1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: extract_env.ml 14012 2011-04-15 16:45:27Z letouzey $ i*)
open Term
open Declarations
open Names
open Libnames
open Pp
open Util
open Miniml
open Table
open Extraction
open Modutil
open Common
open Mod_subst
(***************************************)
(*S Part I: computing Coq environment. *)
(***************************************)
let toplevel_env () =
let seg = Lib.contents_after None in
let get_reference = function
| (_,kn), Lib.Leaf o ->
let mp,_,l = repr_kn kn in
let seb = match Libobject.object_tag o with
| "CONSTANT" -> SFBconst (Global.lookup_constant (constant_of_kn kn))
| "INDUCTIVE" -> SFBmind (Global.lookup_mind (mind_of_kn kn))
| "MODULE" -> SFBmodule (Global.lookup_module (MPdot (mp,l)))
| "MODULE TYPE" ->
SFBmodtype (Global.lookup_modtype (MPdot (mp,l)))
| _ -> failwith "caught"
in l,seb
| _ -> failwith "caught"
in
match current_toplevel () with
| _ -> SEBstruct (List.rev (map_succeed get_reference seg))
let environment_until dir_opt =
let rec parse = function
| [] when dir_opt = None -> [current_toplevel (), toplevel_env ()]
| [] -> []
| d :: l ->
let mb = Global.lookup_module (MPfile d) in
(* If -dont-load-proof has been used, mod_expr is None,
we try with mod_type *)
let meb = Option.default mb.mod_type mb.mod_expr in
if dir_opt = Some d then [MPfile d, meb]
else (MPfile d, meb) :: (parse l)
in parse (Library.loaded_libraries ())
(*s Visit:
a structure recording the needed dependencies for the current extraction *)
module type VISIT = sig
(* Reset the dependencies by emptying the visit lists *)
val reset : unit -> unit
(* Add the module_path and all its prefixes to the mp visit list *)
val add_mp : module_path -> unit
(* Add kernel_name / constant / reference / ... in the visit lists.
These functions silently add the mp of their arg in the mp list *)
val add_ind : mutual_inductive -> unit
val add_con : constant -> unit
val add_ref : global_reference -> unit
val add_decl_deps : ml_decl -> unit
val add_spec_deps : ml_spec -> unit
(* Test functions:
is a particular object a needed dependency for the current extraction ? *)
val needed_ind : mutual_inductive -> bool
val needed_con : constant -> bool
val needed_mp : module_path -> bool
end
module Visit : VISIT = struct
(* What used to be in a single KNset should now be split into a KNset
(for inductives and modules names) and a Cset_env for constants
(and still the remaining MPset) *)
type must_visit =
{ mutable ind : KNset.t; mutable con : KNset.t; mutable mp : MPset.t }
(* the imperative internal visit lists *)
let v = { ind = KNset.empty ; con = KNset.empty ; mp = MPset.empty }
(* the accessor functions *)
let reset () = v.ind <- KNset.empty; v.con <- KNset.empty; v.mp <- MPset.empty
let needed_ind i = KNset.mem (user_mind i) v.ind
let needed_con c = KNset.mem (user_con c) v.con
let needed_mp mp = MPset.mem mp v.mp
let add_mp mp =
check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp
let add_ind i =
let kn = user_mind i in
v.ind <- KNset.add kn v.ind; add_mp (modpath kn)
let add_con c =
let kn = user_con c in
v.con <- KNset.add kn v.con; add_mp (modpath kn)
let add_ref = function
| ConstRef c -> add_con c
| IndRef (ind,_) | ConstructRef ((ind,_),_) -> add_ind ind
| VarRef _ -> assert false
let add_decl_deps = decl_iter_references add_ref add_ref add_ref
let add_spec_deps = spec_iter_references add_ref add_ref add_ref
end
exception Impossible
let check_arity env cb =
let t = Typeops.type_of_constant_type env cb.const_type in
if Reduction.is_arity env t then raise Impossible
let check_fix env cb i =
match cb.const_body with
| None -> raise Impossible
| Some lbody ->
match kind_of_term (Declarations.force lbody) with
| Fix ((_,j),recd) when i=j -> check_arity env cb; (true,recd)
| CoFix (j,recd) when i=j -> check_arity env cb; (false,recd)
| _ -> raise Impossible
let factor_fix env l cb msb =
let _,recd as check = check_fix env cb 0 in
let n = Array.length (let fi,_,_ = recd in fi) in
if n = 1 then [|l|], recd, msb
else begin
if List.length msb < n-1 then raise Impossible;
let msb', msb'' = list_chop (n-1) msb in
let labels = Array.make n l in
list_iter_i
(fun j ->
function
| (l,SFBconst cb') ->
if check <> check_fix env cb' (j+1) then raise Impossible;
labels.(j+1) <- l;
| _ -> raise Impossible) msb';
labels, recd, msb''
end
(** Expanding a [struct_expr_body] into a version without abbreviations
or functor applications. This is done via a detour to entries
(hack proposed by Elie)
*)
let rec seb2mse = function
| SEBapply (s,s',_) -> Entries.MSEapply(seb2mse s, seb2mse s')
| SEBident mp -> Entries.MSEident mp
| _ -> failwith "seb2mse: received a non-atomic seb"
let expand_seb env mp seb =
let seb,_,_,_ =
Mod_typing.translate_struct_module_entry env mp true (seb2mse seb)
in seb
(** When possible, we use the nicer, shorter, algebraic type structures
instead of the expanded ones. *)
let my_type_of_mb mb =
let m0 = mb.mod_type in
match mb.mod_type_alg with Some m -> m0,m | None -> m0,m0
let my_type_of_mtb mtb =
let m0 = mtb.typ_expr in
match mtb.typ_expr_alg with Some m -> m0,m | None -> m0,m0
(** Ad-hoc update of environment, inspired by [Mod_type.check_with_aux_def].
To check with Elie. *)
let rec msid_of_seb = function
| SEBident mp -> mp
| SEBwith (seb,_) -> msid_of_seb seb
| _ -> assert false
let env_for_mtb_with env mp seb idl =
let sig_b = match seb with
| SEBstruct(sig_b) -> sig_b
| _ -> assert false
in
let l = label_of_id (List.hd idl) in
let before = fst (list_split_when (fun (l',_) -> l=l') sig_b) in
Modops.add_signature mp before empty_delta_resolver env
(* From a [structure_body] (i.e. a list of [structure_field_body])
to specifications. *)
let rec extract_sfb_spec env mp = function
| [] -> []
| (l,SFBconst cb) :: msig ->
let kn = make_con mp empty_dirpath l in
let s = extract_constant_spec env kn cb in
let specs = extract_sfb_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmind _) :: msig ->
let kn = make_kn mp empty_dirpath l in
let mind = mind_of_kn kn in
let s = Sind (kn, extract_inductive env mind) in
let specs = extract_sfb_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmodule mb) :: msig ->
let specs = extract_sfb_spec env mp msig in
let spec = extract_seb_spec env mb.mod_mp (my_type_of_mb mb) in
(l,Smodule spec) :: specs
| (l,SFBmodtype mtb) :: msig ->
let specs = extract_sfb_spec env mp msig in
let spec = extract_seb_spec env mtb.typ_mp (my_type_of_mtb mtb) in
(l,Smodtype spec) :: specs
(* From [struct_expr_body] to specifications *)
(* Invariant: the [seb] given to [extract_seb_spec] should either come
from a [mod_type] or [type_expr] field, or their [_alg] counterparts.
This way, any encountered [SEBident] should be a true module type.
*)
and extract_seb_spec env mp1 (seb,seb_alg) = match seb_alg with
| SEBident mp -> Visit.add_mp mp; MTident mp
| SEBwith(seb',With_definition_body(idl,cb))->
let env' = env_for_mtb_with env (msid_of_seb seb') seb idl in
let mt = extract_seb_spec env mp1 (seb,seb') in
(match extract_with_type env' cb with (* cb peut contenir des kn *)
| None -> mt
| Some (vl,typ) -> MTwith(mt,ML_With_type(idl,vl,typ)))
| SEBwith(seb',With_module_body(idl,mp))->
Visit.add_mp mp;
MTwith(extract_seb_spec env mp1 (seb,seb'),
ML_With_module(idl,mp))
| SEBfunctor (mbid, mtb, seb_alg') ->
let seb' = match seb with
| SEBfunctor (mbid',_,seb') when mbid' = mbid -> seb'
| _ -> assert false
in
let mp = MPbound mbid in
let env' = Modops.add_module (Modops.module_body_of_type mp mtb) env in
MTfunsig (mbid, extract_seb_spec env mp (my_type_of_mtb mtb),
extract_seb_spec env' mp1 (seb',seb_alg'))
| SEBstruct (msig) ->
let env' = Modops.add_signature mp1 msig empty_delta_resolver env in
MTsig (mp1, extract_sfb_spec env' mp1 msig)
| SEBapply _ ->
if seb <> seb_alg then extract_seb_spec env mp1 (seb,seb)
else assert false
(* From a [structure_body] (i.e. a list of [structure_field_body])
to implementations.
NB: when [all=false], the evaluation order of the list is
important: last to first ensures correct dependencies.
*)
let rec extract_sfb env mp all = function
| [] -> []
| (l,SFBconst cb) :: msb ->
(try
let vl,recd,msb = factor_fix env l cb msb in
let vc = Array.map (make_con mp empty_dirpath) vl in
let ms = extract_sfb env mp all msb in
let b = array_exists Visit.needed_con vc in
if all || b then
let d = extract_fixpoint env vc recd in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
with Impossible ->
let ms = extract_sfb env mp all msb in
let c = make_con mp empty_dirpath l in
let b = Visit.needed_con c in
if all || b then
let d = extract_constant env c cb in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms)
| (l,SFBmind mib) :: msb ->
let ms = extract_sfb env mp all msb in
let kn = make_kn mp empty_dirpath l in
let mind = mind_of_kn kn in
let b = Visit.needed_ind mind in
if all || b then
let d = Dind (kn, extract_inductive env mind) in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
| (l,SFBmodule mb) :: msb ->
let ms = extract_sfb env mp all msb in
let mp = MPdot (mp,l) in
if all || Visit.needed_mp mp then
(l,SEmodule (extract_module env mp true mb)) :: ms
else ms
| (l,SFBmodtype mtb) :: msb ->
let ms = extract_sfb env mp all msb in
let mp = MPdot (mp,l) in
if all || Visit.needed_mp mp then
(l,SEmodtype (extract_seb_spec env mp (my_type_of_mtb mtb))) :: ms
else ms
(* From [struct_expr_body] to implementations *)
and extract_seb env mp all = function
| (SEBident _ | SEBapply _) as seb when lang () <> Ocaml ->
(* in Haskell/Scheme, we expand everything *)
extract_seb env mp all (expand_seb env mp seb)
| SEBident mp ->
if is_modfile mp && not (modular ()) then error_MPfile_as_mod mp false;
Visit.add_mp mp; MEident mp
| SEBapply (meb, meb',_) ->
MEapply (extract_seb env mp true meb,
extract_seb env mp true meb')
| SEBfunctor (mbid, mtb, meb) ->
let mp1 = MPbound mbid in
let env' = Modops.add_module (Modops.module_body_of_type mp1 mtb)
env in
MEfunctor (mbid, extract_seb_spec env mp1 (my_type_of_mtb mtb),
extract_seb env' mp true meb)
| SEBstruct (msb) ->
let env' = Modops.add_signature mp msb empty_delta_resolver env in
MEstruct (mp,extract_sfb env' mp all msb)
| SEBwith (_,_) -> anomaly "Not available yet"
and extract_module env mp all mb =
(* A module has an empty [mod_expr] when :
- it is a module variable (for instance X inside a Module F [X:SIG])
- it is a module assumption (Declare Module).
Since we look at modules from outside, we shouldn't have variables.
But a Declare Module at toplevel seems legal (cf #2525). For the
moment we don't support this situation. *)
match mb.mod_expr with
| None -> error_no_module_expr mp
| Some me ->
{ ml_mod_expr = extract_seb env mp all me;
ml_mod_type = extract_seb_spec env mp (my_type_of_mb mb) }
let unpack = function MEstruct (_,sel) -> sel | _ -> assert false
let mono_environment refs mpl =
Visit.reset ();
List.iter Visit.add_ref refs;
List.iter Visit.add_mp mpl;
let env = Global.env () in
let l = List.rev (environment_until None) in
List.rev_map
(fun (mp,m) -> mp, unpack (extract_seb env mp false m)) l
(**************************************)
(*S Part II : Input/Output primitives *)
(**************************************)
let descr () = match lang () with
| Ocaml -> Ocaml.ocaml_descr
| Haskell -> Haskell.haskell_descr
| Scheme -> Scheme.scheme_descr
(* From a filename string "foo.ml" or "foo", builds "foo.ml" and "foo.mli"
Works similarly for the other languages. *)
let default_id = id_of_string "Main"
let mono_filename f =
let d = descr () in
match f with
| None -> None, None, default_id
| Some f ->
let f =
if Filename.check_suffix f d.file_suffix then
Filename.chop_suffix f d.file_suffix
else f
in
let id =
if lang () <> Haskell then default_id
else try id_of_string (Filename.basename f)
with _ -> error "Extraction: provided filename is not a valid identifier"
in
Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id
(* Builds a suitable filename from a module id *)
let module_filename mp =
let f = file_of_modfile mp in
let d = descr () in
Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id_of_string f
(*s Extraction of one decl to stdout. *)
let print_one_decl struc mp decl =
let d = descr () in
reset_renaming_tables AllButExternal;
set_phase Pre;
ignore (d.pp_struct struc);
set_phase Impl;
push_visible mp [];
msgnl (d.pp_decl decl);
pop_visible ()
(*s Extraction of a ml struct to a file. *)
let formatter dry file =
let ft =
if dry then Format.make_formatter (fun _ _ _ -> ()) (fun _ -> ())
else Pp_control.with_output_to (Option.default stdout file)
in
(* We never want to see ellipsis ... in extracted code *)
Format.pp_set_max_boxes ft max_int;
(* We reuse the width information given via "Set Printing Width" *)
(match Pp_control.get_margin () with
| None -> ()
| Some i ->
Format.pp_set_margin ft i;
Format.pp_set_max_indent ft (i-10));
(* note: max_indent should be < margin above, otherwise it's ignored *)
ft
let print_structure_to_file (fn,si,mo) dry struc =
let d = descr () in
reset_renaming_tables AllButExternal;
let unsafe_needs = {
mldummy = struct_ast_search ((=) MLdummy) struc;
tdummy = struct_type_search Mlutil.isDummy struc;
tunknown = struct_type_search ((=) Tunknown) struc;
magic =
if lang () <> Haskell then false
else struct_ast_search (function MLmagic _ -> true | _ -> false) struc }
in
(* First, a dry run, for computing objects to rename or duplicate *)
set_phase Pre;
let devnull = formatter true None in
msg_with devnull (d.pp_struct struc);
let opened = opened_libraries () in
(* Print the implementation *)
let cout = if dry then None else Option.map open_out fn in
let ft = formatter dry cout in
begin try
(* The real printing of the implementation *)
set_phase Impl;
msg_with ft (d.preamble mo opened unsafe_needs);
msg_with ft (d.pp_struct struc);
Option.iter close_out cout;
with e ->
Option.iter close_out cout; raise e
end;
if not dry then Option.iter info_file fn;
(* Now, let's print the signature *)
Option.iter
(fun si ->
let cout = open_out si in
let ft = formatter false (Some cout) in
begin try
set_phase Intf;
msg_with ft (d.sig_preamble mo opened unsafe_needs);
msg_with ft (d.pp_sig (signature_of_structure struc));
close_out cout;
with e ->
close_out cout; raise e
end;
info_file si)
(if dry then None else si)
(*********************************************)
(*s Part III: the actual extraction commands *)
(*********************************************)
let reset () =
Visit.reset (); reset_tables (); reset_renaming_tables Everything
let init modular =
check_inside_section (); check_inside_module ();
set_keywords (descr ()).keywords;
set_modular modular;
reset ();
if modular && lang () = Scheme then error_scheme ()
(* From a list of [reference], let's retrieve whether they correspond
to modules or [global_reference]. Warn the user if both is possible. *)
let rec locate_ref = function
| [] -> [],[]
| r::l ->
let q = snd (qualid_of_reference r) in
let mpo = try Some (Nametab.locate_module q) with Not_found -> None
and ro = try Some (Nametab.locate q) with Not_found -> None in
match mpo, ro with
| None, None -> Nametab.error_global_not_found q
| None, Some r -> let refs,mps = locate_ref l in r::refs,mps
| Some mp, None -> let refs,mps = locate_ref l in refs,mp::mps
| Some mp, Some r ->
warning_both_mod_and_cst q mp r;
let refs,mps = locate_ref l in refs,mp::mps
(*s Recursive extraction in the Coq toplevel. The vernacular command is
\verb!Recursive Extraction! [qualid1] ... [qualidn]. Also used when
extracting to a file with the command:
\verb!Extraction "file"! [qualid1] ... [qualidn]. *)
let full_extr f (refs,mps) =
init false;
List.iter (fun mp -> if is_modfile mp then error_MPfile_as_mod mp true) mps;
let struc = optimize_struct refs (mono_environment refs mps) in
warning_axioms ();
print_structure_to_file (mono_filename f) false struc;
reset ()
let full_extraction f lr = full_extr f (locate_ref lr)
(*s Simple extraction in the Coq toplevel. The vernacular command
is \verb!Extraction! [qualid]. *)
let simple_extraction r = match locate_ref [r] with
| ([], [mp]) as p -> full_extr None p
| [r],[] ->
init false;
let struc = optimize_struct [r] (mono_environment [r] []) in
let d = get_decl_in_structure r struc in
warning_axioms ();
if is_custom r then msgnl (str "(** User defined extraction *)");
print_one_decl struc (modpath_of_r r) d;
reset ()
| _ -> assert false
(*s (Recursive) Extraction of a library. The vernacular command is
\verb!(Recursive) Extraction Library! [M]. *)
let extraction_library is_rec m =
init true;
let dir_m =
let q = qualid_of_ident m in
try Nametab.full_name_module q with Not_found -> error_unknown_module q
in
Visit.add_mp (MPfile dir_m);
let env = Global.env () in
let l = List.rev (environment_until (Some dir_m)) in
let select l (mp,meb) =
if Visit.needed_mp mp
then (mp, unpack (extract_seb env mp true meb)) :: l
else l
in
let struc = List.fold_left select [] l in
let struc = optimize_struct [] struc in
warning_axioms ();
let print = function
| (MPfile dir as mp, sel) as e ->
let dry = not is_rec && dir <> dir_m in
print_structure_to_file (module_filename mp) dry [e]
| _ -> assert false
in
List.iter print struc;
reset ()
|