1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Util
open Names
open Term
open Vars
open Context
open Declarations
open Declareops
open Environ
open Reduction
open Reductionops
open Inductive
open Termops
open Inductiveops
open Recordops
open Namegen
open Globnames
open Miniml
open Table
open Mlutil
(*i*)
exception I of inductive_kind
(* A set of all fixpoint functions currently being extracted *)
let current_fixpoints = ref ([] : constant list)
let none = Evd.empty
let type_of env c =
try
let polyprop = (lang() == Haskell) in
Retyping.get_type_of ~polyprop env none (strip_outer_cast c)
with SingletonInductiveBecomesProp id -> error_singleton_become_prop id
let sort_of env c =
try
let polyprop = (lang() == Haskell) in
Retyping.get_sort_family_of ~polyprop env none (strip_outer_cast c)
with SingletonInductiveBecomesProp id -> error_singleton_become_prop id
(*S Generation of flags and signatures. *)
(* The type [flag] gives us information about any Coq term:
\begin{itemize}
\item [TypeScheme] denotes a type scheme, that is
something that will become a type after enough applications.
More formally, a type scheme has type $(x_1:X_1)\ldots(x_n:X_n)s$ with
[s = Set], [Prop] or [Type]
\item [Default] denotes the other cases. It may be inexact after
instantiation. For example [(X:Type)X] is [Default] and may give [Set]
after instantiation, which is rather [TypeScheme]
\item [Logic] denotes a term of sort [Prop], or a type scheme on sort [Prop]
\item [Info] is the opposite. The same example [(X:Type)X] shows
that an [Info] term might in fact be [Logic] later on.
\end{itemize} *)
type info = Logic | Info
type scheme = TypeScheme | Default
type flag = info * scheme
(*s [flag_of_type] transforms a type [t] into a [flag].
Really important function. *)
let rec flag_of_type env t : flag =
let t = whd_betadeltaiota env none t in
match kind_of_term t with
| Prod (x,t,c) -> flag_of_type (push_rel (x,None,t) env) c
| Sort s when Sorts.is_prop s -> (Logic,TypeScheme)
| Sort _ -> (Info,TypeScheme)
| _ -> if (sort_of env t) == InProp then (Logic,Default) else (Info,Default)
(*s Two particular cases of [flag_of_type]. *)
let is_default env t = match flag_of_type env t with
| (Info, Default) -> true
| _ -> false
exception NotDefault of kill_reason
let check_default env t =
match flag_of_type env t with
| _,TypeScheme -> raise (NotDefault Ktype)
| Logic,_ -> raise (NotDefault Kother)
| _ -> ()
let is_info_scheme env t = match flag_of_type env t with
| (Info, TypeScheme) -> true
| _ -> false
(*s [type_sign] gernerates a signature aimed at treating a type application. *)
let rec type_sign env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
(if is_info_scheme env t then Keep else Kill Kother)
:: (type_sign (push_rel_assum (n,t) env) d)
| _ -> []
let rec type_scheme_nb_args env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let n = type_scheme_nb_args (push_rel_assum (n,t) env) d in
if is_info_scheme env t then n+1 else n
| _ -> 0
let _ = Hook.set type_scheme_nb_args_hook type_scheme_nb_args
(*s [type_sign_vl] does the same, plus a type var list. *)
(* When generating type variables, we avoid any ' in their names
(otherwise this may cause a lexer conflict in ocaml with 'a').
We also get rid of unicode characters. Anyway, since type variables
are local, the created name is just a matter of taste...
See also Bug #3227 *)
let make_typvar n vl =
let id = id_of_name n in
let id' =
let s = Id.to_string id in
if not (String.contains s '\'') && Unicode.is_basic_ascii s then id
else id_of_name Anonymous
in
next_ident_away id' vl
let rec type_sign_vl env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let s,vl = type_sign_vl (push_rel_assum (n,t) env) d in
if not (is_info_scheme env t) then Kill Kother::s, vl
else Keep::s, (make_typvar n vl) :: vl
| _ -> [],[]
let rec nb_default_params env c =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let n = nb_default_params (push_rel_assum (n,t) env) d in
if is_default env t then n+1 else n
| _ -> 0
(* Enriching a signature with implicit information *)
let sign_with_implicits r s nb_params =
let implicits = implicits_of_global r in
let rec add_impl i = function
| [] -> []
| sign::s ->
let sign' =
if sign == Keep && Int.List.mem i implicits
then Kill Kother else sign
in sign' :: add_impl (succ i) s
in
add_impl (1+nb_params) s
(* Enriching a exception message *)
let rec handle_exn r n fn_name = function
| MLexn s ->
(try Scanf.sscanf s "UNBOUND %d%!"
(fun i ->
assert ((0 < i) && (i <= n));
MLexn ("IMPLICIT "^ msg_non_implicit r (n+1-i) (fn_name i)))
with Scanf.Scan_failure _ | End_of_file -> MLexn s)
| a -> ast_map (handle_exn r n fn_name) a
(*S Management of type variable contexts. *)
(* A De Bruijn variable context (db) is a context for translating Coq [Rel]
into ML type [Tvar]. *)
(*s From a type signature toward a type variable context (db). *)
let db_from_sign s =
let rec make i acc = function
| [] -> acc
| Keep :: l -> make (i+1) (i::acc) l
| Kill _ :: l -> make i (0::acc) l
in make 1 [] s
(*s Create a type variable context from indications taken from
an inductive type (see just below). *)
let rec db_from_ind dbmap i =
if Int.equal i 0 then []
else (try Int.Map.find i dbmap with Not_found -> 0)::(db_from_ind dbmap (i-1))
(*s [parse_ind_args] builds a map: [i->j] iff the i-th Coq argument
of a constructor corresponds to the j-th type var of the ML inductive. *)
(* \begin{itemize}
\item [si] : signature of the inductive
\item [i] : counter of Coq args for [(I args)]
\item [j] : counter of ML type vars
\item [relmax] : total args number of the constructor
\end{itemize} *)
let parse_ind_args si args relmax =
let rec parse i j = function
| [] -> Int.Map.empty
| Kill _ :: s -> parse (i+1) j s
| Keep :: s ->
(match kind_of_term args.(i-1) with
| Rel k -> Int.Map.add (relmax+1-k) j (parse (i+1) (j+1) s)
| _ -> parse (i+1) (j+1) s)
in parse 1 1 si
let oib_equal o1 o2 =
Id.equal o1.mind_typename o2.mind_typename &&
List.equal eq_rel_declaration o1.mind_arity_ctxt o2.mind_arity_ctxt &&
begin
match o1.mind_arity, o2.mind_arity with
| RegularArity {mind_user_arity=c1; mind_sort=s1}, RegularArity {mind_user_arity=c2; mind_sort=s2} ->
eq_constr c1 c2 && Sorts.equal s1 s2
| TemplateArity p1, TemplateArity p2 ->
let eq o1 o2 = Option.equal Univ.Level.equal o1 o2 in
List.equal eq p1.template_param_levels p2.template_param_levels &&
Univ.Universe.equal p1.template_level p2.template_level
| _, _ -> false
end &&
Array.equal Id.equal o1.mind_consnames o2.mind_consnames
let eq_record x y =
Option.equal (Option.equal (fun (_, x, y) (_, x', y') -> Array.for_all2 eq_constant x x')) x y
let mib_equal m1 m2 =
Array.equal oib_equal m1.mind_packets m1.mind_packets &&
eq_record m1.mind_record m2.mind_record &&
(m1.mind_finite : Decl_kinds.recursivity_kind) == m2.mind_finite &&
Int.equal m1.mind_ntypes m2.mind_ntypes &&
List.equal eq_named_declaration m1.mind_hyps m2.mind_hyps &&
Int.equal m1.mind_nparams m2.mind_nparams &&
Int.equal m1.mind_nparams_rec m2.mind_nparams_rec &&
List.equal eq_rel_declaration m1.mind_params_ctxt m2.mind_params_ctxt &&
(* Univ.UContext.eq *) m1.mind_universes == m2.mind_universes (** FIXME *)
(* m1.mind_universes = m2.mind_universes *)
(*S Extraction of a type. *)
(* [extract_type env db c args] is used to produce an ML type from the
coq term [(c args)], which is supposed to be a Coq type. *)
(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
(* [j] stands for the next ML type var. [j=0] means we do not
generate ML type var anymore (in subterms for example). *)
let rec extract_type env db j c args =
match kind_of_term (whd_betaiotazeta Evd.empty c) with
| App (d, args') ->
(* We just accumulate the arguments. *)
extract_type env db j d (Array.to_list args' @ args)
| Lambda (_,_,d) ->
(match args with
| [] -> assert false (* A lambda cannot be a type. *)
| a :: args -> extract_type env db j (subst1 a d) args)
| Prod (n,t,d) ->
assert (List.is_empty args);
let env' = push_rel_assum (n,t) env in
(match flag_of_type env t with
| (Info, Default) ->
(* Standard case: two [extract_type] ... *)
let mld = extract_type env' (0::db) j d [] in
(match expand env mld with
| Tdummy d -> Tdummy d
| _ -> Tarr (extract_type env db 0 t [], mld))
| (Info, TypeScheme) when j > 0 ->
(* A new type var. *)
let mld = extract_type env' (j::db) (j+1) d [] in
(match expand env mld with
| Tdummy d -> Tdummy d
| _ -> Tarr (Tdummy Ktype, mld))
| _,lvl ->
let mld = extract_type env' (0::db) j d [] in
(match expand env mld with
| Tdummy d -> Tdummy d
| _ ->
let reason = if lvl == TypeScheme then Ktype else Kother in
Tarr (Tdummy reason, mld)))
| Sort _ -> Tdummy Ktype (* The two logical cases. *)
| _ when sort_of env (applist (c, args)) == InProp -> Tdummy Kother
| Rel n ->
(match lookup_rel n env with
| (_,Some t,_) -> extract_type env db j (lift n t) args
| _ ->
(* Asks [db] a translation for [n]. *)
if n > List.length db then Tunknown
else let n' = List.nth db (n-1) in
if Int.equal n' 0 then Tunknown else Tvar n')
| Const (kn,u as c) ->
let r = ConstRef kn in
let cb = lookup_constant kn env in
let typ,_ = Typeops.type_of_constant env c in
(match flag_of_type env typ with
| (Logic,_) -> assert false (* Cf. logical cases above *)
| (Info, TypeScheme) ->
let mlt = extract_type_app env db (r, type_sign env typ) args in
(match cb.const_body with
| Undef _ | OpaqueDef _ -> mlt
| Def _ when is_custom r -> mlt
| Def lbody ->
let newc = applist (Mod_subst.force_constr lbody, args) in
let mlt' = extract_type env db j newc [] in
(* ML type abbreviations interact badly with Coq *)
(* reduction, so [mlt] and [mlt'] might be different: *)
(* The more precise is [mlt'], extracted after reduction *)
(* The shortest is [mlt], which use abbreviations *)
(* If possible, we take [mlt], otherwise [mlt']. *)
if eq_ml_type (expand env mlt) (expand env mlt') then mlt else mlt')
| (Info, Default) ->
(* Not an ML type, for example [(c:forall X, X->X) Type nat] *)
(match cb.const_body with
| Undef _ | OpaqueDef _ -> Tunknown (* Brutal approx ... *)
| Def lbody ->
(* We try to reduce. *)
let newc = applist (Mod_subst.force_constr lbody, args) in
extract_type env db j newc []))
| Ind ((kn,i),u) ->
let s = (extract_ind env kn).ind_packets.(i).ip_sign in
extract_type_app env db (IndRef (kn,i),s) args
| Case _ | Fix _ | CoFix _ -> Tunknown
| _ -> assert false
(*s Auxiliary function dealing with type application.
Precondition: [r] is a type scheme represented by the signature [s],
and is completely applied: [List.length args = List.length s]. *)
and extract_type_app env db (r,s) args =
let ml_args =
List.fold_right
(fun (b,c) a -> if b == Keep then
let p = List.length (fst (splay_prod env none (type_of env c))) in
let db = iterate (fun l -> 0 :: l) p db in
(extract_type_scheme env db c p) :: a
else a)
(List.combine s args) []
in Tglob (r, ml_args)
(*S Extraction of a type scheme. *)
(* [extract_type_scheme env db c p] works on a Coq term [c] which is
an informative type scheme. It means that [c] is not a Coq type, but will
be when applied to sufficiently many arguments ([p] in fact).
This function decomposes p lambdas, with eta-expansion if needed. *)
(* [db] is a context for translating Coq [Rel] into ML type [Tvar]. *)
and extract_type_scheme env db c p =
if Int.equal p 0 then extract_type env db 0 c []
else
let c = whd_betaiotazeta Evd.empty c in
match kind_of_term c with
| Lambda (n,t,d) ->
extract_type_scheme (push_rel_assum (n,t) env) db d (p-1)
| _ ->
let rels = fst (splay_prod env none (type_of env c)) in
let env = push_rels_assum rels env in
let eta_args = List.rev_map mkRel (List.interval 1 p) in
extract_type env db 0 (lift p c) eta_args
(*S Extraction of an inductive type. *)
and extract_ind env kn = (* kn is supposed to be in long form *)
let mib = Environ.lookup_mind kn env in
try
(* For a same kn, we can get various bodies due to module substitutions.
We hence check that the mib has not changed from recording
time to retrieving time. Ideally we should also check the env. *)
let (mib0,ml_ind) = lookup_ind kn in
if not (mib_equal mib mib0) then raise Not_found;
ml_ind
with Not_found ->
(* First, if this inductive is aliased via a Module,
we process the original inductive if possible.
When at toplevel of the monolithic case, we cannot do much
(cf Vector and bug #2570) *)
let equiv =
if lang () != Ocaml ||
(not (modular ()) && at_toplevel (mind_modpath kn)) ||
KerName.equal (canonical_mind kn) (user_mind kn)
then
NoEquiv
else
begin
ignore (extract_ind env (mind_of_kn (canonical_mind kn)));
Equiv (canonical_mind kn)
end
in
(* Everything concerning parameters. *)
(* We do that first, since they are common to all the [mib]. *)
let mip0 = mib.mind_packets.(0) in
let npar = mib.mind_nparams in
let epar = push_rel_context mib.mind_params_ctxt env in
(* First pass: we store inductive signatures together with *)
(* their type var list. *)
let packets =
Array.mapi
(fun i mip ->
let (ind,u), ctx =
Universes.fresh_inductive_instance env (kn,i) in
let ar = Inductive.type_of_inductive env ((mib,mip),u) in
let info = (fst (flag_of_type env ar) = Info) in
let s,v = if info then type_sign_vl env ar else [],[] in
let t = Array.make (Array.length mip.mind_nf_lc) [] in
{ ip_typename = mip.mind_typename;
ip_consnames = mip.mind_consnames;
ip_logical = not info;
ip_sign = s;
ip_vars = v;
ip_types = t }, u)
mib.mind_packets
in
add_ind kn mib
{ind_kind = Standard;
ind_nparams = npar;
ind_packets = Array.map fst packets;
ind_equiv = equiv
};
(* Second pass: we extract constructors *)
for i = 0 to mib.mind_ntypes - 1 do
let p,u = packets.(i) in
if not p.ip_logical then
let types = arities_of_constructors env ((kn,i),u) in
for j = 0 to Array.length types - 1 do
let t = snd (decompose_prod_n npar types.(j)) in
let prods,head = dest_prod epar t in
let nprods = List.length prods in
let args = match kind_of_term head with
| App (f,args) -> args (* [kind_of_term f = Ind ip] *)
| _ -> [||]
in
let dbmap = parse_ind_args p.ip_sign args (nprods + npar) in
let db = db_from_ind dbmap npar in
p.ip_types.(j) <- extract_type_cons epar db dbmap t (npar+1)
done
done;
(* Third pass: we determine special cases. *)
let ind_info =
try
let ip = (kn, 0) in
let r = IndRef ip in
if is_custom r then raise (I Standard);
if mib.mind_finite == Decl_kinds.CoFinite then raise (I Coinductive);
if not (Int.equal mib.mind_ntypes 1) then raise (I Standard);
let p,u = packets.(0) in
if p.ip_logical then raise (I Standard);
if not (Int.equal (Array.length p.ip_types) 1) then raise (I Standard);
let typ = p.ip_types.(0) in
let l = List.filter (fun t -> not (isDummy (expand env t))) typ in
if not (keep_singleton ()) &&
Int.equal (List.length l) 1 && not (type_mem_kn kn (List.hd l))
then raise (I Singleton);
if List.is_empty l then raise (I Standard);
if Option.is_empty mib.mind_record then raise (I Standard);
(* Now we're sure it's a record. *)
(* First, we find its field names. *)
let rec names_prod t = match kind_of_term t with
| Prod(n,_,t) -> n::(names_prod t)
| LetIn(_,_,_,t) -> names_prod t
| Cast(t,_,_) -> names_prod t
| _ -> []
in
let field_names =
List.skipn mib.mind_nparams (names_prod mip0.mind_user_lc.(0)) in
assert (Int.equal (List.length field_names) (List.length typ));
let projs = ref Cset.empty in
let mp = MutInd.modpath kn in
let rec select_fields l typs = match l,typs with
| [],[] -> []
| _::l, typ::typs when isDummy (expand env typ) ->
select_fields l typs
| Anonymous::l, typ::typs ->
None :: (select_fields l typs)
| Name id::l, typ::typs ->
let knp = Constant.make2 mp (Label.of_id id) in
(* Is it safe to use [id] for projections [foo.id] ? *)
if List.for_all ((==) Keep) (type2signature env typ)
then projs := Cset.add knp !projs;
Some (ConstRef knp) :: (select_fields l typs)
| _ -> assert false
in
let field_glob = select_fields field_names typ
in
(* Is this record officially declared with its projections ? *)
(* If so, we use this information. *)
begin try
let n = nb_default_params env
(Inductive.type_of_inductive env ((mib,mip0),u))
in
let check_proj kn = if Cset.mem kn !projs then add_projection n kn ip
in
List.iter (Option.iter check_proj) (lookup_projections ip)
with Not_found -> ()
end;
Record field_glob
with (I info) -> info
in
let i = {ind_kind = ind_info;
ind_nparams = npar;
ind_packets = Array.map fst packets;
ind_equiv = equiv }
in
add_ind kn mib i;
add_inductive_kind kn i.ind_kind;
i
(*s [extract_type_cons] extracts the type of an inductive
constructor toward the corresponding list of ML types.
- [db] is a context for translating Coq [Rel] into ML type [Tvar]
- [dbmap] is a translation map (produced by a call to [parse_in_args])
- [i] is the rank of the current product (initially [params_nb+1])
*)
and extract_type_cons env db dbmap c i =
match kind_of_term (whd_betadeltaiota env none c) with
| Prod (n,t,d) ->
let env' = push_rel_assum (n,t) env in
let db' = (try Int.Map.find i dbmap with Not_found -> 0) :: db in
let l = extract_type_cons env' db' dbmap d (i+1) in
(extract_type env db 0 t []) :: l
| _ -> []
(*s Recording the ML type abbreviation of a Coq type scheme constant. *)
and mlt_env env r = match r with
| ConstRef kn ->
(try
if not (visible_con kn) then raise Not_found;
match lookup_term kn with
| Dtype (_,vl,mlt) -> Some mlt
| _ -> None
with Not_found ->
let cb = Environ.lookup_constant kn env in
let typ = Typeops.type_of_constant_type env cb.const_type
(* FIXME not sure if we should instantiate univs here *) in
match cb.const_body with
| Undef _ | OpaqueDef _ -> None
| Def l_body ->
(match flag_of_type env typ with
| Info,TypeScheme ->
let body = Mod_subst.force_constr l_body in
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db body (List.length s)
in add_term kn (Dtype (r, vl, t)); Some t
| _ -> None))
| _ -> None
and expand env = type_expand (mlt_env env)
and type2signature env = type_to_signature (mlt_env env)
let type2sign env = type_to_sign (mlt_env env)
let type_expunge env = type_expunge (mlt_env env)
let type_expunge_from_sign env = type_expunge_from_sign (mlt_env env)
(*s Extraction of the type of a constant. *)
let record_constant_type env kn opt_typ =
try
if not (visible_con kn) then raise Not_found;
lookup_type kn
with Not_found ->
let typ = match opt_typ with
| None -> Typeops.type_of_constant_type env (lookup_constant kn env).const_type
| Some typ -> typ
in let mlt = extract_type env [] 1 typ []
in let schema = (type_maxvar mlt, mlt)
in add_type kn schema; schema
(*S Extraction of a term. *)
(* Precondition: [(c args)] is not a type scheme, and is informative. *)
(* [mle] is a ML environment [Mlenv.t]. *)
(* [mlt] is the ML type we want our extraction of [(c args)] to have. *)
let rec extract_term env mle mlt c args =
match kind_of_term c with
| App (f,a) ->
extract_term env mle mlt f (Array.to_list a @ args)
| Lambda (n, t, d) ->
let id = id_of_name n in
(match args with
| a :: l ->
(* We make as many [LetIn] as possible. *)
let d' = mkLetIn (Name id,a,t,applistc d (List.map (lift 1) l))
in extract_term env mle mlt d' []
| [] ->
let env' = push_rel_assum (Name id, t) env in
let id, a =
try check_default env t; Id id, new_meta()
with NotDefault d -> Dummy, Tdummy d
in
let b = new_meta () in
(* If [mlt] cannot be unified with an arrow type, then magic! *)
let magic = needs_magic (mlt, Tarr (a, b)) in
let d' = extract_term env' (Mlenv.push_type mle a) b d [] in
put_magic_if magic (MLlam (id, d')))
| LetIn (n, c1, t1, c2) ->
let id = id_of_name n in
let env' = push_rel (Name id, Some c1, t1) env in
(* We directly push the args inside the [LetIn].
TODO: the opt_let_app flag is supposed to prevent that *)
let args' = List.map (lift 1) args in
(try
check_default env t1;
let a = new_meta () in
let c1' = extract_term env mle a c1 [] in
(* The type of [c1'] is generalized and stored in [mle]. *)
let mle' =
if generalizable c1'
then Mlenv.push_gen mle a
else Mlenv.push_type mle a
in
MLletin (Id id, c1', extract_term env' mle' mlt c2 args')
with NotDefault d ->
let mle' = Mlenv.push_std_type mle (Tdummy d) in
ast_pop (extract_term env' mle' mlt c2 args'))
| Const (kn,u) ->
extract_cst_app env mle mlt kn u args
| Construct (cp,u) ->
extract_cons_app env mle mlt cp u args
| Proj (p, c) ->
extract_cst_app env mle mlt (Projection.constant p) Univ.Instance.empty (c :: args)
| Rel n ->
(* As soon as the expected [mlt] for the head is known, *)
(* we unify it with an fresh copy of the stored type of [Rel n]. *)
let extract_rel mlt = put_magic (mlt, Mlenv.get mle n) (MLrel n)
in extract_app env mle mlt extract_rel args
| Case ({ci_ind=ip},_,c0,br) ->
extract_app env mle mlt (extract_case env mle (ip,c0,br)) args
| Fix ((_,i),recd) ->
extract_app env mle mlt (extract_fix env mle i recd) args
| CoFix (i,recd) ->
extract_app env mle mlt (extract_fix env mle i recd) args
| Cast (c,_,_) -> extract_term env mle mlt c args
| Ind _ | Prod _ | Sort _ | Meta _ | Evar _ | Var _ -> assert false
(*s [extract_maybe_term] is [extract_term] for usual terms, else [MLdummy] *)
and extract_maybe_term env mle mlt c =
try check_default env (type_of env c);
extract_term env mle mlt c []
with NotDefault d ->
put_magic (mlt, Tdummy d) MLdummy
(*s Generic way to deal with an application. *)
(* We first type all arguments starting with unknown meta types.
This gives us the expected type of the head. Then we use the
[mk_head] to produce the ML head from this type. *)
and extract_app env mle mlt mk_head args =
let metas = List.map new_meta args in
let type_head = type_recomp (metas, mlt) in
let mlargs = List.map2 (extract_maybe_term env mle) metas args in
mlapp (mk_head type_head) mlargs
(*s Auxiliary function used to extract arguments of constant or constructor. *)
and make_mlargs env e s args typs =
let rec f = function
| [], [], _ -> []
| a::la, t::lt, [] -> extract_maybe_term env e t a :: (f (la,lt,[]))
| a::la, t::lt, Keep::s -> extract_maybe_term env e t a :: (f (la,lt,s))
| _::la, _::lt, _::s -> f (la,lt,s)
| _ -> assert false
in f (args,typs,s)
(*s Extraction of a constant applied to arguments. *)
and extract_cst_app env mle mlt kn u args =
(* First, the [ml_schema] of the constant, in expanded version. *)
let nb,t = record_constant_type env kn None in
let schema = nb, expand env t in
(* Can we instantiate types variables for this constant ? *)
(* In Ocaml, inside the definition of this constant, the answer is no. *)
let instantiated =
if lang () == Ocaml && List.mem_f Constant.equal kn !current_fixpoints
then var2var' (snd schema)
else instantiation schema
in
(* Then the expected type of this constant. *)
let a = new_meta () in
(* We compare stored and expected types in two steps. *)
(* First, can [kn] be applied to all args ? *)
let metas = List.map new_meta args in
let magic1 = needs_magic (type_recomp (metas, a), instantiated) in
(* Second, is the resulting type compatible with the expected type [mlt] ? *)
let magic2 = needs_magic (a, mlt) in
(* The internal head receives a magic if [magic1] *)
let head = put_magic_if magic1 (MLglob (ConstRef kn)) in
(* Now, the extraction of the arguments. *)
let s_full = type2signature env (snd schema) in
let s_full = sign_with_implicits (ConstRef kn) s_full 0 in
let s = sign_no_final_keeps s_full in
let ls = List.length s in
let la = List.length args in
(* The ml arguments, already expunged from known logical ones *)
let mla = make_mlargs env mle s args metas in
let mla =
if magic1 || lang () != Ocaml then mla
else
try
(* for better optimisations later, we discard dependent args
of projections and replace them by fake args that will be
removed during final pretty-print. *)
let l,l' = List.chop (projection_arity (ConstRef kn)) mla in
if not (List.is_empty l') then (List.map (fun _ -> MLexn "Proj Args") l) @ l'
else mla
with e when Errors.noncritical e -> mla
in
(* For strict languages, purely logical signatures with at least
one [Kill Kother] lead to a dummy lam. So a [MLdummy] is left
accordingly. *)
let optdummy = match sign_kind s_full with
| UnsafeLogicalSig when lang () != Haskell -> [MLdummy]
| _ -> []
in
(* Different situations depending of the number of arguments: *)
if la >= ls
then
(* Enough args, cleanup already done in [mla], we only add the
additionnal dummy if needed. *)
put_magic_if (magic2 && not magic1) (mlapp head (optdummy @ mla))
else
(* Partially applied function with some logical arg missing.
We complete via eta and expunge logical args. *)
let ls' = ls-la in
let s' = List.skipn la s in
let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
let e = anonym_or_dummy_lams (mlapp head mla) s' in
put_magic_if magic2 (remove_n_lams (List.length optdummy) e)
(*s Extraction of an inductive constructor applied to arguments. *)
(* \begin{itemize}
\item In ML, contructor arguments are uncurryfied.
\item We managed to suppress logical parts inside inductive definitions,
but they must appears outside (for partial applications for instance)
\item We also suppressed all Coq parameters to the inductives, since
they are fixed, and thus are not used for the computation.
\end{itemize} *)
and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) u args =
(* First, we build the type of the constructor, stored in small pieces. *)
let mi = extract_ind env kn in
let params_nb = mi.ind_nparams in
let oi = mi.ind_packets.(i) in
let nb_tvars = List.length oi.ip_vars
and types = List.map (expand env) oi.ip_types.(j-1) in
let list_tvar = List.map (fun i -> Tvar i) (List.interval 1 nb_tvars) in
let type_cons = type_recomp (types, Tglob (IndRef ip, list_tvar)) in
let type_cons = instantiation (nb_tvars, type_cons) in
(* Then, the usual variables [s], [ls], [la], ... *)
let s = List.map (type2sign env) types in
let s = sign_with_implicits (ConstructRef cp) s params_nb in
let ls = List.length s in
let la = List.length args in
assert (la <= ls + params_nb);
let la' = max 0 (la - params_nb) in
let args' = List.lastn la' args in
(* Now, we build the expected type of the constructor *)
let metas = List.map new_meta args' in
(* If stored and expected types differ, then magic! *)
let a = new_meta () in
let magic1 = needs_magic (type_cons, type_recomp (metas, a)) in
let magic2 = needs_magic (a, mlt) in
let head mla =
if mi.ind_kind == Singleton then
put_magic_if magic1 (List.hd mla) (* assert (List.length mla = 1) *)
else
let typeargs = match snd (type_decomp type_cons) with
| Tglob (_,l) -> List.map type_simpl l
| _ -> assert false
in
let typ = Tglob(IndRef ip, typeargs) in
put_magic_if magic1 (MLcons (typ, ConstructRef cp, mla))
in
(* Different situations depending of the number of arguments: *)
if la < params_nb then
let head' = head (eta_args_sign ls s) in
put_magic_if magic2
(dummy_lams (anonym_or_dummy_lams head' s) (params_nb - la))
else
let mla = make_mlargs env mle s args' metas in
if Int.equal la (ls + params_nb)
then put_magic_if (magic2 && not magic1) (head mla)
else (* [ params_nb <= la <= ls + params_nb ] *)
let ls' = params_nb + ls - la in
let s' = List.lastn ls' s in
let mla = (List.map (ast_lift ls') mla) @ (eta_args_sign ls' s') in
put_magic_if magic2 (anonym_or_dummy_lams (head mla) s')
(*S Extraction of a case. *)
and extract_case env mle ((kn,i) as ip,c,br) mlt =
(* [br]: bodies of each branch (in functional form) *)
(* [ni]: number of arguments without parameters in each branch *)
let ni = constructors_nrealargs_env env ip in
let br_size = Array.length br in
assert (Int.equal (Array.length ni) br_size);
if Int.equal br_size 0 then begin
add_recursors env kn; (* May have passed unseen if logical ... *)
MLexn "absurd case"
end else
(* [c] has an inductive type, and is not a type scheme type. *)
let t = type_of env c in
(* The only non-informative case: [c] is of sort [Prop] *)
if (sort_of env t) == InProp then
begin
add_recursors env kn; (* May have passed unseen if logical ... *)
(* Logical singleton case: *)
(* [match c with C i j k -> t] becomes [t'] *)
assert (Int.equal br_size 1);
let s = iterate (fun l -> Kill Kother :: l) ni.(0) [] in
let mlt = iterate (fun t -> Tarr (Tdummy Kother, t)) ni.(0) mlt in
let e = extract_maybe_term env mle mlt br.(0) in
snd (case_expunge s e)
end
else
let mi = extract_ind env kn in
let oi = mi.ind_packets.(i) in
let metas = Array.init (List.length oi.ip_vars) new_meta in
(* The extraction of the head. *)
let type_head = Tglob (IndRef ip, Array.to_list metas) in
let a = extract_term env mle type_head c [] in
(* The extraction of each branch. *)
let extract_branch i =
let r = ConstructRef (ip,i+1) in
(* The types of the arguments of the corresponding constructor. *)
let f t = type_subst_vect metas (expand env t) in
let l = List.map f oi.ip_types.(i) in
(* the corresponding signature *)
let s = List.map (type2sign env) oi.ip_types.(i) in
let s = sign_with_implicits r s mi.ind_nparams in
(* Extraction of the branch (in functional form). *)
let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in
(* We suppress dummy arguments according to signature. *)
let ids,e = case_expunge s e in
let e' = handle_exn r (List.length s) (fun _ -> Anonymous) e in
(List.rev ids, Pusual r, e')
in
if mi.ind_kind == Singleton then
begin
(* Informative singleton case: *)
(* [match c with C i -> t] becomes [let i = c' in t'] *)
assert (Int.equal br_size 1);
let (ids,_,e') = extract_branch 0 in
assert (Int.equal (List.length ids) 1);
MLletin (tmp_id (List.hd ids),a,e')
end
else
(* Standard case: we apply [extract_branch]. *)
let typs = List.map type_simpl (Array.to_list metas) in
let typ = Tglob (IndRef ip,typs) in
MLcase (typ, a, Array.init br_size extract_branch)
(*s Extraction of a (co)-fixpoint. *)
and extract_fix env mle i (fi,ti,ci as recd) mlt =
let env = push_rec_types recd env in
let metas = Array.map new_meta fi in
metas.(i) <- mlt;
let mle = Array.fold_left Mlenv.push_type mle metas in
let ei = Array.map2 (extract_maybe_term env mle) metas ci in
MLfix (i, Array.map id_of_name fi, ei)
(*S ML declarations. *)
(* [decomp_lams_eta env c t] finds the number [n] of products in the type [t],
and decompose the term [c] in [n] lambdas, with eta-expansion if needed. *)
let decomp_lams_eta_n n m env c t =
let rels = fst (splay_prod_n env none n t) in
let rels = List.map (fun (id,_,c) -> (id,c)) rels in
let rels',c = decompose_lam c in
let d = n - m in
(* we'd better keep rels' as long as possible. *)
let rels = (List.firstn d rels) @ rels' in
let eta_args = List.rev_map mkRel (List.interval 1 d) in
rels, applist (lift d c,eta_args)
(* Let's try to identify some situation where extracted code
will allow generalisation of type variables *)
let rec gentypvar_ok c = match kind_of_term c with
| Lambda _ | Const _ -> true
| App (c,v) ->
(* if all arguments are variables, these variables will
disappear after extraction (see [empty_s] below) *)
Array.for_all isRel v && gentypvar_ok c
| Cast (c,_,_) -> gentypvar_ok c
| _ -> false
(*s From a constant to a ML declaration. *)
let extract_std_constant env kn body typ =
reset_meta_count ();
(* The short type [t] (i.e. possibly with abbreviations). *)
let t = snd (record_constant_type env kn (Some typ)) in
(* The real type [t']: without head products, expanded, *)
(* and with [Tvar] translated to [Tvar'] (not instantiable). *)
let l,t' = type_decomp (expand env (var2var' t)) in
let s = List.map (type2sign env) l in
(* Check for user-declared implicit information *)
let s = sign_with_implicits (ConstRef kn) s 0 in
(* Decomposing the top level lambdas of [body].
If there isn't enough, it's ok, as long as remaining args
aren't to be pruned (and initial lambdas aren't to be all
removed if the target language is strict). In other situations,
eta-expansions create artificially enough lams (but that may
break user's clever let-ins and partial applications). *)
let rels, c =
let n = List.length s
and m = nb_lam body in
if n <= m then decompose_lam_n n body
else
let s,s' = List.chop m s in
if List.for_all ((==) Keep) s' &&
(lang () == Haskell || sign_kind s != UnsafeLogicalSig)
then decompose_lam_n m body
else decomp_lams_eta_n n m env body typ
in
(* Should we do one eta-expansion to avoid non-generalizable '_a ? *)
let rels, c =
let n = List.length rels in
let s,s' = List.chop n s in
let k = sign_kind s in
let empty_s = (k == EmptySig || k == SafeLogicalSig) in
if lang () == Ocaml && empty_s && not (gentypvar_ok c)
&& not (List.is_empty s') && not (Int.equal (type_maxvar t) 0)
then decomp_lams_eta_n (n+1) n env body typ
else rels,c
in
let n = List.length rels in
let s = List.firstn n s in
let l,l' = List.chop n l in
let t' = type_recomp (l',t') in
(* The initial ML environment. *)
let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in
(* The lambdas names. *)
let ids = List.map (fun (n,_) -> Id (id_of_name n)) rels in
(* The according Coq environment. *)
let env = push_rels_assum rels env in
(* The real extraction: *)
let e = extract_term env mle t' c [] in
(* Expunging term and type from dummy lambdas. *)
let trm = term_expunge s (ids,e) in
let trm = handle_exn (ConstRef kn) n (fun i -> fst (List.nth rels (i-1))) trm
in
trm, type_expunge_from_sign env s t
(* Extracts the type of an axiom, honors the Extraction Implicit declaration. *)
let extract_axiom env kn typ =
reset_meta_count ();
(* The short type [t] (i.e. possibly with abbreviations). *)
let t = snd (record_constant_type env kn (Some typ)) in
(* The real type [t']: without head products, expanded, *)
(* and with [Tvar] translated to [Tvar'] (not instantiable). *)
let l,_ = type_decomp (expand env (var2var' t)) in
let s = List.map (type2sign env) l in
(* Check for user-declared implicit information *)
let s = sign_with_implicits (ConstRef kn) s 0 in
type_expunge_from_sign env s t
let extract_fixpoint env vkn (fi,ti,ci) =
let n = Array.length vkn in
let types = Array.make n (Tdummy Kother)
and terms = Array.make n MLdummy in
let kns = Array.to_list vkn in
current_fixpoints := kns;
(* for replacing recursive calls [Rel ..] by the corresponding [Const]: *)
let sub = List.rev_map mkConst kns in
for i = 0 to n-1 do
if sort_of env ti.(i) != InProp then begin
let e,t = extract_std_constant env vkn.(i) (substl sub ci.(i)) ti.(i) in
terms.(i) <- e;
types.(i) <- t;
end
done;
current_fixpoints := [];
Dfix (Array.map (fun kn -> ConstRef kn) vkn, terms, types)
let extract_constant env kn cb =
let r = ConstRef kn in
let typ = Typeops.type_of_constant_type env cb.const_type in
let warn_info () = if not (is_custom r) then add_info_axiom r in
let warn_log () = if not (constant_has_body cb) then add_log_axiom r
in
let mk_typ_ax () =
let n = type_scheme_nb_args env typ in
let ids = iterate (fun l -> anonymous_name::l) n [] in
Dtype (r, ids, Taxiom)
in
let mk_typ c =
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db c (List.length s)
in Dtype (r, vl, t)
in
let mk_ax () =
let t = extract_axiom env kn typ in
Dterm (r, MLaxiom, t)
in
let mk_def c =
let e,t = extract_std_constant env kn c typ in
Dterm (r,e,t)
in
match flag_of_type env typ with
| (Logic,TypeScheme) -> warn_log (); Dtype (r, [], Tdummy Ktype)
| (Logic,Default) -> warn_log (); Dterm (r, MLdummy, Tdummy Kother)
| (Info,TypeScheme) ->
(match cb.const_body with
| Undef _ -> warn_info (); mk_typ_ax ()
| Def c -> mk_typ (Mod_subst.force_constr c)
| OpaqueDef c ->
add_opaque r;
if access_opaque () then
mk_typ (Opaqueproof.force_proof (Environ.opaque_tables env) c)
else mk_typ_ax ())
| (Info,Default) ->
(match cb.const_body with
| Undef _ -> warn_info (); mk_ax ()
| Def c -> mk_def (Mod_subst.force_constr c)
| OpaqueDef c ->
add_opaque r;
if access_opaque () then
mk_def (Opaqueproof.force_proof (Environ.opaque_tables env) c)
else mk_ax ())
let extract_constant_spec env kn cb =
let r = ConstRef kn in
let typ = Typeops.type_of_constant_type env cb.const_type in
match flag_of_type env typ with
| (Logic, TypeScheme) -> Stype (r, [], Some (Tdummy Ktype))
| (Logic, Default) -> Sval (r, Tdummy Kother)
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
(match cb.const_body with
| Undef _ | OpaqueDef _ -> Stype (r, vl, None)
| Def body ->
let db = db_from_sign s in
let body = Mod_subst.force_constr body in
let t = extract_type_scheme env db body (List.length s)
in Stype (r, vl, Some t))
| (Info, Default) ->
let t = snd (record_constant_type env kn (Some typ)) in
Sval (r, type_expunge env t)
let extract_with_type env c =
let typ = type_of env c in
match flag_of_type env typ with
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
let db = db_from_sign s in
let t = extract_type_scheme env db c (List.length s) in
Some (vl, t)
| _ -> None
let extract_constr env c =
reset_meta_count ();
let typ = type_of env c in
match flag_of_type env typ with
| (_,TypeScheme) -> MLdummy, Tdummy Ktype
| (Logic,_) -> MLdummy, Tdummy Kother
| (Info,Default) ->
let mlt = extract_type env [] 1 typ [] in
extract_term env Mlenv.empty mlt c [], mlt
let extract_inductive env kn =
let ind = extract_ind env kn in
add_recursors env kn;
let f i j l =
let implicits = implicits_of_global (ConstructRef ((kn,i),j+1)) in
let rec filter i = function
| [] -> []
| t::l ->
let l' = filter (succ i) l in
if isDummy (expand env t) || Int.List.mem i implicits then l'
else t::l'
in filter (1+ind.ind_nparams) l
in
let packets =
Array.mapi (fun i p -> { p with ip_types = Array.mapi (f i) p.ip_types })
ind.ind_packets
in { ind with ind_packets = packets }
(*s Is a [ml_decl] logical ? *)
let logical_decl = function
| Dterm (_,MLdummy,Tdummy _) -> true
| Dtype (_,[],Tdummy _) -> true
| Dfix (_,av,tv) ->
(Array.for_all ((==) MLdummy) av) &&
(Array.for_all isDummy tv)
| Dind (_,i) -> Array.for_all (fun ip -> ip.ip_logical) i.ind_packets
| _ -> false
(*s Is a [ml_spec] logical ? *)
let logical_spec = function
| Stype (_, [], Some (Tdummy _)) -> true
| Sval (_,Tdummy _) -> true
| Sind (_,i) -> Array.for_all (fun ip -> ip.ip_logical) i.ind_packets
| _ -> false
|