else a

let put_magic p a = if needs_magic p && lang () != Scheme then MLmagic a else a

let generalizable a =
  lang () != Ocaml ||
    match a with
      | MLapp _ -> false
      | _ -> true (* TODO, this is just an approximation for the moment *)

(*S ML type env. *)

module Mlenv = struct

  let meta_cmp m m' = compare m.id m'.id
  module Metaset = Set.Make(struct type t = ml_meta let compare = meta_cmp end)

  (* Main MLenv type. [env] is the real environment, whereas [free]
     (tries to) record the free meta variables occurring in [env]. *)

  type t = { env : ml_schema list; mutable free : Metaset.t}

  (* Empty environment. *)

  let empty = { env = []; free = Metaset.empty }

  (* [get] returns a instantiated copy of the n-th most recently added
     type in the environment. *)

  let get mle n =
    assert (List.length mle.env >= n);
    instantiation (List.nth mle.env (n-1))

  (* [find_free] finds the free meta in a type. *)

  let rec find_free set = function
    | Tmeta m when Option.is_empty m.contents -> Metaset.add m set
    | Tmeta {contents = Some t} -> find_free set t
    | Tarr (a,b) -> find_free (find_free set a) b
    | Tglob (_,l) -> List.fold_left find_free set l
    | _ -> set

  (* The [free] set of an environment can be outdate after
     some unifications. [clean_free] takes care of that. *)

  let clean_free mle =
    let rem = ref Metaset.empty
    and add = ref Metaset.empty in
    let clean m = match m.contents with
      | None -> ()
      | Some u -> rem := Metaset.add m !rem; add := find_free !add u
    in
    Metaset.iter clean mle.free;
    mle.free <- Metaset.union (Metaset.diff mle.free !rem) !add

  (* From a type to a type schema. If a [Tmeta] is still uninstantiated
     and does appears in the [mle], then it becomes a [Tvar]. *)

  let generalization mle t =
    let c = ref 0 in
    let map = ref (Int.Map.empty : int Int.Map.t) in
    let add_new i = incr c; map := Int.Map.add i !c !map; !c in
    let rec meta2var t = match t with
      | Tmeta {contents=Some u} -> meta2var u
      | Tmeta ({id=i} as m) ->
	  (try Tvar (Int.Map.find i !map)
	   with Not_found ->
	     if Metaset.mem m mle.free then t
	     else Tvar (add_new i))
      | Tarr (t1,t2) -> Tarr (meta2var t1, meta2var t2)
      | Tglob (r,l) -> Tglob (r, List.map meta2var l)
      | t -> t
    in !c, meta2var t

  (* Adding a type in an environment, after generalizing. *)

  let push_gen mle t =
    clean_free mle;
    { env = generalization mle t :: mle.env; free = mle.free }

  (* Adding a type with no [Tvar], hence no generalization needed. *)

  let push_type {env=e;free=f} t =
    { env = (0,t) :: e; free = find_free f t}

  (* Adding a type with no [Tvar] nor [Tmeta]. *)

  let push_std_type {env=e;free=f} t =
    { env = (0,t) :: e; free = f}

end

(*S Operations upon ML types (without meta). *)

(*s Does a section path occur in a ML type ? *)

let rec type_mem_kn kn = function
  | Tmeta {contents = Some t} -> type_mem_kn kn t
  | Tglob (r,l) -> occur_kn_in_ref kn r || List.exists (type_mem_kn kn) l
  | Tarr (a,b) -> (type_mem_kn kn a) || (type_mem_kn kn b)
  | _ -> false

(*s Greatest variable occurring in [t]. *)

let type_maxvar t =
  let rec parse n = function
    | Tmeta {contents = Some t} -> parse n t
    | Tvar i -> max i n
    | Tarr (a,b) -> parse (parse n a) b
    | Tglob (_,l) -> List.fold_left parse n l
    | _ -> n
  in parse 0 t

(*s From [a -> b -> c] to [[a;b],c]. *)

let rec type_decomp = function
  | Tmeta {contents = Some t} -> type_decomp t
  | Tarr (a,b) -> let l,h = type_decomp b in a::l, h
  | a -> [],a

(*s The converse: From [[a;b],c] to [a -> b -> c]. *)

let rec type_recomp (l,t) = match l with
  | [] -> t
  | a::l -> Tarr (a, type_recomp (l,t))

(*s Translating [Tvar] to [Tvar'] to avoid clash. *)

let rec var2var' = function
  | Tmeta {contents = Some t} -> var2var' t
  | Tvar i -> Tvar' i
  | Tarr (a,b) -> Tarr (var2var' a, var2var' b)
  | Tglob (r,l) -> Tglob (r, List.map var2var' l)
  | a -> a

type abbrev_map = global_reference -> ml_type option

(*s Delta-reduction of type constants everywhere in a ML type [t].
   [env] is a function of type [ml_type_env]. *)

let type_expand env t =
  let rec expand = function
    | Tmeta {contents = Some t} -> expand t
    | Tglob (r,l) ->
	(match env r with
	   | Some mlt -> expand (type_subst_list l mlt)
	   | None -> Tglob (r, List.map expand l))
    | Tarr (a,b) -> Tarr (expand a, expand b)
    | a -> a
  in if Table.type_expand () then expand t else t

let type_simpl = type_expand (fun _ -> None)

(*s Generating a signature from a ML type. *)

let type_to_sign env t = match type_expand env t with
  | Tdummy d when not (conservative_types ()) -> Kill d
  | _ -> Keep

let type_to_signature env t =
  let rec f = function
    | Tmeta {contents = Some t} -> f t
    | Tarr (Tdummy d, b) when not (conservative_types ())  -> Kill d :: f b
    | Tarr (_, b) -> Keep :: f b
    | _ -> []
  in f (type_expand env t)

let isKill = function Kill _ -> true | _ -> false

let isDummy = function Tdummy _ -> true | _ -> false

let sign_of_id = function
  | Dummy -> Kill Kother
  | _ -> Keep

(* Classification of signatures *)

type sign_kind =
  | EmptySig
  | NonLogicalSig (* at least a [Keep] *)
  | UnsafeLogicalSig (* No [Keep], at least a [Kill Kother] *)
  | SafeLogicalSig (* only [Kill Ktype] *)

let rec sign_kind = function
  | [] -> EmptySig
  | Keep :: _ -> NonLogicalSig
  | Kill k :: s ->
      match sign_kind s with
	| NonLogicalSig -> NonLogicalSig
	| UnsafeLogicalSig -> UnsafeLogicalSig
	| SafeLogicalSig | EmptySig ->
	    if k == Kother then UnsafeLogicalSig else SafeLogicalSig

(* Removing the final [Keep] in a signature *)

let rec sign_no_final_keeps = function
  | [] -> []
  | k :: s ->
      let s' = k :: sign_no_final_keeps s in
      match s' with [Keep] -> [] | _ -> s'

(*s Removing [Tdummy] from the top level of a ML type. *)

let type_expunge_from_sign env s t =
  let rec expunge s t =
    if List.is_empty s then t else match t with
      | Tmeta {contents = Some t} -> expunge s t
      | Tarr (a,b) ->
	  let t = expunge (List.tl s) b in
	  if List.hd s == Keep then Tarr (a, t) else t
      | Tglob (r,l) ->
	  (match env r with
	     | Some mlt -> expunge s (type_subst_list l mlt)
	     | None -> assert false)
      | _ -> assert false
  in
  let t = expunge (sign_no_final_keeps s) t in
  if lang () != Haskell && sign_kind s == UnsafeLogicalSig then
    Tarr (Tdummy Kother, t)
  else t

let type_expunge env t =
  type_expunge_from_sign env (type_to_signature env t) t

(*S Generic functions over ML ast terms. *)

let mlapp f a = if List.is_empty a then f else MLapp (f,a)

(** Equality *)

let eq_ml_ident i1 i2 = match i1, i2 with
| Dummy, Dummy -> true
| Id id1, Id id2 -> Id.equal id1 id2
| Tmp id1, Tmp id2 -> Id.equal id1 id2
| _ -> false

let rec eq_ml_ast t1 t2 = match t1, t2 with
| MLrel i1, MLrel i2 ->
  Int.equal i1 i2
| MLapp (f1, t1), MLapp (f2, t2) ->
  eq_ml_ast f1 f2 && List.equal eq_ml_ast t1 t2
| MLlam (na1, t1), MLlam (na2, t2) ->
  eq_ml_ident na1 na2 && eq_ml_ast t1 t2
| MLletin (na1, c1, t1), MLletin (na2, c2, t2) ->
  eq_ml_ident na1 na2 && eq_ml_ast c1 c2 && eq_ml_ast t1 t2
| MLglob gr1, MLglob gr2 -> eq_gr gr1 gr2
| MLcons (t1, gr1, c1), MLcons (t2, gr2, c2) ->
  eq_ml_type t1 t2 && eq_gr gr1 gr2 && List.equal eq_ml_ast c1 c2
| MLtuple t1, MLtuple t2 ->
  List.equal eq_ml_ast t1 t2
| MLcase (t1, c1, p1), MLcase (t2, c2, p2) ->
  eq_ml_type t1 t2 && eq_ml_ast c1 c2 && Array.equal eq_ml_branch p1 p2
| MLfix (i1, id1, t1), MLfix (i2, id2, t2) ->
  Int.equal i1 i2 && Array.equal Id.equal id1 id2 && Array.equal eq_ml_ast t1 t2
| MLexn e1, MLexn e2 -> String.equal e1 e2
| MLdummy, MLdummy -> true
| MLaxiom, MLaxiom -> true
| MLmagic t1, MLmagic t2 -> eq_ml_ast t1 t2
| _ -> false

and eq_ml_pattern p1 p2 = match p1, p2 with
| Pcons (gr1, p1), Pcons (gr2, p2) ->
  eq_gr gr1 gr2 && List.equal eq_ml_pattern p1 p2
| Ptuple p1, Ptuple p2 ->
  List.equal eq_ml_pattern p1 p2
| Prel i1, Prel i2 ->
  Int.equal i1 i2
| Pwild, Pwild -> true
| Pusual gr1, Pusual gr2 -> eq_gr gr1 gr2
| _ -> false

and eq_ml_branch (id1, p1, t1) (id2, p2, t2) =
  List.equal eq_ml_ident id1 id2 &&
  eq_ml_pattern p1 p2 &&
  eq_ml_ast t1 t2

(*s [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care
   of the number of bingings crossed before reaching the [MLrel]. *)

let ast_iter_rel f =
  let rec iter n = function
    | MLrel i -> f (i-n)
    | MLlam (_,a) -> iter (n+1) a
    | MLletin (_,a,b) -> iter n a; iter (n+1) b
    | MLcase (_,a,v) ->
	iter n a; Array.iter (fun (l,_,t) -> iter (n + (List.length l)) t) v
    | MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
    | MLapp (a,l) -> iter n a; List.iter (iter n) l
    | MLcons (_,_,l) | MLtuple l ->  List.iter (iter n) l
    | MLmagic a -> iter n a
    | MLglob _ | MLexn _ | MLdummy | MLaxiom -> ()
  in iter 0

(*s Map over asts. *)

let ast_map_branch f (c,ids,a) = (c,ids,f a)

(* Warning: in [ast_map] we assume that [f] does not change the type
   of [MLcons] and of [MLcase] heads *)

let ast_map f = function
  | MLlam (i,a) -> MLlam (i, f a)
  | MLletin (i,a,b) -> MLletin (i, f a, f b)
  | MLcase (typ,a,v) -> MLcase (typ,f a, Array.map (ast_map_branch f) v)
  | MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
  | MLapp (a,l) -> MLapp (f a, List.map f l)
  | MLcons (typ,c,l) -> MLcons (typ,c, List.map f l)
  | MLtuple l -> MLtuple (List.map f l)
  | MLmagic a -> MLmagic (f a)
  | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a

(*s Map over asts, with binding depth as parameter. *)

let ast_map_lift_branch f n (ids,p,a) = (ids,p, f (n+(List.length ids)) a)

(* Same warning as for [ast_map]... *)

let ast_map_lift f n = function
  | MLlam (i,a) -> MLlam (i, f (n+1) a)
  | MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
  | MLcase (typ,a,v) -> MLcase (typ,f n a,Array.map (ast_map_lift_branch f n) v)
  | MLfix (i,ids,v) ->
      let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
  | MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
  | MLcons (typ,c,l) -> MLcons (typ,c, List.map (f n) l)
  | MLtuple l -> MLtuple (List.map (f n) l)
  | MLmagic a -> MLmagic (f n a)
  | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a

(*s Iter over asts. *)

let ast_iter_branch f (c,ids,a) = f a

let ast_iter f = function
  | MLlam (i,a) -> f a
  | MLletin (i,a,b) -> f a; f b
  | MLcase (_,a,v) -> f a; Array.iter (ast_iter_branch f) v
  | MLfix (i,ids,v) -> Array.iter f v
  | MLapp (a,l) -> f a; List.iter f l
  | MLcons (_,_,l) | MLtuple l -> List.iter f l
  | MLmagic a -> f a
  | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom  -> ()

(*S Operations concerning De Bruijn indices. *)

(*s [ast_occurs k t] returns [true] if [(Rel k)] occurs in [t]. *)

let ast_occurs k t =
  try
    ast_iter_rel (fun i -> if Int.equal i k then raise Found) t; false
  with Found -> true

(*s [occurs_itvl k k' t] returns [true] if there is a [(Rel i)]
   in [t] with [k<=i<=k'] *)

let ast_occurs_itvl k k' t =
  try
    ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false
  with Found -> true

(* Number of occurences of [Rel 1] in [t], with special treatment of match:
   occurences in different branches aren't added, but we rather use max. *)

let nb_occur_match =
  let rec nb k = function
    | MLrel i -> if Int.equal i k then 1 else 0
    | MLcase(_,a,v) ->
        (nb k a) +
	Array.fold_left
	  (fun r (ids,_,a) -> max r (nb (k+(List.length ids)) a)) 0 v
    | MLletin (_,a,b) -> (nb k a) + (nb (k+1) b)
    | MLfix (_,ids,v) -> let k = k+(Array.length ids) in
      Array.fold_left (fun r a -> r+(nb k a)) 0 v
    | MLlam (_,a) -> nb (k+1) a
    | MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l
    | MLcons (_,_,l) | MLtuple l -> List.fold_left (fun r a -> r+(nb k a)) 0 l
    | MLmagic a -> nb k a
    | MLglob _ | MLexn _ | MLdummy | MLaxiom -> 0
  in nb 1

(*s Lifting on terms.
    [ast_lift k t] lifts the binding depth of [t] across [k] bindings. *)

let ast_lift k t =
  let rec liftrec n = function
    | MLrel i as a -> if i-n < 1 then a else MLrel (i+k)
    | a -> ast_map_lift liftrec n a
  in if Int.equal k 0 then t else liftrec 0 t

let ast_pop t = ast_lift (-1) t

(*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ...
  Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *)

let permut_rels k k' =
  let rec permut n = function
    | MLrel i as a ->
	let i' = i-n in
	if i'<1 || i'>k+k' then a
	else if i'<=k then MLrel (i+k')
	else MLrel (i-k)
    | a -> ast_map_lift permut n a
  in permut 0

(*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t].
    Lifting (of one binder) is done at the same time. *)

let ast_subst e =
  let rec subst n = function
    | MLrel i as a ->
	let i' = i-n in
	if Int.equal i' 1 then ast_lift n e
	else if i'<1 then a
	else MLrel (i-1)
    | a -> ast_map_lift subst n a
  in subst 0

(*s Generalized substitution.
   [gen_subst v d t] applies to [t] the substitution coded in the
   [v] array: [(Rel i)] becomes [v.(i-1)]. [d] is the correction applies
   to [Rel] greater than [Array.length v]. *)

let gen_subst v d t =
  let rec subst n = function
    | MLrel i as a ->
	let i'= i-n in
	if i' < 1 then a
	else if i' <= Array.length v then
	  match v.(i'-1) with
	    | None -> MLexn ("UNBOUND " ^ string_of_int i')
	    | Some u -> ast_lift n u
	else MLrel (i+d)
    | a -> ast_map_lift subst n a
  in subst 0 t

(*S Operations concerning match patterns *)

let is_basic_pattern = function
  | Prel _ | Pwild -> true
  | Pusual _ | Pcons _ | Ptuple _ -> false

let has_deep_pattern br =
  let deep = function
    | Pcons (_,l) | Ptuple l -> not (List.for_all is_basic_pattern l)
    | Pusual _ | Prel _ | Pwild -> false
  in
  Array.exists (function (_,pat,_) -> deep pat) br

let is_regular_match br =
  if Array.is_empty br then false (* empty match becomes MLexn *)
  else
    try
      let get_r (ids,pat,c) =
	match pat with
	  | Pusual r -> r
	  | Pcons (r,l) ->
            let is_rel i = function Prel j -> Int.equal i j | _ -> false in
	    if not (List.for_all_i is_rel 1 (List.rev l))
	    then raise Impossible;
	    r
	  | _ -> raise Impossible
      in
      let ind = match get_r br.(0) with
	| ConstructRef (ind,_) -> ind
	| _ -> raise Impossible
      in
      let is_ref i tr = match get_r tr with
      | ConstructRef (ind', j) -> eq_ind ind ind' && Int.equal j (i + 1)
      | _ -> false
      in
      Array.for_all_i is_ref 0 br
    with Impossible -> false

(*S Operations concerning lambdas. *)

(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
    [[idn;...;id1]] and the term [t]. *)

let collect_lams =
  let rec collect acc = function
    | MLlam(id,t) -> collect (id::acc) t
    | x           -> acc,x
  in collect []

(*s [collect_n_lams] does the same for a precise number of [MLlam]. *)

let collect_n_lams =
  let rec collect acc n t =
    if Int.equal n 0 then acc,t
    else match t with
      | MLlam(id,t) -> collect (id::acc) (n-1) t
      | _ -> assert false
  in collect []

(*s [remove_n_lams] just removes some [MLlam]. *)

let rec remove_n_lams n t =
  if Int.equal n 0 then t
  else match t with
      | MLlam(_,t) -> remove_n_lams (n-1) t
      | _ -> assert false

(*s [nb_lams] gives the number of head [MLlam]. *)

let rec nb_lams = function
  | MLlam(_,t) -> succ (nb_lams t)
  | _ -> 0

(*s [named_lams] does the converse of [collect_lams]. *)

let rec named_lams ids a = match ids with
  | [] -> a
  | id :: ids -> named_lams ids (MLlam (id,a))

(*s The same for a specific identifier (resp. anonymous, dummy) *)

let rec many_lams id a = function
  | 0 -> a
  | n -> many_lams id (MLlam (id,a)) (pred n)

let anonym_tmp_lams a n = many_lams (Tmp anonymous_name) a n
let dummy_lams a n = many_lams Dummy a n

(*s mixed according to a signature. *)

let rec anonym_or_dummy_lams a = function
  | [] -> a
  | Keep :: s -> MLlam(anonymous, anonym_or_dummy_lams a s)
  | Kill _ :: s -> MLlam(Dummy, anonym_or_dummy_lams a s)

(*S Operations concerning eta. *)

(*s The following function creates [MLrel n;...;MLrel 1] *)

let rec eta_args n =
  if Int.equal n 0 then [] else (MLrel n)::(eta_args (pred n))

(*s Same, but filtered by a signature. *)

let rec eta_args_sign n = function
  | [] -> []
  | Keep :: s -> (MLrel n) :: (eta_args_sign (n-1) s)
  | Kill _ :: s -> eta_args_sign (n-1) s

(*s This one tests [MLrel (n+k); ... ;MLrel (1+k)] *)

let rec test_eta_args_lift k n = function
  | [] -> Int.equal n 0
  | MLrel m :: q -> Int.equal (k+n) m && (test_eta_args_lift k (pred n) q)
  | _ -> false

(*s Computes an eta-reduction. *)

let eta_red e =
  let ids,t = collect_lams e in
  let n = List.length ids in
  if Int.equal n 0 then e
  else match t with
    | MLapp (f,a) ->
	let m = List.length a in
	let ids,body,args =
	  if Int.equal m n then
	    [], f, a
	  else if m < n then
	    List.skipn m ids, f, a
	  else (* m > n *)
	    let a1,a2 = List.chop (m-n) a in
	    [], MLapp (f,a1), a2
	in
	let p = List.length args in
	if test_eta_args_lift 0 p args && not (ast_occurs_itvl 1 p body)
	then named_lams ids (ast_lift (-p) body)
	else e
    | _ -> e

(*s Computes all head linear beta-reductions possible in [(t a)].
  Non-linear head beta-redex become let-in. *)

let rec linear_beta_red a t = match a,t with
  | [], _ -> t
  | a0::a, MLlam (id,t) ->
      (match nb_occur_match t with
	 | 0 -> linear_beta_red a (ast_pop t)
	 | 1 -> linear_beta_red a (ast_subst a0 t)
	 | _ ->
	     let a = List.map (ast_lift 1) a in
	     MLletin (id, a0, linear_beta_red a t))
  | _ -> MLapp (t, a)

let rec tmp_head_lams = function
  | MLlam (id, t) -> MLlam (tmp_id id, tmp_head_lams t)
  | e -> e

(*s Applies a substitution [s] of constants by their body, plus
  linear beta reductions at modified positions.
  Moreover, we mark some lambdas as suitable for later linear
  reduction (this helps the inlining of recursors).
*)

let rec ast_glob_subst s t = match t with
  | MLapp ((MLglob ((ConstRef kn) as refe)) as f, a) ->
      let a = List.map (fun e -> tmp_head_lams (ast_glob_subst s e)) a in
      (try linear_beta_red a (Refmap'.find refe s)
       with Not_found -> MLapp (f, a))
  | MLglob ((ConstRef kn) as refe) ->
      (try Refmap'.find refe s with Not_found -> t)
  | _ -> ast_map (ast_glob_subst s) t


(*S Auxiliary functions used in simplification of ML cases. *)

(* Factorisation of some match branches into a common "x -> f x"
   branch may break types sometimes. Example: [type 'x a = A].
   Then [let id = function A -> A] has type ['x a -> 'y a],
   which is incompatible with the type of [let id x = x].
   We now check that the type arguments of the inductive are
   preserved by our transformation.

   TODO: this verification should be done someday modulo
   expansion of type definitions.
*)

(*s [branch_as_function b typ (l,p,c)] tries to see branch [c]
  as a function [f] applied to [MLcons(r,l)]. For that it transforms
  any [MLcons(r,l)] in [MLrel 1] and raises [Impossible]
  if any variable in [l] occurs outside such a [MLcons] *)

let branch_as_fun typ (l,p,c) =
  let nargs = List.length l in
  let cons = match p with
    | Pusual r -> MLcons (typ, r, eta_args nargs)
    | Pcons (r,pl) ->
      let pat2rel = function Prel i -> MLrel i | _ -> raise Impossible in
      MLcons (typ, r, List.map pat2rel pl)
    | _ -> raise Impossible
  in
  let rec genrec n = function
    | MLrel i as c ->
	let i' = i-n in
	if i'<1 then c
	else if i'>nargs then MLrel (i-nargs+1)
	else raise Impossible
    | MLcons _ as cons' when eq_ml_ast cons' (ast_lift n cons) -> MLrel (n+1)
    | a -> ast_map_lift genrec n a
  in genrec 0 c

(*s [branch_as_cst (l,p,c)] tries to see branch [c] as a constant
   independent from the pattern [MLcons(r,l)]. For that is raises [Impossible]
   if any variable in [l] occurs in [c], and otherwise returns [c] lifted to
   appear like a function with one arg (for uniformity with [branch_as_fun]).
   NB: [MLcons(r,l)] might occur nonetheless in [c], but only when [l] is
   empty, i.e. when [r] is a constant constructor
*)

let branch_as_cst (l,_,c) =
  let n = List.length l in
  if ast_occurs_itvl 1 n c then raise Impossible;
  ast_lift (1-n) c

(* A branch [MLcons(r,l)->c] can be seen at the same time as a function
   branch and a constant branch, either because:
   - [MLcons(r,l)] doesn't occur in [c]. For example : "A -> B"
   - this constructor is constant (i.e. [l] is empty). For example "A -> A"
   When searching for the best factorisation below, we'll try both.
*)

(* The following structure allows recording which element occurred
   at what position, and then finally return the most frequent
   element and its positions. *)

let census_add, census_max, census_clean =
  let h = ref [] in
  let clearf () = h := [] in
  let rec add k v = function
  | [] -> raise Not_found
  | (k', s) as p :: l ->
    if eq_ml_ast k k' then (k', Int.Set.add v s) :: l
    else p :: add k v l
  in
  let addf k i =
    try h := add k i !h
    with Not_found -> h := (k, Int.Set.singleton i) :: !h
  in
  let maxf k =
    let len = ref 0 and lst = ref Int.Set.empty and elm = ref k in
    List.iter
      (fun (e, s) ->
	 let n = Int.Set.cardinal s in
	 if n > !len then begin len := n; lst := s; elm := e end)
      !h;
    (!elm,!lst)
  in
  (addf,maxf,clearf)

(* [factor_branches] return the longest possible list of branches
   that have the same factorization, either as a function or as a
   constant.
*)

let is_opt_pat (_,p,_) = match p with
  | Prel _ | Pwild -> true
  | _ -> false

let factor_branches o typ br =
  if Array.exists is_opt_pat br then None (* already optimized *)
  else begin
    census_clean ();
    for i = 0 to Array.length br - 1 do
      if o.opt_case_idr then
	(try census_add (branch_as_fun typ br.(i)) i with Impossible -> ());
      if o.opt_case_cst then
	(try census_add (branch_as_cst br.(i)) i with Impossible -> ());
    done;
    let br_factor, br_set = census_max MLdummy in
    census_clean ();
    let n = Int.Set.cardinal br_set in
    if Int.equal n 0 then None
    else if Array.length br >= 2 && n < 2 then None
    else Some (br_factor, br_set)
  end

(*s If all branches are functions, try to permut the case and the functions. *)

let rec merge_ids ids ids' = match ids,ids' with
  | [],l -> l
  | l,[] -> l
  | i::ids, i'::ids' ->
      (if i == Dummy then i' else i) :: (merge_ids ids ids')

let is_exn = function MLexn _ -> true | _ -> false

let permut_case_fun br acc =
  let nb = ref max_int in
  Array.iter (fun (_,_,t) ->
		let ids, c = collect_lams t in
		let n = List.length ids in
		if (n < !nb) && (not (is_exn c)) then nb := n) br;
  if Int.equal !nb  max_int || Int.equal !nb 0 then ([],br)
  else begin
    let br = Array.copy br in
    let ids = ref [] in
    for i = 0 to Array.length br - 1 do
      let (l,p,t) = br.(i) in
      let local_nb = nb_lams t in
      if local_nb < !nb then (* t = MLexn ... *)
	br.(i) <- (l,p,remove_n_lams local_nb t)
      else begin
	let local_ids,t = collect_n_lams !nb t in
	ids := merge_ids !ids local_ids;
	br.(i) <- (l,p,permut_rels !nb (List.length l) t)
      end
    done;
    (!ids,br)
  end

(*S Generalized iota-reduction. *)

(* Definition of a generalized iota-redex: it's a [MLcase(e,br)]
   where the head [e] is a [MLcons] or made of [MLcase]'s with
   [MLcons] as leaf branches.
   A generalized iota-redex is transformed into beta-redexes. *)

(* In [iota_red], we try to simplify a [MLcase(_,MLcons(typ,r,a),br)].
   Argument [i] is the branch we consider, we should lift what
   comes from [br] by [lift] *)

let rec iota_red i lift br ((typ,r,a) as cons) =
  if i >= Array.length br then raise Impossible;
  let (ids,p,c) = br.(i) in
  match p with
    | Pusual r' | Pcons (r',_) when not (Globnames.eq_gr r' r) -> iota_red (i+1) lift br cons
    | Pusual r' ->
      let c = named_lams (List.rev ids) c in
      let c = ast_lift lift c
      in MLapp (c,a)
    | Prel 1 when Int.equal (List.length ids) 1 ->
      let c = MLlam (List.hd ids, c) in
      let c = ast_lift lift c
      in MLapp(c,[MLcons(typ,r,a)])
    | Pwild when List.is_empty ids -> ast_lift lift c
    | _ -> raise Impossible (* TODO: handle some more cases *)

(* [iota_gen] is an extension of [iota_red] where we allow to
   traverse matches in the head of the first match *)

let iota_gen br hd =
  let rec iota k = function
    | MLcons (typ,r,a) -> iota_red 0 k br (typ,r,a)
    | MLcase(typ,e,br') ->
	let new_br =
	  Array.map (fun (i,p,c)->(i,p,iota (k+(List.length i)) c)) br'
	in MLcase(typ,e,new_br)
    | _ -> raise Impossible
  in iota 0 hd

let is_atomic = function
  | MLrel _ | MLglob _ | MLexn _ | MLdummy -> true
  | _ -> false

let is_imm_apply = function MLapp (MLrel 1, _) -> true | _ -> false

(** Program creates a let-in named "program_branch_NN" for each branch of match.
    Unfolding them leads to more natural code (and more dummy removal) *)

let is_program_branch = function
  | Tmp _ | Dummy -> false
  | Id id ->
    let s = Id.to_string id in
    try Scanf.sscanf s "program_branch_%d%!" (fun _ -> true)
    with Scanf.Scan_failure _ | End_of_file -> false

let expand_linear_let o id e =
   o.opt_lin_let || is_tmp id || is_program_branch id || is_imm_apply e

(*S The main simplification function. *)

(* Some beta-iota reductions + simplifications. *)

let rec simpl o = function
  | MLapp (f, []) -> simpl o f
  | MLapp (f, a) -> simpl_app o (List.map (simpl o) a) (simpl o f)
  | MLcase (typ,e,br) ->
      let br = Array.map (fun (l,p,t) -> (l,p,simpl o t)) br in
      simpl_case o typ br (simpl o e)
  | MLletin(Dummy,_,e) -> simpl o (ast_pop e)
  | MLletin(id,c,e) ->
      let e = simpl o e in
      if
	(is_atomic c) || (is_atomic e) ||
	(let n = nb_occur_match e in
	 (Int.equal n 0 || (Int.equal n 1 && expand_linear_let o id e)))
      then
	simpl o (ast_subst c e)
      else
	MLletin(id, simpl o c, e)
  | MLfix(i,ids,c) ->
      let n = Array.length ids in
      if ast_occurs_itvl 1 n c.(i) then
	MLfix (i, ids, Array.map (simpl o) c)
      else simpl o (ast_lift (-n) c.(i)) (* Dummy fixpoint *)
  | a -> ast_map (simpl o) a

(* invariant : list [a] of arguments is non-empty *)

and simpl_app o a = function
  | MLapp (f',a') -> simpl_app o (a'@a) f'
  | MLlam (Dummy,t) ->
      simpl o (MLapp (ast_pop t, List.tl a))
  | MLlam (id,t) -> (* Beta redex *)
      (match nb_occur_match t with
	 | 0 -> simpl o (MLapp (ast_pop t, List.tl a))
	 | 1 when (is_tmp id || o.opt_lin_beta) ->
	     simpl o (MLapp (ast_subst (List.hd a) t, List.tl a))
	 | _ ->
	     let a' = List.map (ast_lift 1) (List.tl a) in
	     simpl o (MLletin (id, List.hd a, MLapp (t, a'))))
  | MLletin (id,e1,e2) when o.opt_let_app ->
      (* Application of a letin: we push arguments inside *)
      MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a)))
  | MLcase (typ,e,br) when o.opt_case_app ->
      (* Application of a case: we push arguments inside *)
      let br' =
	Array.map
	  (fun (l,p,t) ->
	     let k = List.length l in
	     let a' = List.map (ast_lift k) a in
	     (l, p, simpl o (MLapp (t,a')))) br
      in simpl o (MLcase (typ,e,br'))
  | (MLdummy | MLexn _) as e -> e
	(* We just discard arguments in those cases. *)
  | f -> MLapp (f,a)

(* Invariant : all empty matches should now be [MLexn] *)

and simpl_case o typ br e =
  try
    (* Generalized iota-redex *)
    if not o.opt_case_iot then raise Impossible;
    simpl o (iota_gen br e)
  with Impossible ->
    (* Swap the case and the lam if possible *)
    let ids,br = if o.opt_case_fun then permut_case_fun br [] else [],br in
    let n = List.length ids in
    if not (Int.equal n 0) then
      simpl o (named_lams ids (MLcase (typ, ast_lift n e, br)))
    else
      (* Can we merge several branches as the same constant or function ? *)
      if lang() == Scheme || is_custom_match br
      then MLcase (typ, e, br)
      else match factor_branches o typ br with
	| Some (f,ints) when Int.equal (Int.Set.cardinal ints) (Array.length br) ->
	  (* If all branches have been factorized, we remove the match *)
	  simpl o (MLletin (Tmp anonymous_name, e, f))
	| Some (f,ints) ->
	  let last_br =
	    if ast_occurs 1 f then ([Tmp anonymous_name], Prel 1, f)
	    else ([], Pwild, ast_pop f)
	  in
	  let brl = Array.to_list br in
	  let brl_opt = List.filteri (fun i _ -> not (Int.Set.mem i ints)) brl in
	  let brl_opt = brl_opt @ [last_br] in
	  MLcase (typ, e, Array.of_list brl_opt)
	| None -> MLcase (typ, e, br)

(*S Local prop elimination. *)
(* We try to eliminate as many [prop] as possible inside an [ml_ast]. *)

(*s In a list, it selects only the elements corresponding to a [Keep]
   in the boolean list [l]. *)

let rec select_via_bl l args = match l,args with
  | [],_ -> args
  | Keep::l,a::args -> a :: (select_via_bl l args)
  | Kill _::l,a::args -> select_via_bl l args
  | _ -> assert false

(*s [kill_some_lams] removes some head lambdas according to the signature [bl].
   This list is build on the identifier list model: outermost lambda
   is on the right.
   [Rels] corresponding to removed lambdas are supposed not to occur, and
   the other [Rels] are made correct via a [gen_subst].
   Output is not directly a [ml_ast], compose with [named_lams] if needed. *)

let kill_some_lams bl (ids,c) =
  let n = List.length bl in
  let n' = List.fold_left (fun n b -> if b == Keep then (n+1) else n) 0 bl in
  if Int.equal n n' then ids,c
  else if Int.equal n' 0 then [],ast_lift (-n) c
  else begin
    let v = Array.make n None in
    let rec parse_ids i j = function
      | [] -> ()
      | Keep :: l -> v.(i) <- Some (MLrel j); parse_ids (i+1) (j+1) l
      | Kill _ :: l -> parse_ids (i+1) j l
    in parse_ids 0 1 bl;
    select_via_bl bl ids, gen_subst v (n'-n) c
  end

(*s [kill_dummy_lams] uses the last function to kill the lambdas corresponding
  to a [dummy_name]. It can raise [Impossible] if there is nothing to do, or
  if there is no lambda left at all. *)

let kill_dummy_lams c =
  let ids,c = collect_lams c in
  let bl = List.map sign_of_id ids in
  if not (List.memq Keep bl) then raise Impossible;
  let rec fst_kill n = function
    | [] -> raise Impossible
    | Kill _ :: bl -> n
    | Keep :: bl -> fst_kill (n+1) bl
  in
  let skip = max 0 ((fst_kill 0 bl) - 1) in
  let ids_skip, ids = List.chop skip ids in
  let _, bl = List.chop skip bl in
  let c = named_lams ids_skip c in
  let ids',c = kill_some_lams bl (ids,c) in
  ids, named_lams ids' c

(*s [eta_expansion_sign] takes a function [fun idn ... id1 -> c]
   and a signature [s] and builds a eta-long version. *)

(* For example, if [s = [Keep;Keep;Kill Prop;Keep]] then the output is :
   [fun idn ... id1 x x _ x -> (c' 4 3 __ 1)]  with [c' = lift 4 c] *)

let eta_expansion_sign s (ids,c) =
  let rec abs ids rels i = function
    | [] ->
	let a = List.rev_map (function MLrel x -> MLrel (i-x) | a -> a) rels
	in ids, MLapp (ast_lift (i-1) c, a)
    | Keep :: l -> abs (anonymous :: ids) (MLrel i :: rels) (i+1) l
    | Kill _ :: l -> abs (Dummy :: ids) (MLdummy :: rels) (i+1) l
  in abs ids [] 1 s

(*s If [s = [b1; ... ; bn]] then [case_expunge] decomposes [e]
  in [n] lambdas (with eta-expansion if needed) and removes all dummy lambdas
  corresponding to [Del] in [s]. *)

let case_expunge s e =
  let m = List.length s in
  let n = nb_lams e in
  let p = if m <= n then collect_n_lams m e
  else eta_expansion_sign (List.skipn n s) (collect_lams e) in
  kill_some_lams (List.rev s) p

(*s [term_expunge] takes a function [fun idn ... id1 -> c]
  and a signature [s] and remove dummy lams. The difference
  with [case_expunge] is that we here leave one dummy lambda
  if all lambdas are logical dummy and the target language is strict. *)

let term_expunge s (ids,c) =
  if List.is_empty s then c
  else
    let ids,c = kill_some_lams (List.rev s) (ids,c) in
    if List.is_empty ids && lang () != Haskell && List.mem (Kill Kother) s then
      MLlam (Dummy, ast_lift 1 c)
    else named_lams ids c

(*s [kill_dummy_args ids r t] looks for occurences of [MLrel r] in [t] and
  purge the args of [MLrel r] corresponding to a [dummy_name].
  It makes eta-expansion if needed. *)

let kill_dummy_args ids r t =
  let m = List.length ids in
  let bl = List.rev_map sign_of_id ids in
  let rec found n = function
    | MLrel r' when Int.equal r' (r + n) -> true
    | MLmagic e -> found n e
    | _ -> false
  in
  let rec killrec n = function
    | MLapp(e, a) when found n e ->
	let k = max 0 (m - (List.length a)) in
	let a = List.map (killrec n) a in
	let a = List.map (ast_lift k) a in
	let a = select_via_bl bl (a @ (eta_args k)) in
	named_lams (List.firstn k ids) (MLapp (ast_lift k e, a))
    | e when found n e ->
	let a = select_via_bl bl (eta_args m) in
	named_lams ids (MLapp (ast_lift m e, a))
    | e -> ast_map_lift killrec n e
  in killrec 0 t

(*s The main function for local [dummy] elimination. *)

let rec kill_dummy = function
  | MLfix(i,fi,c) ->
      (try
	 let ids,c = kill_dummy_fix i c in
	 ast_subst (MLfix (i,fi,c)) (kill_dummy_args ids 1 (MLrel 1))
       with Impossible -> MLfix (i,fi,Array.map kill_dummy c))
  | MLapp (MLfix (i,fi,c),a) ->
      let a = List.map kill_dummy a in
      (try
	 let ids,c = kill_dummy_fix i c in
	 let fake = MLapp (MLrel 1, List.map (ast_lift 1) a) in
	 let fake' = kill_dummy_args ids 1 fake in
	 ast_subst (MLfix (i,fi,c)) fake'
       with Impossible -> MLapp(MLfix(i,fi,Array.map kill_dummy c),a))
  | MLletin(id, MLfix (i,fi,c),e) ->
      (try
	 let ids,c = kill_dummy_fix i c in
	 let e = kill_dummy (kill_dummy_args ids 1 e) in
	 MLletin(id, MLfix(i,fi,c),e)
      with Impossible ->
	MLletin(id, MLfix(i,fi,Array.map kill_dummy c),kill_dummy e))
  | MLletin(id,c,e) ->
      (try
	 let ids,c = kill_dummy_lams (kill_dummy_hd c) in
	 let e = kill_dummy (kill_dummy_args ids 1 e) in
	 let c = kill_dummy c in
	 if is_atomic c then ast_subst c e else MLletin (id, c, e)
       with Impossible -> MLletin(id,kill_dummy c,kill_dummy e))
  | a -> ast_map kill_dummy a

(* Similar function, but acting only on head lambdas and let-ins *)

and kill_dummy_hd = function
  | MLlam(id,e) -> MLlam(id, kill_dummy_hd e)
  | MLletin(id,c,e) ->
      (try
	 let ids,c = kill_dummy_lams (kill_dummy_hd c) in
	 let e = kill_dummy_hd (kill_dummy_args ids 1 e) in
	 let c = kill_dummy c in
	 if is_atomic c then ast_subst c e else MLletin (id, c, e)
       with Impossible -> MLletin(id,kill_dummy c,kill_dummy_hd e))
  | a -> a

and kill_dummy_fix i c =
  let n = Array.length c in
  let ids,ci = kill_dummy_lams (kill_dummy_hd c.(i)) in
  let c = Array.copy c in c.(i) <- ci;
  for j = 0 to (n-1) do
    c.(j) <- kill_dummy (kill_dummy_args ids (n-i) c.(j))
  done;
  ids,c

(*s Putting things together. *)

let normalize a =
  let o = optims () in
  let rec norm a =
    let a' = if o.opt_kill_dum then kill_dummy (simpl o a) else simpl o a in
    if eq_ml_ast a a' then a else norm a'
  in norm a

(*S Special treatment of fixpoint for pretty-printing purpose. *)

let general_optimize_fix f ids n args m c =
  let v = Array.make n 0 in
  for i=0 to (n-1) do v.(i)<-i done;
  let aux i = function
    | MLrel j when v.(j-1)>=0 ->
	if ast_occurs (j+1) c then raise Impossible else v.(j-1)<-(-i-1)
    | _ -> raise Impossible
  in List.iteri aux args;
  let args_f = List.rev_map (fun i -> MLrel (i+m+1)) (Array.to_list v) in
  let new_f = anonym_tmp_lams (MLapp (MLrel (n+m+1),args_f)) m in
  let new_c = named_lams ids (normalize (MLapp ((ast_subst new_f c),args))) in
  MLfix(0,[|f|],[|new_c|])

let optimize_fix a =
  if not (optims()).opt_fix_fun then a
  else
    let ids,a' = collect_lams a in
    let n = List.length ids in
    if Int.equal n 0 then a
    else match a' with
      | MLfix(_,[|f|],[|c|]) ->
	  let new_f = MLapp (MLrel (n+1),eta_args n) in
	  let new_c = named_lams ids (normalize (ast_subst new_f c))
	  in MLfix(0,[|f|],[|new_c|])
      | MLapp(a',args) ->
	  let m = List.length args in
	  (match a' with
	     | MLfix(_,_,_) when
		 (test_eta_args_lift 0 n args) && not (ast_occurs_itvl 1 m a')
		 -> a'
	     | MLfix(_,[|f|],[|c|]) ->
		 (try general_optimize_fix f ids n args m c
		  with Impossible -> a)
	     | _ -> a)
      | _ -> a

(*S Inlining. *)

(* Utility functions used in the decision of inlining. *)

let ml_size_branch size pv = Array.fold_left (fun a (_,_,t) -> a + size t) 0 pv

let rec ml_size = function
  | MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
  | MLlam(_,t) -> 1 + ml_size t
  | MLcons(_,_,l) | MLtuple l -> ml_size_list l
  | MLcase(_,t,pv) -> 1 + ml_size t + ml_size_branch ml_size pv
  | MLfix(_,_,f) -> ml_size_array f
  | MLletin (_,_,t) -> ml_size t
  | MLmagic t -> ml_size t
  | MLglob _ | MLrel _ | MLexn _ | MLdummy | MLaxiom -> 0

and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l

and ml_size_array a = Array.fold_left (fun a t -> a + ml_size t) 0 a

let is_fix = function MLfix _ -> true | _ -> false

(*s Strictness *)

(* A variable is strict if the evaluation of the whole term implies
   the evaluation of this variable. Non-strict variables can be found
   behind Match, for example. Expanding a term [t] is a good idea when
   it begins by at least one non-strict lambda, since the corresponding
   argument to [t] might be unevaluated in the expanded code. *)

exception Toplevel

let lift n l = List.map ((+) n) l

let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l

(* This function returns a list of de Bruijn indices of non-strict variables,
   or raises [Toplevel] if it has an internal non-strict variable.
   In fact, not all variables are checked for strictness, only the ones which
   de Bruijn index is in the candidates list [cand]. The flag [add] controls
   the behaviour when going through a lambda: should we add the corresponding
   variable to the candidates?  We use this flag to check only the external
   lambdas, those that will correspond to arguments. *)

let rec non_stricts add cand = function
  | MLlam (id,t) ->
      let cand = lift 1 cand in
      let cand = if add then 1::cand else cand in
      pop 1 (non_stricts add cand t)
  | MLrel n ->
      List.filter (fun m -> not (Int.equal m n)) cand
  | MLapp (t,l)->
      let cand = non_stricts false cand t in
      List.fold_left (non_stricts false) cand l
  | MLcons (_,_,l) ->
      List.fold_left (non_stricts false) cand l
  | MLletin (_,t1,t2) ->
      let cand = non_stricts false cand t1 in
      pop 1 (non_stricts add (lift 1 cand) t2)
  | MLfix (_,i,f)->
      let n = Array.length i in
      let cand = lift n cand in
      let cand = Array.fold_left (non_stricts false) cand f in
      pop n cand
  | MLcase (_,t,v) ->
      (* The only interesting case: for a variable to be non-strict, *)
      (* it is sufficient that it appears non-strict in at least one branch, *)
      (* so we make an union (in fact a merge). *)
      let cand = non_stricts false cand t in
      Array.fold_left
	(fun c (i,_,t)->
	   let n = List.length i in
	   let cand = lift n cand in
	   let cand = pop n (non_stricts add cand t) in
	   List.merge Int.compare cand c) [] v
	(* [merge] may duplicates some indices, but I don't mind. *)
  | MLmagic t ->
      non_stricts add cand t
  | _ ->
      cand

(* The real test: we are looking for internal non-strict variables, so we start
   with no candidates, and the only positive answer is via the [Toplevel]
   exception. *)

let is_not_strict t =
  try let _ = non_stricts true [] t in false
  with Toplevel -> true

(*s Inlining decision *)

(* [inline_test] answers the following question:
   If we could inline [t] (the user said nothing special),
   should we inline ?

   We expand small terms with at least one non-strict
   variable (i.e. a variable that may not be evaluated).

   Futhermore we don't expand fixpoints.

   Moreover, as mentionned by X. Leroy (bug #2241),
   inling a constant from inside an opaque module might
   break types. To avoid that, we require below that
   both [r] and its body are globally visible. This isn't
   fully satisfactory, since [r] might not be visible (functor),
   and anyway it might be interesting to inline [r] at least
   inside its own structure. But to be safe, we adopt this
   restriction for the moment.
*)

open Declareops

let inline_test r t =
  if not (auto_inline ()) then false
  else
    let c = match r with ConstRef c -> c | _ -> assert false in
    let has_body =
      try constant_has_body (Global.lookup_constant c)
      with Not_found -> false
    in
    has_body &&
      (let t1 = eta_red t in
       let t2 = snd (collect_lams t1) in
       not (is_fix t2) && ml_size t < 12 && is_not_strict t)

let con_of_string s =
  let d, id = Libnames.split_dirpath (dirpath_of_string s) in
  Constant.make2 (MPfile d) (Label.of_id id)

let manual_inline_set =
  List.fold_right (fun x -> Cset_env.add (con_of_string x))
    [ "Coq.Init.Wf.well_founded_induction_type";
      "Coq.Init.Wf.well_founded_induction";
      "Coq.Init.Wf.Acc_iter";
      "Coq.Init.Wf.Fix_F";
      "Coq.Init.Wf.Fix";
      "Coq.Init.Datatypes.andb";
      "Coq.Init.Datatypes.orb";
      "Coq.Init.Logic.eq_rec_r";
      "Coq.Init.Logic.eq_rect_r";
      "Coq.Init.Specif.proj1_sig";
    ]
    Cset_env.empty

let manual_inline = function
  | ConstRef c -> Cset_env.mem c manual_inline_set
  | _ -> false

(* If the user doesn't say he wants to keep [t], we inline in two cases:
   \begin{itemize}
   \item the user explicitly requests it
   \item [expansion_test] answers that the inlining is a good idea, and
   we are free to act (AutoInline is set)
   \end{itemize} *)

let inline r t =
  not (to_keep r) (* The user DOES want to keep it *)
  && not (is_inline_custom r)
  && (to_inline r (* The user DOES want to inline it *)
     || (lang () != Haskell && not (is_projection r) &&
         (is_recursor r || manual_inline r || inline_test r t)))